
984
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

LETTER

A Novel Intrusion Tolerant System Using Live Migration

Yongjoo SHIN†a), Student Member, Sihu SONG†b), Yunho LEE††c), and Hyunsoo YOON†d), Nonmembers

SUMMARY This letter proposes a novel intrusion tolerant system con-
sisting of several virtual machines (VMs) that refresh the target system
periodically and by live migration, which monitors the many features of
the VMs to identify and replace exhausted VMs. The proposed scheme
provides adequate performance and dependability against denial of service
(DoS) attacks. To show its efficiency and security, we conduct experiments
on the CSIM20 simulator, which showed 22% improvement in a normal sit-
uation and approximately 77.83% improvement in heavy traffic in terms of
the response time compared to that reported in the literature. We measure
and compare the response time. The result show that the proposed scheme
has shorter response time and maintains than other systems and supports
services during the heavy traffic.
key words: intrusion tolerant system (ITS), proactive & reactive recovery,
live migration, denial of service (DoS)

1. Introduction

The concept of intrusion tolerance was invented to cope
with attacks that exploit unknown vulnerabilities. An intru-
sion tolerant system (ITS) aims to maintain continuous and
correct services of the system under attacks or intrusions.
ITSs are concerned more with the effects of attacks on the
target system than the causes of the attacks because they
mainly support the availabilities and do not detect or pre-
vent attacks. ITS architectures are classified into four cate-
gories [1]: detection triggered [2]–[4], algorithm driven [5],
[6], recovery based [7]–[20], and hybrid [21]. This study fo-
cuses on recovery-based methods because the other types of
ITSs employ intrusion detection methods and the aim was to
build ITSs to cope with situations where the intrusion cannot
be detected.

Proactive-based recovery constitutes a major part of re-
search in the recovery-based architecture [7], [9]–[11], such
as Self-Cleansing Intrusion Tolerance (SCIT) [7] which uti-
lizes virtualization technology [16], [17]. This is comprised
of server virtual machines (VMs). In SCIT, the target system
is refreshed at the end of every period, which is known as the

Manuscript received July 5, 2013.
Manuscript revised December 6, 2013.
†The authors are with Computer Science Department, Korea

Advanced Institute of Science and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon, Repubic of Korea.
††The author is with ITM Programme, Department of Industrial

and Systems Engineering, SeoulTech, 230 Gongneung-ro, Nowon-
gu, Seoul, Republic of Korea.

a) E-mail: yj shin@nslab.kaist.ac.kr
b) E-mail: shsong@nslab.kaist.ac.kr
c) E-mail: younholee@seoultech.ac.kr (Corresponding author)
d) E-mail: hyoon@nslab.kaist.ac.kr

DOI: 10.1587/transinf.E97.D.984

exposure time, during which the online VMs provide their
services. The exposure time is defined as the time that the
server is continuously connected to the internet [22]. Gen-
erally, this time means the intruder residence time, which is
the duration for attackers to stay in a system for a success-
ful intrusion. The short intruder residence time means a low
probability that the system is contaminated by attackers. In
order to reduce this time, the system is rejuvenated regularly
in SCIT. The refreshing process involves rotating the state
of VMs periodically to maintain the pristine state against
attacks. Because attackers can have only a bounded oppor-
tunity to access the system due to relatively short exposure
time, it is difficult to obtain sufficient information to intrude
or penetrate. Moreover, although an attack succeeds during
the exposure time and the system is modified or damaged,
it is possible to provide initially intended services through
the periodical refreshing of VMs. The service in SCIT sys-
tem is related with the high-availability such as the seamless
server transitions and sharing of server identities (IP and/or
hardware addresses). Examples of existing high-availability
systems include DNS servers, NFS servers, web services,
authentication services, firewalls, IPsec gateways, and vir-
tual private network (VPN) gateways [23].

