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Abstract

Large Language Models (LLMs) can be used as repositories
of biological and chemical information to generate pharma-
cological lead compounds. However, for LLMs to focus on
specific drug targets typically require experimentation with
progressively more refined prompts. Results thus become de-
pendent not just on what is known about the target, but also
on what is known about the prompt-engineering. In this pa-
per, we separate the prompt into domain-constraints that can
be written in a standard logical form, and a simple text-
based query. We investigate whether LLMs can be guided,
not by refining prompts manually, but by refining the the log-
ical component automatically, keeping the query unchanged.
We describe an iterative procedure LMLF (“Language Mod-
els with Logical Feedback”) in which the constraints are
progressively refined using a logical notion of generalisa-
tion. On any iteration, newly generated instances are veri-
fied against the constraint, providing “logical-feedback” for
the next iteration’s refinement of the constraints. We eval-
uate LMLF using two well-known targets (inhibition of the
Janus Kinase 2; and Dopamine Receptor D2); and two differ-
ent LLMs (GPT-3 and PaLM). We show that LMLF, starting
with the same logical constraints and query text, can guide
both LLMs to generate potential leads. We find: (a) Binding
affinities of LMLF-generated molecules are skewed towards
higher binding affinities than those from existing baselines;
(b) LMLF results in generating molecules that are skewed
towards higher binding affinities than without logical feed-
back; (c) Assessment by a computational chemist suggests
that LMLF generated compounds may be novel inhibitors.
These findings suggest that LLMs with logical feedback may
provide a mechanism for generating new leads without re-
quiring the domain-specialist to acquire sophisticated skills
in prompt-engineering.

Introduction
In 1982, Edward Feigenbaum identified a difficulty in the
transfer of human-knowledge to a machine, now famous as
“the Feigenbaum bottleneck” (Feigenbaum et al. 1977). In
a curious twist of fate, we now appear confronted by a “re-
verse bottleneck”. Machine knowledge, such as those con-
tained in large foundation models, is at least as difficult for
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humans to access as it was to represent human knowledge
in a machine-understandable form. Surprisingly, this reverse
bottleneck also appears to have been first identified in 1982.
The problem of ‘The Human Window’ (Kopec 1982; Michie
1982) refers to the difficulties faced by humans when in-
teracting with a complex computing system, due to a mis-
match in representations of the human and machine. Mod-
ern large language models (LLMs) would appear to have
resolved this difficulty through their impressive facility to
use natural language as a mechanism of communicating with
humans (Brown et al. 2020; Narang and Chowdhery 2022).
In fact, the true difficulties concerning the Human Window
arise from the need for a conceptual interface, not simply
a linguistic interface. That is, the mismatch has to be ad-
dressed at a concept-level.1 The intense interest in the meth-
ods and practices of ‘prompt engineering’ as an approach
to extract useful information from LLMs could be seen as
evidence of the deeper, conceptual mismatch that exists be-
tween LLMs and human representations. In this paper, we
are concerned with an immediate practical manifestation
of this, namely in the apparent need to be a sophisticated
prompt-engineer to be able to use the capability of an LLM
best.

Our specific interest is in the generation of novel leads
for early-stage drug-design. Here, the human is typically a
computational- or synthetic-chemist, who often uses knowl-
edge that can be expressed in a logical form. For exam-
ple, this may be in the form of generic constraints on val-
ues like molecular weight, hydrophobicity, synthetic acces-
sibility score, etc.; and specific constraints like estimated
binding energy to the target site, size of the binding site,
presence of any specific anchors and so on. The usual
route to provide this as input to an LLM would be through
prompts, which combine what the chemist knows, and what
the chemist needs from the LLM. However, the free-text in-
terface prompts make it difficult to settle on a single form
for this input, and the process becomes one of experimen-
tation with phrasings or text, and orderings of textual se-

1Kopec distinguishes between ‘surface-level’ and ‘structural-
level’ mismatches. The use of natural language addresses the
surface-level mismatch, but it does not necessarily alleviate the
mismatch between the concepts employed.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21



quences. Results are, therefore, dependent not just on what
is known bio-chemically, but on the content and sequence of
text provided. This makes the experiments highly subjective
and difficult to reproduce.

