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ABSTRACT

Consumer credit services offered by e-commerce platforms provide customers with conve-
nient loan access during shopping and have the potential to stimulate sales. To understand
the causal impact of credit lines on spending, previous studies have employed causal esti-
mators, based on direct regression (DR), inverse propensity weighting (IPW), and double
machine learning (DML) to estimate the treatment effect. However, these estimators do
not consider the notion that an individual’s spending can be understood and represented
as a distribution, which captures the range and pattern of amounts spent across different
orders. By disregarding the outcome as a distribution, valuable insights embedded within
the outcome distribution might be overlooked. This paper develops a distribution-valued
estimator framework that extends existing real-valued DR-, IPW-, and DML-based esti-
mators to distribution-valued estimators within Rubin’s causal framework. We establish
their consistency and apply them to a real dataset from a large e-commerce platform. Our
findings reveal that credit lines positively influence spending across all quantiles; however,
as credit lines increase, consumers allocate more to luxuries (higher quantiles) than necessi-
ties (lower quantiles). Our code is available at https://github.com/lyjsilence/
The-Causal-Impact-of-Credit-Lines-on-Spending-Distributions.

1 Introduction

“Buy now, pay later” (BNPL) is a FinTech credit product offered by e-commerce platforms that allow
consumers to make purchases first and defer payments later. BNPL is becoming increasingly popular due to
its convenience in online shopping (Guttman-Kenney et al., 2023). In practice, e-commerce platforms assign
different credit lines (the total amount of money that the platforms lends to a consumer) to potential customers
according to their personal information and the history of purchases, payments, and default behaviors.

The primary goal of e-commerce platforms in introducing BNPL is to alter the consumption behavior of
consumers, which is usually characterized as a specific spending distribution formed by the consumption
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Figure 1: An example for the impact of credit lines change on spending distribution shift (one point stands
for spending of one order).

amounts of the consumer’s all orders. The spending distributions of various consumers are different. For
example, in Figure 7, the spending distribution of some consumers may exhibit a long tail, indicating a
preference for both low-price necessities and high-price luxury items, whereas other consumers focus more
on middle-valued products.

An essential question for e-commerce platforms is whether and how credit lines affect the consumption
behavior of consumers. Previous studies have shown that increasing credit lines can lead to increased
spending amounts, e.g., Aydin (2022); Soman and Cheema (2002). Nevertheless, they use a scalar quantity
(e.g., average spending of all orders) to represent the spending of each consumer, which overlooks the
complexity of consumption behaviors. For example, consider two consumers (A and B) in Figure 1. When
the credit lines of them both equal 5,000, their spending distributions formed by 50 orders are the same, with
an average spending of 30 dollars. Supposing the platform increases their credit lines to 10,000, consumer A
prefers to increase the spending of all the orders by 20 dollars, and thus the shape of spending distribution
does not change but parallelly shifts to the right by 20. On the other hand, consumer B prefers to purchase
more luxury goods and remains the spending amounts of orders for necessities unchanged. The shape of
consumer B’s spending distribution has shifted dramatically, but the average spending is the same as the first
consumer (also increased from 30 to 50). Even though these two consumers have the same average spending,
their spending behaviors are distinct after the change in credit lines. In this case, focusing only on the average
spending loses some of the information of distribution (e.g., the part of quantile information). To this end, we
propose to investigate how the changes of credit lines affect the shift of spending distributions. However, this
raises another question: since classical causal inference literature targets the outcome of each individual as a
scalar, how can we perform causal inference when the outcome of each individual is a distribution?

In this paper, we employ a novel causal framework to tackle this problem, where the outcome of each unit is
a distribution, and the treatment takes multiple values. Based on Rubin’s causal framework (Rubin, 1977,
1978, 2005), we propose three estimators of target quantities: Direct Regression (DR) estimator, Inverse
Propensity Weighting (IPW) estimator, and Doubly Machine Learning (DML) estimator. We first study the
statistical asymptotic properties of these estimators. Then, to implement these estimators, we develop a
deep-learning-based model named Neural Functional Regression Net (NFR Net) to estimate the complex
relationship between functional output and scalar input. To assess the effectiveness of our methods, we
conduct a simulation study. The results reveal that all three estimators are effective, especially for the
DML estimator. We finally apply our approach to investigate the causal impact of credit lines on spending
distributions based on a real-world dataset collected from a large e-commerce platform. We find that when
credit lines increase, consumers’ spending tends to rise, which aligns with previous literature. Additionally,
we reveal that the impact of credit lines is more significant in the high-quantile range of spending distribution,
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suggesting that the increase in credit lines is associated with greater demands for luxury goods rather than
necessities.