On the other hand, the proactive recovery methods have
two problems. First, they do not consider the inner status
of each VM for refreshing. Therefore, they cannot cope if
a VM is exhausted very early in an exposure-time period.
Second, they cannot deal with the occurrence of heavy traf-
fic in a short time, such as when a denial of service (DoS)
attack occurs. Refreshing VMs periodically can remove the
vulnerabilities caused by faults or intrusions but it cannot
help process the massive packets because it does not affect
the capacity to process incoming packets.

A few studies [11]–[13] reported reactive methods,
which refresh the system based on events, not on the time
period. On the other hand, they cannot preserve the avail-
ability on the intensive short-term heavy traffic. Moreover,
some of them [19]–[21] require intrusion detection algo-
rithms, which cannot cope with unknown attacks. They also
do not address the issue of managing heavy packets except
for the study reported by Lim et al. [24], which adaptively
alters the size of a cluster, which is the number of active
clusters based on the incoming packets. Nevertheless, be-
cause no refreshing process is contained in this approach, it
does not provide protection against other attacks with mali-
cious codes.

To maintain the services on the system, even with

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



LETTER
985

heavy traffic, and improve the performance of the system,
this letter proposes a novel ITS using reactive recovery as
well as proactive recovery. The proposed scheme is oper-
ated in a virtualization environment and has four states (ac-
tive, grace, inactive, and live spare) like an existing SCIT
approach. In contrast to the existing approach, the proposed
scheme refreshes the VMs not only at the expiration of the
exposure time but also based on the inner status of the VMs
through live migration [14], [15]. Generally, VMs are ex-
hausted by the computational overheads which can be pro-
duced by plenty of incoming requests as well as the effect
of intrusion such as various viruses, worm, and malicious
codes. Therefore, the proposed scheme inspects the CPU us-
age and the queue length in real time in order to discover ex-
hausted VMs suffering from computational overheads. With
live migration, which supports the ability to monitor the uti-
lization of each VM to determine exhausted VMs and ex-
change the exhausted VM to a refreshed VM in real time,
the exhausted VMs can be refreshed before expiration of
the exposure time. This gives the target system more oppor-
tunity to provide services on healthy VMs, which can en-
hance the quality of service (QoS). Moreover, the proposed
scheme can deal with heavy traffic by expanding the size of
a cluster. If the amount of incoming packets exceeds the
capacity that a cluster can support, the system recognizes
it immediately and increases the number of VMs refreshed
through reactive recovery using live migration. At that time,
the system increases the number of online VMs so that it can
obtain sufficient capacity to continue correct services. Un-
like the work reported in reference [24], the proposed ITS
can adjust the size of a cluster more flexibly and adaptively
due to live migration, which results in lowering the cost of
constructing secure systems because limited resources can
be used efficiently to obtain improved performance and sur-
vivability against a DoS attack.

The proposed scheme was implemented, and its ef-
ficient performance and capability to fend off a DoS at-
tack were verified using a simulator, CSIM 20, which is a
process-oriented, discrete-event simulation model. The re-
sponse time was measured in the existing system and pro-
posed system. The combination of proactive and reactive
recovery improved the performance by more than 22% in
a normal situation, and the expansion/reduction mechanism
produced more than 77.83% improvement in heavy traffic:
it could continue providing services with a lower response
time during heavy incoming packets, compared to the sys-
tem reported elsewhere [24] which adjusts the cluster based
on the response time.

2. Proposed scheme

The proposed scheme consists of three components, such as
time-triggered recovery, event-triggered recovery, and ex-
pansion/reduction of the cluster.

Figure 1 shows the basic framework of the proposed
scheme. Similar to SCIT [7], the proposed scheme includes
the same cycle with four states, such as Active, Grace-

Fig. 1 Basic framework.