In this paper, we attempt to reduce this subjectivity while
retaining one very important feature of LLMs, namely, the
ability to adapt quickly to new probability distributions and
to sample effectively from them. Our approach is to sep-
arate the content of a prompt into two parts: a domain-
specific component, and a domain-independent component.
In this paper, by ‘domain-specific’ here, we mean the drug-
design aspects that allow the LLM to update its probabil-
ity distribution. The domain-independent part will be a sim-
ple query enabling the LLM to generate instances from
its (updated) distribution. Further, we will require that the
domain-specific component be encoded in a standardised
form that can be refined automatically and that the domain-
independent form is simple enough to be independent of the
LLM used. This is done to ensure clarity and repeatability of
the experimental protocol. Here, the standardised form we
employ is formal logic, and LLM updates are done through
a procedure LMLF that employs what we call ‘logical feed-
back’.

The rest of the paper is organised as follows. In the Back-
ground section, we summarise the need for automated dis-
covery of new leads in early-stage drug-design, and a de-
scription of some constraints on lead-generation. Although
we expect readers to be familiar with LLMs, at least in their
use through interactive interfaces like ChatGPT, we never-
theless include a short description of LLMs as implemen-
tations of probabilistic generative models. In the section
following, we describe the LMLF procedure as a method
of using LLMs in conjunction with satisfaction of logical
constraints acting as feedback to update its probability dis-
tribution. In the Empirical Evaluation section, we describe
our evaluation of LMLF empirically using two benchmark
drug-design targets and two well-known LLMs. Finally, we
present some related works, followed by conclusions.

Background
Lead Discovery in Early-Stage Drug Design
Drugs are small molecules that usually attach themselves to
parts of a larger molecule (like a protein), called a ‘target’.
This attachment takes place at a location known as the ‘tar-
get site’. The attachment occurs mainly by the usual phys-
ical electrostatic mechanisms, and the process is known as
binding. Binding results in structural and functional change
of the target molecule. Usually, this change means stopping
some activity, and the small molecule is said to inhibit the
target. Leads are small molecules that could potentially bind
to a target molecule.

Artificial Intelligence is currently revolutionizing drug de-
velopment (Williams et al. 2015), especially in various steps
of early-stage drug design (see Fig. 1(a) showing the use of
a Robot Scientist) as virtual screening, identifying qualita-
tive and quantitative structure-activity relations (SARs) and
so on. The broader picture is of a semi-automated scientific
discovery pipeline involving feedback from from computa-

tional chemists, synthetic chemists, and biologists and man-
ufacturers, using results from simulation, synthesis proto-
cols, and biological testing (see Fig. 1(b) and (Zenil et al.
2023) for the broader context of closed-loop scientific dis-
covery).

Figure 1: (a) Early Stage Drug Design; and (b) Computa-
tional drug discovery with specialists-in-the-loop. The dot-
ted arrows represent 2-way ‘interactions’.

In this paper, we restrict ourselves to domain-specialists
in the form of computational chemists with knowledge of
chemical synthesis. We envisage 2 kinds of interaction be-
tween such this specialist and the computational engine: (A)
Provision of chemical knowledge. This could be of a general
nature on drug-likeness, or specific to the target or output
of the computational engine; (B) Asking chemical queries,
usually about possible new structures, or specific aspects of
existing structures.

If the computational engine is a large language model
(LLM), then all specialists in Fig. 1(b) should be able to
interact using natural language. But, as pointed out in Sec. ,
the very flexibility allowed by natural language instruction
poses difficulties to the construction a pipeline capable of
repeatable, standardised experiments. We will be looking at
a mechanism that requires: the specialist’s knowledge (A)
to be provided in a standardised form that can then be re-
fined automatically; and the chemical queries (B) that are to
be posed as simple text concerning the generation of new
molecular structures. In effect, (A) and its subsequent re-
finements are used to alter automatically the conditioning
information (used here in a probabilistic sense) provided to
the LLM; and (B) is used to sample from the resulting con-
ditional probability distribution over small molecules.