Our contributions can be summarized as follows:

• This is the first paper that explores the causal impact of credit lines on spending when the spending
of each consumer is summarized as a distribution. Compared to the literature, we discover more
detailed findings on the distribution quantiles.

• We consider the treatment takes multiple values, and we propose three estimators (i.e., DR, IPW, and
DML estimators) for the target quantities. We study the statistical properties of these three estimators
and compare them through a simulation experiment.

• The relation between functional output and scalar input is always non-linear and complex. Compared
to existing works that captured it by a parameterized function or a linear function, we develop a deep
learning model named NFR Net to learn this relationship.

2 Related Work

Causal inference is a significant challenge in various fields, such as finance (Huang et al., 2021) and health
care (Shi et al., 2019). The key assumption of classical causal inference is that, given the treatment D = d,
all the units have the same potential outcome distribution (unconditional). As a result, the realization of
the outcome for each individual is a scalar point drawing from that potential outcome distribution (for
instance, in Figure 2 when D = d, the blue (red) point is a realization of the ith (jth) unit). Under the
assumption, several causal quantities are introduced and studied. For instance, the average treatment effect
(ATE) (Chernozhukov et al., 2018) is the difference between the means of any two potential outcome
distributions (i.e., E[Y (D = d̄)]− E[Y (D = d)], or see the left half of Figure 2). Another quantity is the
quantile treatment effect (QTE) (Chernozhukov and Hansen, 2005) that studies the difference between two
potential outcome distributions at τ -quantiles (i.e., Q(τ, Y (D = d̄)) −Q(τ, Y (D = d))), or see the right
half of Figure 2).

Various methods have been proposed to estimate the causal effect between treatment and outcome. A
common approach is constructing the estimators for the target quantities. For example, Direct Regression
(DR) incorporates all confounding factors into a single regression function. The inverse propensity weighting
(IPW) method (Rosenbaum and Rubin, 1983; Hirano et al., 2003), on the other hand, assigns weights to
the units based on their propensity scores which mimic RCTs in the pseudo population. However, both of
them require accurate estimations of the nuisance parameters, such as the regression function and propensity
scores. Doubly Machine Learning (DML) (Chernozhukov et al., 2018) method overcomes the shortcomings.
It has the doubly robust property such that the accuracy of estimating nuisance parameters can be loosened.

The above methods are restricted when the outcome of each unit includes many observations or points and
they constitute a distribution. For example, the shopping spending of a consumer may differ each time, and
all the spending amounts form a distribution. In this case, it is impossible to infer the causal relationship
via the standard framework unless we reduce the distributions to points (e.g., take the mean). Thus, it is
necessary to seek alternative frameworks for distributional outcomes.

The distributional outcome can be treated as a continuous function. It is closely related to the field of functional
data analysis that analyzes data under information varying over a continuum (Ramsay and Silverman, 2005;
Wang et al., 2016; Cai et al., 2022; Chen et al., 2016). Jacobi et al. (2016) and Chib and Jacobi (2007)
apply the functional data analysis to study the relationship between functional outcomes and independent
variables based on the panel dataset. Nevertheless, they do not focus on the causal studying. Ecker et al.
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(2023) considers a causal framework to study the impact of treatment on the functional outcome. However,
their work conducts causal inference in Euclidean space. It is believed that the random structure of the
distributional outcome is destroyed in the Euclidean space (Verdinelli and Wasserman, 2019; Panaretos and
Zemel, 2019). As such, Lin et al. (2023) considers the causal study in the Wasserstein space, and we extend
their framework to study the causal effect on distributional outcomes under multiple treatments and with a
deep learning model NFR Net (statistical properties can be ensured as well). In this case, the realization of
the outcome for each unit is a distribution (for example, in Figure 3 when D = d, the blue (red) distribution
is a realization of the ith (jth) unit).