Period, Inactive, and Live-Spare. The refreshing process
involves rotating the state of VMs periodically to maintain
the pristine state, which is the initial state cleaned, against
attacks. The server to provide services must be periodically
cleansed to restore itself into a pristine state, regardless of
whether an intrusion occurs or not. Although there are un-
detected successful breaches in a system, they are easily
removed before causing serious damages to the system by
frequent server rotations. There are four state of servers
in a SCIT system such as Active, Grace-Period, Inactive,
and Live-Spare state. The services are provided during the
Active state. After the exposure time, the VM enters into
the Grace-Period state and no longer receives requests from
clients. Before refreshing process, all remaining requests in
the VM are processed. After accomplishing the process of
the remaining requests, the VM enters into the Inactive state
and is disconnected with external networks completely to
prevent contaminating the pristine image. The pristine im-
age is then mounted to the target VM by the virtualization
hypervisor. If above all processes are completed, the VM
is ready to do services in the Live-Spare state. The system
provides services on virtualization technology. Each VM
operates like that reported in reference [22]. In contrast to
the existing SCIT approach, it implements a hybrid recov-
ery in which the system is rejuvenated by the given time
or inner status of the online VMs. In addition, it increases
and decreases the number of online VMs. The virtualiza-
tion hypervisor plays the role of a central controller, which
is responsible for the rotation of each VM according to the
time or event triggered recovery and for adjusting the cluster
based on the number of incoming packets.

Algorithm 1 shows how the proposed scheme works; it
basically executes the proactive recovery. Regardless of the
occurrence of intrusions or failures, VMs provide services
during every exposure time period. Whenever an exposure
time period is over, VMs are refreshed as the existing SCIT
method [22].

In addition, the proposed scheme carries out the reac-
tive recovery by live migration, which is a technique used
to monitor the inner status of the system and identify mis-
behavior in the system. The virtualization hypervisor in-
spects the features of each VM, such as CPU usage and
queue length for measuring the healthy degree of each VM.



986
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

Algorithm 1 ITS with Live Migration
Require:

hi cpu[i]: the value of the CPU usage in ith VM
hi mem[i]: the value of the queue length in ith VM
iv cpu[i]: the ideal value of the CPU usage
iv mem[i]: the ideal value of the queue length
time exp: the exposure time
N act: the # of VMs in the active state.
N gp: the # of VMs during the grace period state.
V M[i]: ith VM in the active state

1: Periodic Check for Reactive Recovery:
2: for i = 1 to N act do
3: hi cpu[i] = the usage of CPU in each V M[i]
4: hi mem[i] = the length of queue in each V M[i]
5: end for
6: Proactive and Reactive Recovery:
7: for i = 1 to N act do
8: if hi cpu[i] > iv cpu or hi mem[i] > iv mem then
9: Execute the recovery of V M[i] {Reactive}

10: else if time exp is expired then
11: Execute the recovery of V M[i] {Proactive}
12: else
13: Keep providing a service.
14: end if
15: end for
16: Expansion and Reduction Mechanism:
17: if N gp

N act > 0.8 then
18: N act = N act + 1 {Expansion}
19: else if N gp

N act < 0.2 then
20: N act = N act − 1 {Reduction}
21: else
22: Keep providing a service.
23: end if

The queue is a collection in which the incoming packets in
the collection are kept in order. In our scheme, the queue
is a buffer queue where the packets forwarding to servers
are temporary stored before being processed by service pro-
cesses. The queue length is the number of packets to be
waiting for processing during processing another packet in a
VM, where arrivals are determined by a Poisson process and
job service times have an exponential distribution. The vir-
tualization hypervisor discovers the abnormal VMs by the
ideal values, which were obtained in a normal situation from
reference [24]. These represent the values of CPU usage and
the queue length during normal service. If the features of a
VM exceed the ideal values, the VM suffers from computa-
tional overheads and needs to be refreshed. In this case, the
system performs the refreshing process of the exhausted VM
by immediately ignoring the exposure time period. There-
fore, it increases the rate of time when the services are pro-
vided on healthy VMs and the entire performance of the sys-
tem is improved.