Language Models as Probabilistic Machines
A language model is a probabilistic model of natural lan-
guage that learns a probability distribution over sequences
of tokens called sentences. Let W denote one such sentence
with N tokens, W = (w1, . . . , wN ), where, N is arbitrary.
A language model estimates the probability of observing the
sentence W , denoted by the joint probability P (W ). In prac-
tice, however, P (W ) is approximated using n-gram mod-
els (Jelinek 1980; Katz 1987) or Neural language models or
NLMs (Bengio, Ducharme, and Vincent 2000). These mod-
els use Markov’s assumption that the probability of a word
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depends only on the previous n < N words. That is,

P (W ) =
N∏
i=1

P (wi|wi−(n−1), . . . , wi−1) (1)

Neural language models or NLM (Bengio, Ducharme, and
Vincent 2000) are probabilistic language models based on
(deep) neural networks that can handle the problems associ-
ated with n-gram models, such as handling long-range de-
pendency, context understanding, handling noise and am-
biguity, learning complex relationships by learning a dis-
tributed representation of text tokens. An NLM approxi-
mates each term on the right-hand side of Eq. (1) using a
neural network. Large Language Models (LLMs) such as
GPTs (Radford et al. 2019) and PALM (Narang and Chowd-
hery 2022) are large and complex neural language models
that use the transformer architecture (Vaswani et al. 2017) to
learn from vast and diverse corpora of text data.

Prompt-based LLMs, such as ChatGPT and BARD are
LLMs that can learn with human-feedback (Ouyang et al.
2022). A prompt is an input sequence written by a human
in a natural language, which serves as the starting point that
sets the context of the LLM to generate the next (highly)
probable text sequence in an auto-regressive manner.

Using Language Models with Logical
Feedback (LMLF)

We differentiate the information provided by a human in
a prompt for an LLM into 2 parts: contextual information,
which can be encoded in a formal language, and a query,
which is in a natural language. It is further helpful for us to
distinguish the former into background knowledge B con-
sisting of definitions, functions, procedures and factual state-
ments, and C, consisting of domain-constraints. For the spe-
cific task of lead-discovery that we are interested in:

• B will include: example molecules; facts about the
molecules obtained from computation by a general-
purpose molecular modelling package (computing, for
example, bulk properties like molecular weight, synthe-
sis accessibility scores etc.); facts about the molecule
obtained from computation by special-purpose molecu-
lar modelling package (computing for example, binding
affinity to the target site). We also consider part of B any
standard mathematical and arithmetic procedures used in
the constraints C.

• C will typically be a conjunction of desirable properties
of leads, like molecular weight between 200 and 700;
logP below 5; SA score below 5; and binding affinity
is −8 or less, etc.

In developing LMLF, we are inspired by the MIMIC al-
gorithm (De Bonet, Isbell, and Viola 1996), which uses an
iterative procedure for model-assisted sampling. MIMIC as-
sumes that we are looking to generate instances with low
values of an objective function F . On any iteration i, MIMIC
has access to a sample of instances; and a model Mi that can
be used both for discrimination and for sampling (genera-
tion). True F -values are computed for the sample of known

instances, and Mi is revised to Mi+1 that can discrimi-
nate accurately between instances with F -value below and
above some threshold θi. That is, M discriminates between
F (x) ≤ θ (labelled “1”) and F (x) > θ (labelled “0”). Mi+1

is then used to generate new data instances, the threshold θi
is lowered to θi+1, and the process is repeated (say k times).

We first recast MIMIC in terms of background knowledge
and constraints. Let B denote the function F , the thresholds
θi, and standard arithmetic definitions of ≤, >. Let C be the
conjunction C1 ∧ C2 ∧ · · ·Cn, where Ci = (F (x) ≤ θi).
We are able to abstract two general principles about the al-
gorithm:

• On any iteration i, feedback to Mi is provided by in-
stances labelled based on whether (B ∧Ci) is true (label
1) or false (label 0). We call this the “constraint-based
labelling” property.

• Since θi+1 ≤ θi, if F (x) ≤ θi+1 then F (x) ≤ θi. That
is, (B∧Ci+1) |= (B∧Ci). We call this the “constraint-
generalisation” property.

We now devise a general iterative procedure with these
two properties to alter the conditioning sequence for an LLM
for discrimination and generation. The steps are shown in
Procedure 1. For reasons of space, we do not provide pro-
cedures for the auxiliary functions. An idealised worked ex-
ample below is intended to help clarify their intended be-
haviour.