Average Treatment Effect: 
𝔼𝔼 𝒀𝒀(𝑫𝑫 = �𝒅𝒅) − 𝔼𝔼[𝒀𝒀(𝑫𝑫 = 𝒅𝒅)]
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Figure 2: ATE and QTE in the literature.
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Figure 3: Causal Effect Map in our paper.

3 Causal Inference Framework

In this paper, we denote the treatment as D such that D ∈ D = {d1, . . . , dr}, the covariates/confounders
as X = [X1, · · · , Xn] ∈ X , where X is a bounded set in Rn with distribution FX. With scalar outcomes,
prior literature defines Y as the outcome variable and Y (d) as the potential outcome variable when receiving
treatment D = d. Note that Y =

∑r
i=1 Y (di) · 1{D=di}. Accordingly, the potential outcome distribution

and density of (Y , Y (d)) is (FY , FY (d)) and (PY , PY (d)). In our framework, we consider the case where the
outcome of each unit is a distribution that varies across units. To distinguish the differences, we use Y as the
outcome variable and Y(d) as the potential outcome variable when receiving treatment D = d. Similarly,
Y =

∑r
i=1 Y(di) · 1{D=di}. We can then define the potential outcome distribution and density of (Y,Y(d))

as (FY , FY(d)) and (PY ,PY(d)). We assume that there are N -independent units, i.e., {(Ds,Xs,Ys)}Ns=1.

3.1 Causal Assumptions

The following causal assumptions are standard under Rubin’s framework (Rubin, 2005): (1) Consistency
(i.e., if D = di occurs, then Y = Y(di) a.s.); (2) Ignorability/Unconfoundness (i.e., Y(di) ⊥⊥ D|X,∀i ∈
{1, . . . , r}); (3) Overlap (i.e., P{D = di|X} > 0,∀i ∈ {1, . . . , r}). We defer detailed explanations about
the causal assumptions and the essentialness of each assumption to Appendix A.

3.2 Causal Quantities on Distributions

In our context, the realization of Y for each unit is a distribution. It is inappropriate to conduct causal
inference in the Euclidean space as it destroys the structure of distributions. For example, Figure 4 displays
the distributions for 10 individual units (all are Gaussian distributions with different mean and variance),
and the “mean” distribution of these 10 distributions obtained from Wasserstein metric (Barycenter) and
Euclidean metric. We notice that the “mean” distribution cannot preserve the original Gaussian distribution
structure unless the Wasserstein metric is used. We thus choose to conduct causal inference in the Wasserstein
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Table 1: Comparisons between our framework and the framework given in the literature.

Our framework Literature framework

Treatment/Covariates variable D/X D/X
Outcome variable Y , Y(d) Y , Y (d)

Potential outcomes distribution (density) FY(d)(·) (PY(d)(·)) FY (d)(·) (PY(d)(·))
Metric Wasserstein Euclidean

Space of outcome variable W2(I) I ∈ R
Realization of outcome variable distribution scalar

Target quantity △di , △dij E[Y (di)], E[Y (di)]− E[Y (dj)]
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Figure 4: The Euclidean mean and Wasserstein mean (Barycenter) of 10 distributions.

space (Villani, 2021; Panaretos and Zemel, 2019; Feyeux et al., 2018). Here, we use the p-Wasserstein
metric to characterize the “distance” between two distributions (see Definition 1). In the sequel, we let the
realizations of Y , Y(d) reside in R.

Definition 1. Let I ⊂ R,Wp(I) = {λ :
∫
I s

pdλ(s) < ∞} (λ is a distribution), and Λ(λ1, λ2) be the set
containing the joint distribution Π(λ1(s), λ2(t)) whose marginals are λ1 and λ2. The p-Wasserstein metric
between two distributions λ1 and λ2 is

Dp(λ1, λ2) =

{
inf

Π∈Λ(λ1,λ2)

∫
I
|s− t|pdΠ(λ1(s), λ2(t))

} 1
p

.

Dp(·, ·) satisfies the axioms of a metric (i.e., non-negativity, symmetric, and triangle inequality). Usually, we
set p = 2. Next, we introduce two quantities - the causal map and the causal effect map.