Although the recovery solutions are effective in defend-
ing against attacks that falsify and modify the inner environ-
ment of the target system, it is helpless to sustain the seam-
less services under a DoS attack because the recovery pro-
cess does not increase the capacity to process heavy packets.
If many incoming packets are brought into the system dur-
ing a short time, it is inevitable to increase the number of
VMs to continue providing services, because heavy packets

increase CPU usage and the queue length in the system. In
Grace-Period state, virtual machine processes any existing
requests, but does not accept any new requests [22]. Be-
cause VMs are disconnected with external networks during
refreshing process, the online VM to refresh must complete
existing requests and deny receiving new requests before be-
ginning the refreshing process. Thus, in order to response
requests completely in SCIT, the Grace-Period state is nec-
essary. If the number of exhausted VMs is increasing, they
should enter into the Grace-Period state for refreshing by
the reactive recovery. The proposed scheme monitors the
number of VMs in the Grace-Period state. If the ratio of
the number of VMs in the Grace-Period state to that in the
Active state is more than 80%, the current number of online
VMs is not sufficient to keep providing normal services. If
so, additional VMs are allocated to process incoming pack-
ets. The parameter, 80%, was chosen to handle the situation
appropriately without much performance degradation on the
system. This parameter can be made smaller, but it induces
over-redundant resource usage.

On the other hand, if the number of incoming packets
is decreased, the values of the CPU usage and queue length
are restored to the normal state. In this situation, a few VMs
are refreshed and enter into the Grace-Period state. If the ra-
tio is less than 20%, there are too many VMs to process the
incoming packets. In this case, the number of online VMs
is reduced to utilize efficiently the restricted resources of the
physical server. The parameter, 20%, is chosen because re-
ducing the number of online VMs does not affect the overall
system performance significantly when the value is down to
approximately 20%.

3. Experiment and Analysis

The configuration for the proposed scheme is as follows.
The initial numbers of online and reserved VMs are three
and six, respectively. The number of total VMs used is 20.
The exposure time is 10 seconds during which the VM can
provide services. The cleansing time is the duration to take
to mount an initial pristine image to the target VM, which is
believed to take 6 seconds regularly in this experiment.

The environmental assumptions were as follows, which
were obtained from references [24], [25] for a fair compar-
ison: the mean incoming packet interval was 11.5ms, and
the mean process time of an incoming packet was 11.5ms
× 0.99. The exponential distribution with the mean value
was used to generate incoming packets and the processing
time relatively, which reflects their variety. The ideal values
were used to determine if a VM is exhausted, which are as
follows: the CPU usage was 0.907 and queue length was
10.58. These values were obtained under environment as-
sumptions. The simulator used was CSIM 20, which is a
library of routines to create process-oriented, discrete-event
simulators [26].

The response times of the proposed scheme and the
existing system employing only proactive recovery ap-
proach [7] were measured in the first experiment. During



LETTER
987

Fig. 2 The results of efficiency.

Fig. 3 The results of security against DoS.

a given time, the existing system performed the refreshing
process 24 times and the mean response time was 43.577
msec. On the other hand, the proposed system performed
the refreshing process 46 times with a mean response time of
33.905msec. Because the proposed system executed almost
double the number of refreshing processes due to combina-
tion of proactive and reactive recovery, the mean response
time was approximately 22% lower than that of the existing
system. Additional refreshing processes do not affect the
entire performance of the system due to the advanced vir-
tualization technology [27]. Figure 2 shows the results for
efficiency.

The purpose of the second experiment is to show
whether the proposed scheme continues to provide a service
under a DoS attack better, compared to the existing scheme.
To simulate a DoS attack, the mean incoming-packet inter-
val time is decreased after processing each packet (Interval
= Interval×0.99), as reported in reference [22]. In the exper-
iment, the interval is 3,000 times as short as the initial in-
terval after 10 seconds: the interval becomes 9.253 × 10−13,
which means that 1012 packets per second are incoming. In
general, this situation is much tougher than a real DoS situ-
ation. Figure 3 shows the results for security against a DoS
attack.