Procedure 1: Incremental sampling from an LLM’s condi-
tional distribution using iterative constraint-based labelling
and constraint generalisation.
Input: L: an LLM; B0: background knowledge, which con-
tains a sample D0 of labelled instances; C0: a logical for-
mula representing constraints; Q: a query; k: an upper-
bound on the number of iterations; and n: an upper-bound
on the number of samples
Output: a set of instances

1: j := 1
2: while (j ≤ k and Dj−1 ̸= ∅) do
3: Pj := AssemblePrompt(Bj−1, Cj−1, Q)
4: Ej := Sample(n,L, Pj)
5: Dj := {(e, l) : e ∈ Ej and

l = Satisfies(e,Bj−1, Cj−1)}
6: Bj := UpdateBack(Bj−1, Dj)
7: Cj := GeneraliseConstraint(Bj , Cj−1)
8: j := j + 1
9: end while

10: return Dj

Example 1. We want to generate molecules to inhibit the
target protein, Janus Kinase 2 (JAK2). We work through
one complete iteration of LMLF, albeit without actual de-
tails. For ease of explanation, we will be using a logic-based
syntax to describe background knowledge and constraints,
and restricted natural language (Kuhn 2014) to describe the
query (the actual implementation used in experiments does
not use either of these representations).
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1. The background knowledge B0 contains facts about the
target, some known molecules, and labels (say, 1 and 0
inhibitors).
• These are conjunctions of facts. For example:
target(jak2) ∧mol(m1) ∧ label(m1, 1) ∧mol(m2)
∧ label(m2, 0) ∧ . . . .

• Additional facts may describe the properties of
the molecules; for example, molwt(m1, 245.5) ∧
logp(m1, 4.0) ∧ . . . .

B0 also contains information for use by the constraints.
• This may be facts. For example, a threshold for binding

affinity, like affthresh(8.0); or a range of allowed
values for molecular weight, like molwt([200, 700])
and so on.

• B0 also contains functions for performing com-
putation. For example, the definition for com-
puting affinity scores: affinity(Mol, Target) =
Score) if (GNINA(Mol, Target) = Score), . . . .

2. C0 describes a set of constraints required to be satisfied.
Some examples are:
• mol(m10) ∧molwt(m10, w) ∧molwt([x, y]) ∧ (x ≤
w) ∧ (w ≤ y)

• mol(m10)∧affinity(m10, a)∧affthresh(z)∧(a >
z).

Here a,w, x, y, z are all variables.
3. The query Q we use is a simple textual one: Generate

valid SMILES string for n molecules that are labelled
“1” and are not found in any known database.

4. Using the information in B0 and C0, and Q,
AssemblePrompt returns text string that includes
strings for labelled molecules (like 1 m1, 0 m2 and so
on) and the query Q. The LLM uses this as a prompt to
sample n new molecules.

5. Each new molecule e is tested against the constraints.
The function Satisfies returns 1 if e satisfies B0 ∧ C0

and 0 otherwise.
6. The background knowledge is updated to B1 with the

newly labelled instances.
7. The constraint C0 is generalised to C1 by

GeneraliseConstraint. Generalisation is restricted
to numeric constraints with inequalities (all other
constraints are left unchanged). A constraint of the form
x ≤ θ (where θ is some numeric value) is generalised
to x ≤ θ′ where θ′ < θ. Similarly x > θ is changed to
x > θ′. It is assumed that the background knowledge
contains a function to compute θ′ given θ (for example,
increment and decrement functions that add or subtract
pre-specified amounts to θ).

The implementation used for experiments in the paper has
aspects related to efficiency and book-keeping, which in-
troduce unnecessary detail but retains the essential feature
of iteration over constraint-based labelling and constraint-
generalisation. In the following, we will call the implemen-
tation PyLMLF. For our purpose, PyLMLF will be used as
a tool for investigating the use of LMLF to generate new
leads for early-stage drug-design. The code for PyLMLF can
be found at: https://github.com/Shreyas-Bhat/LMLF.