Definition 2. The causal map of treatment di is denoted as△di
† such that

△di = µ−1
di

, (1)

where µdi = argmin
v∈W2(I)

E
[
D2(Y(di), v)2

]
is the Wasserstein barycenter/mean of units’ distributions when they take

the treatment di. The superscript “−1” of µdi is the inverse of the cumulative distribution function (CDF) or
the quantile function. Hence, the causal effect map between treatment di and dj is

△dij = △di −△dj = µ−1
di
− µ−1

dj
. (2)

The causal effect map in Eqn. (2) is an analogy to the ATE (E[Y (di)]− E[Y (dj)]) in the literature. However,
△di ,△dj and△dij are functions, but E[Y (di)], E[Y (dj)], and E[Y (di)]− E[Y (dj)] are scalars. In Table 1,
we summarize the differences between the framework in our paper and in the literature.

†△di is a function and should be △di(·) formally. In the sequel, we use both △di and △di(·) interchangeably.
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Remark 1.

1. Classically, the case “distribution over R” means that a realization is a point (scalar or vector)
drawing from the distribution of the potential outcome, while the case “distribution over distributions”
means that the realization is a distribution. For instance, let µ and σ be the mean and standard
deviation of a normal distribution, and (µ, log σ) ∼ N (0, I2). If the realization (µ, log σ) of a unit
(e.g., a consumer) is (0.1,−0.5), then it means that a collection of observations (e.g., spending
amounts of all orders) are drawn from N (0.1, e−1) for this unit.

2. △di(·) is a quantile function (inverse of CDF), so does△dij (·). Further, we can explore the impact
of between treatment di and dj on the distributional outcome respectively at a specific τ quantile
level by△dij (·), i.e.,

△dij (τ) = △di(τ)−△dj (τ) = µ−1
di

(τ)− µ−1
dj

(τ). (3)

Note that△dij (τ) differs from the quantile treatment effect (QTE) in the literature (e.g., Machado
and Mata (2005); Chernozhukov and Hansen (2005)). △dij (τ) is the τ -quantiles difference of
the barycenters under treatments di and dj , but QTE is the τ -quantiles difference of the potential
outcome distributions under two treatments. It is thus inappropriate to compare them or study
△dij (τ) using the approaches in the QTE literature. The visualized difference of the two quantities is
given in Figure 2 and 3.

We need to ensure △di is identifiable such that we can estimate it from an observed dataset. It is also
necessary to simplify the calculation of µdi to address the computational complexity of optimal transport.
Proposition 1 states an equivalent form of△di without computing optimization and guarantees that we can
estimate it from the observed dataset:

Proposition 1. Given the conditions in Definition 1 and 2, and Assumptions (1) - (3) hold, we have (1)
△di = E

[
Y(di)−1

]
; (2)△di is identifiable.

The first assertion gives a simpler way to compute △di , while the second assertion ensures that △di is
identifiable. We defer the proofs to Appendix D.

3.3 Estimators

Similar to the causal inference methods in the literature (Horvitz and Thompson, 1952; Chernozhukov et al.,
2018), we also propose three estimators to compute the causal map△di , namely (1) Direct Regression (DR)
estimator (△di;DR), (2) Inverse Probability Weighting (IPW) estimator (△di;IPW ), and (3) Double Machine
Learning (DML) estimator (△di;DML). Let πdi(X) = P{D = di|X} and mdi(X) = E

[
Y−1|D = di,X

]
.

Given that there are N units. The estimators are:

△di;DR =
1

n

n∑
s=1

mdi(Xs) (4)

△di;IPW =
1

n

n∑
s=1

1{Ds=di}

πdi(Xs)
(Y−1

s ) (5)

△di;DML =
1

n

n∑
s=1

[
mdi(Xs) +

1{Ds=di}

πdi(Xs)
(Y−1

s −mdi(Xs))
]
. (6)

3.4 Theory and Algorithm

In practical scenarios, when using all the available units to train the regression function mdi(Xs) and
propensity score function πdi(Xs), there is a risk of over-fitting. To mitigate this issue, a cross-fitting
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technique, as introduced by Chernozhukov et al. (2018), is commonly employed. Along this way, we also
need to obtain the cross-fitting estimators of△di according to Eqns. (4), (5), and (6).