Under the assumption that the VMs provide the same
function and have the same capacities as each other, three
types of systems were compared in this experiment. 1)
A 3-VMs system consists of three VMs with no recov-
ery and no cluster expansion/reduction mechanism. 2) An

ACT system is an existing system with only a cluster ex-
pansion/reduction mechanism [24]. 3) The proposed sys-
tem has a recovery and cluster expansion/reduction mech-
anism. As the number of incoming packets increases, the
response time of the 3-VMs system was increased so gradu-
ally that the system could not provide normal services. The
ACT and the proposed systems kept providing services in
heavy traffic. On the other hand, because the proposed sys-
tem employs a combination of proactive and reactive re-
covery by live migration, there were more cluster expan-
sions and a smaller average response time compared to the
ACT system. The mean response time of the ACT system
was 23.667 msec, whereas that of the proposed system was
13.309 msec, showing 77.83% performance improvement.
Because advanced virtualization technology allocates effi-
ciently the restricted resources of the system for creating
VMs, many physical servers are not required to implement
the proposed scheme, compared to the existing schemes.

4. Conclusion

This letter proposed a novel ITS using live migration, which
employs a combination of proactive and reactive recovery.
This makes the system more efficient. Moreover, it provides
a solution against heavy packet influxes within a short term,
such as a DoS attack. Experiments on CISM20 showed that
the proposed scheme is more efficient than the conventional
system with only proactive recovery and continues the ser-
vice under a DoS attack.

Acknowledgements

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea Government
(MEST). (No. 2011-0016584)

References

[1] Q.L. Nguyen and A. Sood, “A comparison of intrusion-tolerant sys-
tem architectures,” IEEE Security & Privacy, vol.9, no.4, pp.24–31,
2011.

[2] F. Wang, F. Gong, C. Sargor, K. Goseva-Popstojanova, K. Trivedi,
and F. Jou, “SITAR: A scalable intrusion-tolerant architecture for
distributed services,” Workshop on Information Assurance and Se-
curity, vol.1, p.1100, 2003.

[3] P. Pal, F. Webber, and R. Schantz, “The DPASA survivable JBI-a
high-water mark in intrusion-tolerant systems,” Proc. 2007 Work-
shop Recent Advances in Intrusion Tolerant Systems, 2007.

[4] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J.
Levy, H. Saidi, V. Stavridou, and T.E. Uribe, “An architecture for an
adaptive intrusion-tolerant server,” Security Protocols, 2004.

[5] P.E. Verissimo, N.F. Neves, C. Cachin, J. Poritz, D. Powell, Y.
Deswarte, R. Stroud, and I. Welch, “Intrusion-tolerant middleware:
The road to automatic security,” IEEE Security & Privacy, vol.4,
no.4, pp.54–62, 2006.

[6] P. Pal, P. Rubel, M. Atighetchi, F. Webber, W.H. Sanders, M. Seri, H.
Ramasamy, J. Lyons, T. Courtney, and A. Agbaria, “An architecture
for adaptive intrusion-tolerant applications,” Software: Practice and
Experience, vol.36, no.11-12, pp.1331–1354, 2006.



988
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

[7] Y. Huang and A. Sood, “Self-cleansing systems for intrusion con-
tainment,” Proc. Workshop on Self-Healing, Adaptive, and Self-
Managed Systems (SHAMAN), 2002.

[8] D. Arsenault, A. Sood, and Y. Huang, “Secure, resilient computing
clusters: self-cleansing intrusion tolerance with hardware enforced
security (SCIT/HES),” Second International Conference on Avail-
ability, Reliability and Security, 2007.

[9] P. Sousa, A.N. Bessani, and R.R. Obelheiro, “The FOREVER ser-
vice for fault/intrusion removal,” Proc. 2nd workshop on Recent ad-
vances on intrusiton-tolerant systems, 2008.