Empirical Evaluation
Aims
We use PyLMLF as a tool to investigate the following conjec-
ture:

• The use of LLMs with logical feedback generates better
lead molecules for early-stage drug-design than LLMs
without logical feedback.

We will make the following design choices to conduct the
experiments: (a) We consider two classic drug-design targets
and two well-known LLMs; (b) We will use two methods of
assessing the results: quantitatively, using the distribution of
binding affinities of generated molecules; and qualitatively,
using assessments by a computational chemist.

Materials
Biological Targets and LLMs We conduct our evalua-
tions on JAK2, with 4100 molecules provided with labels
(3700 active) and DRD2 (4070 molecules with labels, of
which 3670 are active). These datasets were collected from
ChEMBL (Gaulton et al. 2012), which are selected based
on their IC50 values and docking scores with active JAK2
and DRD2 proteins less than −7.0. For all our experi-
ments, we use 2 LLMs: GPT-3.0 (Brown et al. 2020) and
PaLM (Narang and Chowdhery 2022).

Background knowledge There are 3 categories of back-
ground knowledge: (a) Factual statements: referring to what
is already known about drug targets, for example, some
subset of experimentally known inhibitors for JAK2 and
DRD2; (b) Functional definitions to compute bulk molecular
properties; and and (c) Procedures needed to assemble the
prompt for sampling. For (b), we use the definitions avail-
able within the molecular modelling packages RDKit (Lan-
drum et al. 2013) and GNINA 1.0 (McNutt et al. 2021) to
compute the validity of SMILES string, molecular weight,
synthetic accessibility score (SAS), LogP, binding affinity.
For (c), we use Python’s f-string syntax to incorporate the
molecules and their class-labels (inhibitor or non-inhibitor)
represented in (a).

Constraints We conduct experiments with 3 categories
of constraints: (a) No constraints; (b) Target-agnostic con-
straints; and (c) Target-specific constraints. Of these, (a)
is self-explanatory. Constraints in category (b) refer only
to some generic bulk properties of the small molecules.
Specifically, we use the generic constraints used in (Dash
et al. 2021) for one of the datasets used here (JAK2). These
constraints encode the following requirements of potential
leads: (i) Molecular weight must be between 200 and 700;
(ii) Synthetic accessibility score (SAS) must be below 5;
(iii) LogP value must be below 5; and (iv) Binding affin-
ity must be above 7. For experiments here, we limit con-
straints in (c) to estimates of binding affinity to the target
site obtained from the approach described in (McNutt et al.
2021). For a small molecule m, the constraint encodes the
condition: affinity(m,x) ∧ x ≥ θ. We ensure updates to
the background knowledge performed by the PyLMLF im-
plementation of the LMLF procedure ensure that θ values
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either stay the same or increase on each iteration. This en-
sures the constraint-generalisation condition is not violated.
In the description of the experimental method below, we will
denote the trivial case of not having any constraints as Cϕ

0 ;
the case with only target-agnostic constraints as C+

0 ; and the
case with both target-agnostic and target-specific constraints
as C++

0 .

Query A query in our experiments is a restricted (unam-
biguous) English statement: Generate a molecule that is
valid and not in any known database. The query, in com-
bination with the available background knowledge and con-
straints, is assembled to construct the prompt for the LLMs.

Algorithms and Machines All the experiments are con-
ducted using a Linux (Ubuntu) based workstation with
64GB of main memory and 16-core Intel Xeon 3.10GHz
processors. All the implementations are in Python3, with
API calls to the respective model engines for GPT-3.0 and
PaLM. We use RDKit (version: 2022.9.5) for computing
molecular properties and GNINA 1.0 for computing dock-
ing scores (binding affinities) of molecules.

Method
Our method is straightforward:
1. For each biological target T ∈ {JAK2, DRD2}:

(a) For each LLM L ∈ {GPT3, PaLM}
i. Let MT,i be the set of molecules returned by PyLMLF

provided with LLM L, background B0 and con-
straints Cϕ

0 for target T ;
ii. Let M+

T,i be the set of molecules returned by PyLMLF

provided with LLM L, background B0 and con-
straints C+

0 for target T ; and
iii. Let M++

T,i be the set of molecules returned by PyLMLF
provided with LLM L, background B0 and con-
straints C++

0 for target T .
iv. Compare the sets M , M+

0 and M++ quantitatively
using the distribution of estimated target-specific
binding affinities

v. Compare the sets M , M+ and M++ qualitatively us-
ing assessments by domain-specialists

The following additional details are relevant:
• We make API calls to text-davinci-003 for GPT-

3.0 and text-bison-001 for PaLM. For both LLMs,
temperature is set to 0.7.