We split the N units into K disjoint groups. Let the kth group be Dk of size Nk, ∀k = 1, · · · ,K. Denoting
D−k = ∪Kr=1,r ̸=kDr, we use D−k to obtain m̂k

di
(X), π̂k

di
(X), which are the estimations of mk

di
(X), πk

di
(X)

for the kth group. Ŷ is the empirical estimation of Y . We then use Dk to compute the estimation of△k
di

(i.e.,

△̂k

di;DR, △̂k

di;IPW , and △̂k

di;DML) according to Eqns. (7), (8), and (9) respectively. We thus define △̂k

di;DR,

△̂k

di;IPW , and △̂k

di;DML such that

△̂
k

di;DR =
1

Nk

∑
s∈Dk

m̂k
di(Xs) (7)

△̂
k

di;IPW =
1

Nk

∑
s∈Dk

1{Ds=di}

π̂k
di
(Xs)

Ŷ−1
s (8)

△̂
k

di;DML =
1

Nk

∑
s∈Dk

[
m̂k

di(Xs) +
1{Ds=di}

π̂k
di
(Xs)

(Ŷ−1
s − m̂k

di(Xs))
]
. (9)

Denoting w ∈ {DR, IPW,DML}, the cross-fitting estimators are △̂di;w such that

△̂di;w =
K∑
k=1

Nk

N
△̂k

di;w. (10)

We study the consistency of △̂di;w. When w = DR or IPW , the results are deferred to Appendix C. When
w = DML, the consistency result is given in Theorem 1 while the proofs and the notational meanings are
deferred to Appendix D.

Theorem 1. Let m̃k
di
(X) (m̂k

di
(X)) be the estimate of E[Y−1|D = di,X] using the true Y (estimated Ŷ)

based on D−k. Suppose that, for any k, ρ4π = E[|π̂k
di
(X) − πdi(X)|4], ρ4m = max{~m̃k

di
−mdi~

4, 1 ≤
i ≤ r} = max{[

∫
∥m̃k

di
(x) −mdi(x)∥2dFX(x)]2, 1 ≤ i ≤ r}. Under the convergence assumptions in

Appendix D, we have

1. ∥△̂di;DML −△di∥ = OP (N
− 1

2 +N− 1
2 ρπ +N− 1

2 ρm + ρπρm).

2. If ρmρπ = o(N− 1
2 ), ρm = o(1) and ρπ = o(1), then

√
N
(
△̂di;DML −△di

)
converges weakly to a

centred Gaussian process.

Theorem 1 not only gives the consistency of △̂di;DML, but also gives the convergence speed of △̂di;DML. It
is indeed a

√
N -consistent estimator.

We can also investigate the
√
N -consistency of the DR or IPW estimators. In fact, we can obtain the desired

results by setting 1{D=di} = 0 and (mdi , m̂
k
di
, m̃k

di
) = (0, 0, 0) in the proofs of Theorem 1 respectively. Last

but not least, we summarize the steps of computing △̂di;w in Algorithm 1.

3.5 Models

To estimate the target quantity△di , we need to estimate several nuisance parameters accurately, e.g., Y−1,
πdi(X), and mdi(X). First, to estimate Y−1, we can estimate Y empirically and invert the estimated Y
(CDF) for each unit to get the Ŷ−1. Second, πdi(X) is the propensity score that can be estimated using the
multi-class logistic regression, random forest classifier, or feed-forward networks. Finally, we can estimate
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Algorithm 1 Computations of △̂di;w

Require: The observations of (Ds,Xs,Ys)Ns=1.
Ensure: △̂di;w for w ∈ {DR, IPW,DML}.

1: Split (Ds,Xs,Ys)Ns=1 to K disjoint units groups Dk of size Nk and form D−k.
2: Estimate Ŷ−1

s for each unit s.
3: for k ← 1 to K do
4: Regress D w.r.t. X based on D−k and obtain π̂k

di
.

5: Regress Ŷ−1 w.r.t. (D,X) based on D−k and obtain m̂k
di

.

6: Compute △̂k

di;w using Eqns. (7), (8) and (9) according to w.
7: end for
8: Compute △̂di;w using Eqn. (10).