[10] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst. (TOCS), vol.20,
no.4, pp.398–461, 2002.

[11] Y. Huang and C. Kintala, “Software implemented fault tolerance:
Technologies and experience,” FTCS, vol.23, pp.2–9, 1993.

[12] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J.
Cutler, P. Enriquez, A. Fox, E. Kiciman, and M. Merzbacher,
Recovery-oriented computing (ROC): Motivation, definition, tech-
niques, and case studies, Technical Report UCB//CSD-02-1175,
2002.

[13] K.R. Joshi, M.A. Hiltunen, W.H. Sanders, and R.D. Schlichting,
“Automatic model-driven recovery in distributed systems,” 24th
IEEE Symposium on Reliable Distributed Systems, 2005.

[14] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” Proc. 18th ACM In-
ternational Symposium on High Performance Distributed Comput-
ing, 2009.

[15] B. Jiang, B. Ravindran, and C. Kim, “Lightweight live migration for
high availability cluster service,” Stabilization, Safety, and Security
of Distributed Systems, 2010.

[16] R. Sindoori, V.P. Pallavi, and P. Abinaya, “An Overview of Disas-
ter Recovery in Virtualization Technology,” J. Artificial Intelligence,
vol.6, pp.60–67, 2012.

[17] J.-H. Huang, J. Huang, R. Li, and X.-M. Li, “Virtualization-based
recovery approach for intrusion tolerance,” Information Technology

Journal, vol.12, pp.385–390, 2012.
[18] A. Nagarajan, Q. Nguyen, R. Banks, and A. Sood, “Combining in-

trusion detection and recovery for enhancing system dependability,”
2011 IEEE/IFIP 41st International Conference on Dependable Sys-
tems and Networks Workshops (DSN-W), 2011.

[19] J.-H. Huang and F.-F. Wang, “The strategy of proactive-reactive in-
trusion tolerance recovery based on hierarchical model,” Web Infor-
mation Systems and Mining, 2011.

[20] L. Zheng, X. Nie, Y. Tao, and L. Li, “Applications of intrusion-
tolerance pre-response in the grid enterprises,” International Con-
ference on Computational and Information Sciences (ICCIS), 2012.

[21] P. Sousa, A.N. Bessani, M. Correia, N.F. Neves, and P. Verissimo,
“Highly available intrusion-tolerant services with proactive-reactive
recovery,” IEEE Trans. Parallel Distrib. Syst., vol.21, no.4, pp.452–
465, 2010.

[22] A.K. Bangalore and A.K. Sood, “Securing web servers using self
cleansing intrusion tolerance (SCIT),” Second International Confer-
ence on Dependability, 2009. DEPEND’09. 2009.

[23] Y. Huang, D. Arsenault, and A. Sood, “Incorruptible system self-
cleansing for intrusion tolerance,” 25th IEEE International Perfor-
mance, Computing, and Communications Conference, 2006. IPCCC
2006. IEEE, 2006.

[24] J. Lim, Y. Kim, D. Koo, S. Lee, S. Doo, and H. Yoon, “A novel
adaptive cluster transformation (ACT)-based intrusion tolerant ar-
chitecture for hybrid information technology,” J. Supercomputing,
pp.1–18, 2013.

[25] A. Saidane, V. Nicomette, and Y. Deswarte, “The design of a generic
intrusion-tolerant architecture for web servers,” Dependable and Se-
cure Computing, vol.6, no.1, pp.45–58, 2009.

[26] H. Schwetman, “CSIM19: CSIM19: a powerful tool for building
system models,” 33rd Conference on Winter Simulation, 2001.

[27] T. Distler, R. Kapitza, and H.P. Reiser, “Efficient state transfer for
hypervisor-based proactive recovery,” Proc. 2nd Workshop on Re-
cent Advances on Intrusiton-Tolerant Systems, 2008.