• The upper-bound on the number of iterations (k in Pro-
cedure 1) is 10.

• In our constraint C, we use a threshold of 7 on binding
affinity for the first 5 iterations and 8 for the next 5 itera-
tions.

• Quantitative comparison of performance is done as fol-
lows. For any set of molecules, we obtain a histogram
of binding affinities to act as an estimate of the proba-
bility distribution of affinities. Comparison of any 2 sets
of molecules M1 and M2 is done by using the non-
parametric Mann-Whitney U test on these estimated dis-
tributions. If p < 0.05, then we reject the null hypothesis

that M1 and M2 are from the same distribution. If the null
hypothesis is rejected, and the median values of binding
affinities from M1 are higher than those from M2, then
we will say the performance of the procedure generating
M1 is better (respectively equal or worse).

Results
In the following, we use GPTLF to denote PyLMLF provided
with GPT3, background B0, and constraints Cϕ

0 ; GPTLF+
to denote PyLMLF provided with GPT3, background B0 and
constraints C+

0 ; and GPTLF++ to denote PyLMLFwith GPT3,
background B0, and constraints C++

0 . Similarly for PaLMLF,
PaLMLF+ and PaLMLF++. Summaries of quantitative results
are in Table 1. Histograms showing the distribution of esti-
mated binding affinities are in Figure 2. It is evident from
both the tabulation and diagrams that for both targets and
both LLMs: (a) LLMs are capable of generating molecules
without any constraints (Cϕ

0 ); (b) When the LLMs are pro-
vided target-agnostic constraints (C+

0 ), performance is bet-
ter than without constraints (case (a) above); and (c) when
the LLMs are provided with both target-agnostic and target-
specific constraints (C++

0 ), performance is better than with
just generic constraints (case (b) above). These results pro-
vide quantitative support to the conjecture that logical feed-
back is beneficial in using LLMs to generate potential leads.

Qualitative Assessment by Chemists. The chemists were
provided with 20 molecules each of potential JAK2 and
DRD2 inhibitors (10 of each were generated by GPTLF++

and PaLMLF++, although the chemists were not told which
LLM was involved). A summary of the assessment made
by the chemists is reproduced below. Additional details are
available at: https://doi.org/10.1101/2023.09.14.557698.

Efficacy. (a) JAK2. A set of 13 JAK2-selective functional
groups was identified based on patent literature and
used for exact substructure match against the gener-
ated molecules. From the search, 3 generated molecules
(15%) were found to have at least one JAK2-selective
functional group. 4,6-Diamino pyrimidine, morpholine,
[1,2,4]-triazolo[1,5-a]pyridine and 3-amino pyrazole
groups were predominantly observed to enhance JAK2
selectivity in the generated small molecules (b) DRD2. A
set of 11 functional groups were identified from patented
DRD2 inhibitors. Since these functional groups have
been proven to enhance selectivity toward DRD2, an ex-
act substructure match was performed with the generated
small molecules using RDKit, to identify the presence of
these selectivity features from patent literature. From the
search, 8 generated molecules (40%) were found to have
at least one DRD2- selective functional group indicating
the model’s capability to optimize molecular features to
capture selectivity, based on the docking score observed.
Dimethyl piperazine and chlorobenzene was observed to
be the predominant DRD2-selective group among the

Novelty. 10 of the 11 molecules that contain JAK2 or DRD2
selective functional groups of interest also had less than
0.75 Tanimoto similarity to the existing JAK2 or DRD2
inhibitors, respectively. Therefore, it can be interpreted
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Method Mean Median S.D. Range
GPTLF 6.50 6.61 1.07 4.21 – 7.55
GPTLF+ 7.53 7.57 0.88 4.83 – 8.29
GPTLF++ 7.74 7.71 0.30 7.18 – 8.52