𝐷𝐷,𝑿𝑿

Continuous Layer Numerical Layers

F1(𝐷𝐷,𝑿𝑿;𝜃𝜃)

𝓨𝓨−𝟏𝟏

𝜙𝜙1(𝑡𝑡)

𝜙𝜙2(𝑡𝑡)

𝜙𝜙𝑙𝑙−1(𝑡𝑡)

𝜙𝜙𝑙𝑙(𝑡𝑡)

F2(𝐷𝐷,𝑿𝑿;𝜃𝜃)

F𝑢𝑢(𝐷𝐷,𝑿𝑿;𝜃𝜃)

Figure 5: The proposed NFR Net.

the regression function mdi(X) by regressing the outcome Y−1 on treatment D and covariates X via a
functional-on-scalar regression. The first two quantities can be well estimated using the classical approaches.
On the other hand, the third quantity, mdi(X), is difficult to estimate accurately using the classical functional
regression approach. Specifically, the classical functional regression (Ramsay and Silverman, 2005) assumes
that the regression equation between outcome Y−1 and predictors (D,X) can be approximated by a finite
series of some pre-determined basis functions, i.e.,

Y−1(t) = D

v∑
l=1

γ0lϕl(t) +

n∑
j=1

Xj

(
v∑

l=1

γjlϕl(t)

)
+ ϵ(t), (11)

where Y−1(t) is the response function; (D,X) = [D,X1, · · · , Xj , · · · , Xn] are predictors; {ϕ1, . . . , ϕv}
are basis functions, e.g., B-spline basis; γjl with 0 ≤ j ≤ n and 1 ≤ l ≤ v are regression parameters; and
ϵ(t) is the noise term.

However, the relation between Y−1(t) and (D,X) may not be additive as in Eqn. (11). Generally, the
relationship is non-linear and complex. To this end, we design Neural Functional Regression (NFR) Net to
address this issue. The NFR Net consists of two parts: (1) the numerical layers, and (2) the continuous layer
(see Figure 5). Under our framework and settings, the numerical layers aim to learn the u representations
F(D,X; θ) = [F1(D,X; θ), · · · ,Fu(D,X; θ)]⊤, where each Fi(D,X; θ), 1 ≤ i ≤ u is a linear coefficient
to constitute the target distribution. The representations F(D,X; θ) is then processed by a continuous layer
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Figure 7: The spending distribution of 5 consumers
from a e-commerce platform.

to output a function Ỹ−1, i.e.,

Ỹ−1(t; θ, {γij}) =
u∑

i=1

Fi (D,X; θ)

v∑
j=1

γijϕj(t), (12)

where {γij} now are trainable parameters and {ϕj(t)} are pre-defined basis functions.

The model can be trained as follows: let L be the loss metric (e.g., L1 or L2 loss), and our task is equivalent
to finding the optimal θ, {γij} by minimizing the loss function L(θ, {γij}):

min
θ,{γij}

L(θ, {γij}) :=
∫

L(Ỹ−1(t; θ, {γij}), Ŷ−1(t))dt. (13)

In practice, we can estimate the integral using the trapezoidal rule/Simpson’s rule by taking any number of
discrete quantile points t.

4 Synthetic Experiment

Data Generation Process Since the ground truth is unavailable in the real dataset, we simulate data using
the following data generation process for the sth unit to test our proposed model similar to many other causal
inference studies:

Y−1
s (Ds) = c+ (1− c)(E[D] +

√
Ds)×

n
2∑

j=1

exp(X2j−1
s X2j

s )
n
2∑

k=1

exp(X2k−1
s X2k

s )

B−1(αj , βj) + ϵs, (14a)

P{Ds = d | Xs} =
exp(γ⊤

d Xs)
r∑

w=1

exp(γ⊤
wXs)

. (14b)