PaLMLF 6.09 6.01 0.77 3.86 – 7.55
PaLMLF+ 6.12 6.24 0.69 4.65 – 8.11
PaLMLF++ 7.20 7.40 0.58 7.03 – 8.36

Method Mean Median S.D. Range
GPTLF 6.48 6.51 0.75 5.33 – 7.42
GPTLF+ 7.32 7.21 0.32 6.45 – 8.02
GPTLF++ 7.66 7.71 0.29 7.25 – 8.29

PaLMLF 6.05 6.13 1.05 4.33 – 7.49
PaLMLF+ 6.22 6.23 0.48 5.67 – 8.24
PaLMLF++ 7.60 7.55 0.37 7.01 – 8.19

Table 1: Statistics of binding affinities of LLM-generated molecules against the drug targets: (Left) JAK2, (Right) DRD2.

Figure 2: Plot showing the distribution of binding affinities for molecules generated by the LLMs and the two drug targets.

that although some fractions of the molecules generated
have less similarity to existing inhibitors, the presence of
selective functional groups indicates their potential to act
as novel and selective inhibitors for the target protein of
interest.

Overall. It appears that the model has learned to generate
more inhibitors with better similarity to existing JAK2
inhibitors (50%) compared to DRD2 (15%). But this dif-
ference is compensated by the fact that 40% of generated
DRD2 inhibitors have highly selective functional groups,
while only 15% of generated JAK2 inhibitors have selec-
tive groups. Hence, the model exhibits a balance in gen-
eration of similar and novel molecules depending on the
nature and diversity of the training dataset used for the
target protein of interest.

We now report on some additional comparisons that do
not directly impinge on the experimental conjecture in Sec. ,
but are nevertheless of interest to practitioners. First, the
quantitative and qualitative assessments provide us with an
opportunity to compare the capabilities of GPT3 and PaLM

under controlled conditions. It is evident from the tabulation
in Table 1 that the LMLF using GPT appears to be better
than using PaLM. However, the expert assessment provides
a slightly different story. Of the 11 molecules identified to
be possibly effective JAK2 or DRD2 inhibitors, 7 were ob-
tained using GPT3 and 4 was obtained using PaLM. Of the
possible inhibitors that were also identified as being possi-
bly novel, 7 was from GPT3, and 3 was from PaLM. These
numbers are indicative of some benefit in using GPT. How-
ever, the differences are not statistically significant.

Secondly, we are able to perform a comparison of the use
of LLMs against baselines provided by: (a) known inhibitors
of JAK2 and DRD2; and (b) results reported on the same
dataset(s) on novel lead-generation. Results have been re-
ported on the JAK2 dataset most recently in (Dash et al.
2021). This uses a combination of 2 variational autoencoders
(VAEs) for generating molecules, and a graph-based neural
network (GNN) that acts as a discriminator, which found
to be perform better than the previous reports (in (Krishnan
et al. 2021)) using reinforcement learning in combination
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Method Mean Median S.D. Range
Known Inhibitors 7.26 7.42 0.64 4.19 – 8.34
VAE-GNN 6.53 6.95 1.18 2.10 – 8.18
GPTLF++ 7.74 7.71 0.30 7.18 – 8.52
PaLMLF++ 7.20 7.40 0.58 7.03 – 8.36

Method Mean Median S.D. Range
Known Inhibitors 6.86 6.97 0.63 4.21 – 8.31
VAE-GNN - - - -
GPTLF++ 7.66 7.71 0.29 7.25 – 8.29
PaLMLF++ 7.60 7.55 0.37 7.01 – 8.19

Table 2: Statistics of binding affinities for the LMLF-generated molecules (Left: JAK2, Right: DRD2), in comparison to those
of known inhibitors, and the molecules generated by VAE-GNN in (Dash et al. 2021). ‘-’ denotes ‘data not available’.

with an MLP. Table 2 compares and shows both LLMs per-
form better than the VAE-GNN combination. To some ex-
tent, this is unsurprising for 2 primary reasons: (1) the LLMs
have access to substantially more information than the VAE-
GNN model, and (2) the VAE-GNN model does not have ac-
cess to the constraint(s) on the binding affinity of molecules.
It is relatively straightforward to develop a variant of LMLF
for other kinds generative models like the VAE-GNN model.
This would address (2), but it is unclear how the gap in (1)
can be bridged.