In our experiment, we set n = 10. We assume that covariates X1, X2 ∼ N (−2, 1), X3, X4 ∼ N (−1, 1),
X5, X6 ∼ N (0, 1), X7, X8 ∼ N (1, 1), X9, X10 ∼ N (2, 1), and ϵs ∼ N (0, 0.05). B−1(α, β) is the
inverse CDF of Beta distribution with the shape parameters α and β. We select 5 inverse Beta CDFs, where
each one has different parameters to ensure the complexity of the distribution function. The treatment D takes
the value in {d1, d2, d3, d4, d5} with a softmax distribution. c ∈ [0, 1] is the constant that controls the strength
of the causal relationship between treatment D and outcome distribution Y−1. In one experiment, 5, 000
instances are generated according to Eqns. (14a) - (14b). For each unit s, 100 observations are sampled from
the inverse CDF using the inverse transform sampling method. Figure 6 summarizes 10 simulated instances,
indicating that the inverse CDF of each instance varies widely.
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Table 2: MAE between true and estimated causal effect maps under various methods of regressing Ŷ−1 w.r.t.
(D,X) (mean ± standard deviation with 100 trials). Best results are in bold.

Q=10% Q=30% Q=50% Q=70% Q=90% Average

DR

Lasso 0.066 0.064 0.121 0.183 0.184 0.124 ± 0.053
Ridge 0.066 0.075 0.093 0.167 0.189 0.118 ± 0.050

Elastic net 0.066 0.064 0.121 0.183 0.184 0.124 ± 0.053
MCP 0.066 0.075 0.093 0.167 0.189 0.118 ± 0.050

D/DML 0.010 0.058 0.299 0.517 0.615 0.300 ± 0.240
NFR 0.025 0.104 0.039 0.053 0.040 0.052 ± 0.027

IPW

Lasso 0.010 0.061 0.070 0.046 0.035 0.044 ± 0.021
Ridge 0.010 0.061 0.070 0.045 0.034 0.044 ± 0.021

Elastic net 0.010 0.061 0.070 0.046 0.037 0.045 ± 0.021
MCP 0.010 0.061 0.069 0.047 0.035 0.044 ± 0.021

D/DML 0.010 0.061 0.070 0.046 0.035 0.044 ± 0.021
NFR 0.010 0.061 0.071 0.042 0.033 0.044 ± 0.021

DML

Lasso 0.012 0.064 0.086 0.020 0.006 0.038 ± 0.032
Ridge 0.010 0.063 0.068 0.024 0.005 0.034 ± 0.027

Elastic net 0.012 0.064 0.085 0.020 0.006 0.038 ± 0.032
MCP 0.010 0.063 0.068 0.024 0.005 0.034 ± 0.027

D/DML 0.010 0.063 0.071 0.025 0.013 0.037 ± 0.026
NFR 0.010 0.062 0.067 0.025 0.003 0.034 ± 0.026

The IPW results are similar because the same classifier (random forest) is used to get the propensity scores.

Baselines In our experiment, we consider two aspects of potential baseline methods. The first aspect is from
the statistical field, where approaches such as those presented in Lin et al. (2023) assume a linear relationship
between the functional output and the scalar input. They utilize regularization techniques like lasso, ridge,
and elastic net to estimate the causal effect map. Additionally, Chen et al. (2016) addresses situations with a
large number of covariates by using the group minimax concave penalty (MCP) for variable selection and
fitting. However, these methods inherently assume a linear form between the functional output and scalar
input, possibly overlooking the presence of nonlinear relationships in the data. The second aspect is from the
deep learning field, where we compare our model with classical Double/debiased machine learning (D/DML)
proposed in Chernozhukov et al. (2018). This approach introduces a DML estimator to investigate the
causal impact of scalar input on scalar outcome. To model the functional outcome, we conduct independent
regressions at interesting quantiles using a standard MLP. Subsequently, we concatenate all the quantile
counterfactuals to form a distribution.

Experiment Setting The classification and functional regression models are trained separately. 5, 000
generated instances are trained using 5-fold cross-fitting, i.e., 4, 000 instances are used to train, and 1, 000
instances are used to obtain the three estimators (i.e., DR, IPW, and DML estimator). At last, we average the
obtained estimators from the 5 folds as the final results. In the classification task, we use the same classifier
(i.e., random forest) to compute IPW for all the estimators. The training details are given in Appendix E.

Evaluation Metric Since L(θ, {γij}) in (13) is continuous, we discretize it and compare the mean absolute
error (MAE) between true causal effect map △dij (1 ≤ i, j ≤ 5) (computed from Eqns. (14a) - (14b))
and estimated causal effect map △̂dij on 5 quantiles with levels ranging from 10% to 90%. We repeat the
experiment 50 times to report the mean and standard deviation of MAE.