Related Work
Over the last few years, deep generative models have been
used successfully in generating novel compounds for spe-
cific biological targets and with desired molecular proper-
ties. A comprehensive review of some of the techniques
can be found in (Sousa et al. 2021). Among these tech-
niques, deep sequence models such as variational auto-
encoders (VAE), deep structure-based models such as graph
neural networks (GNNs) are shown to be very effective.
Some of these techniques are paired with each other and
also with reinforcement learning to allow these models to
be biased towards generating models with desired proper-
ties (Jin, Barzilay, and Jaakkola 2018; Gómez-Bombarelli
et al. 2018; Liu et al. 2018; Krishnan et al. 2021; Cao and
Kipf 2022). It has also been shown that deep sequence mod-
els can gain substantial advantage over classic deep mod-
els, mentioned above, by infusing them with some form of
domain-knowledge such as logical rules, constraints, avail-
able facts (Dash et al. 2022). For instance, in (Dash et al.
2021) the authors show that VAEs are significantly better
if provided with chemical knowledge via a Bottom-Graph
Neural Network (Dash, Srinivasan, and Baskar 2022) for
conditional molecule generation.

With the recent surge in development of LLMs, the field
of AI for natural science is witnessing increasing adoption
of LLMs in solving interesting problems such as molecu-
lar property prediction, molecule optimisation, compound
discovery and the like (Castro Nascimento and Pimentel
2023; Kang and Kim 2023; Born and Manica 2022). LLMs
with some (human) feedback are also adopted for molec-
ular generation (Blanchard et al. 2023; Fang et al. 2023).
Our present work is in a similar vein, albeit with additional
domain-knowledge and desired constraints used to progres-
sively guide the LLM’s sampling engine to draw molecules
from a more restricted joint distribution, allowing more nov-
elty and diversity in molecule generation against a specific
biological target.

Conclusion
In this paper, we have proposed a simple iterative proce-
dure called LMLF that progressively alters the conditioning
string provided to a large language model (LLM). The alter-
ations are the result of testing answers generated by the LLM
against domain-specific constraints represented in a formal,
rather than natural language. We investigate the performance
of LMLF in the area of lead-discovery, and find that the
logical constraints, enforced using our proposed feedback
mechanism, provide much more effective conditioning in-
formation to the LLM. As a result, we are able to use the
internal knowledge contained within the LLMs much more
effectively to generate potentially novel inhibitors for spe-
cific biological targets. We present quantitative results sup-
porting this claim on two separate targets, using two differ-
ent LLMs; and qualitative results in the form of preliminary
assessments by computational chemists.

Large ‘foundation’ models that have been constructed
with vast amounts of data can be seen as storehouses of fac-
tual and hypothesised knowledge that can be of great value
in tackling complex tasks in areas like drug-design. But how
are human problem-solvers–like chemists and biologists–to
draw on such knowledge? A long recognised concern of
mismatch between human- and machine-representations of
knowledge suggests that this is not an easy task. On the sur-
face, it would seem that this will not be a concern when us-
ing LLMs, given their capability to interact with humans in
a natural language. However, this may not follow for at least
two reasons. First, the issue is of a mismatch in representa-
tion (what concepts are being used), and not of communi-
cation language. For example, the machine may be using a
concept for which there is no simple description in a natu-
ral language. We are not addressing this problem here. Sec-
ondly, the flexibility of natural language introduces ambi-
guity and imprecision. Thus, human-concepts can be con-
veyed to a machine in many ways, not all of which may map
to the same machine-concepts (however mismatched). The
latter issue poses difficulties in using LLMs in a controlled
manner. The position adopted in this paper is that for certain
kinds of scientific problems–like the lead-discovery tasks
here–it is possible to side-step the second difficulty and still
use LLMs effectively. Specifically, we are concerned with
tasks for which we are able to formulate task-specific re-
quirements in a sufficiently formal language, which can in
turn be used in conjunction with an LLM. We suggest that
this simple neuro-symbolic approach could provide an effec-
tive basis for using LLMs in closed-loop scientific discovery
of the kind envisaged in (Zenil et al. 2023).
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