10



38th Annual AAAI Conference on Artificial Intelligence, Vancouver, Canada.

Experiment Results Table 2 presents a summary of the experiment results. We observe several key findings:
Firstly, NFR Net demonstrates superior performance compared to all statistical models, particularly on the DR
methods. This result can be attributed to the capability of our proposed model to capture non-linear patterns
between covariates and the outcome distribution effectively. Secondly, NFR Net outperforms the D/DML
method. The advantage stems from our ability to model the outcome as a function. In contrast, D/DML treats
each quantile as independent scalar points, overlooking the continuous structure of the distribution. Lastly,
DML can utilize the IPW estimator to correct most of the bias in the DR estimator, and the DML estimator
demonstrates improved robustness compared to both the DR and IPW estimators.

5 Empirical Experiment

E-commerce platforms face a significant challenge in comprehending the impact of credit lines on consumer
spending patterns, particularly in terms of the shift in spending distribution caused by changes in the credit
lines. To address this issue, we employ our approach by leveraging data collected from a large e-commerce
platform. The platform assigns distinct credit lines to users based on various factors such as income, age, and
past behaviors like shopping and default behaviors. Besides, the platform provides users with an interest-free,
one-month loan option for their purchases, with the condition that the total loan amount must not exceed their
assigned credit lines.

We collect data from 4,043 platform users. The data comprises various variables, such as demographic
information (e.g., age, income, and location), purchasing behaviors (e.g., the total number of orders, the
amount paid for each order), and financial information (e.g., credit lines assigned by the platform, the total
number of loans, and the presence of default records). Appendix F displays a detailed statistical description.
All the paid amounts of orders constitute a unique spending distribution for each user (e.g., Figure 7). In our
empirical study, we investigate the causal maps when the credit lines take values as Low (from 0 to 9,000),
Middle (from 9,000 to 15,000), and High (higher than 15,000).

Table 3: The results of the causal map of three treatments at 9 quantiles (mean and 95% CI).

Quantiles Low Middle High Low→Middle Low→High

10% 28.0 (27.8, 28.3) 29.9 (29.8, 30.0) 30.6 (30, 31.2) 6.79%↑ 9.29%↑
20% 43.6 (43.4, 43.9) 47.4 (47.1, 47.8) 48.8 (47.9, 49.5) 8.72%↑ 11.93%↑
30% 58.7 (58.3, 59.0) 65.5 (65.1, 65.9) 67.5 (66.5, 68.4) 11.58%↑ 14.99%↑
40% 75.2 (74.7, 75.6) 86.8 (86.3, 87.2) 91.0 (90.0, 92.1) 15.43%↑ 21.01%↑
50% 94.9 (94.3, 95.6) 115.8 (114.9, 116.9) 122.4 (121.1, 123.8) 22.02%↑ 28.98%↑
60% 119.0 (118.2, 119.7) 150.8 (149.7, 152.0) 170.8 (167.4, 174.7) 26.72%↑ 43.53%↑
70% 155.1 (153.7, 156.4) 207.0 (205.6, 208.5) 256.0 (251.8, 261.5) 33.46%↑ 65.05%↑
80% 212.9 (210.8, 214.6) 325.6 (323.2, 328.3) 433.0 (424.4, 442.7) 52.94%↑ 103.38%↑
90% 381.0 (374.1, 386.7) 654.5 (650.7, 658.4) 1020.3 (1003.8, 1036.9) 71.78%↑ 167.80%↑

In Table 3, we give 9 percentiles of the causal map△High,△Middle, and△Low of all the consumers’ spending
distributions if they are assigned to High, Middle, and Low credit lines, respectively. Generally, the lower
quantile of spending distribution stands for life necessities, while the higher quantiles represent luxury goods.
Our findings support prior research (Aydin, 2022; Soman and Cheema, 2002), revealing a positive correlation
between credit lines and spending since the causal effect maps △High −△Low and △Middle −△Low are
always positive at all quantiles. Additionally, we observe that such an effect is heterogeneous across different
quantiles. Specifically, when the credit lines increase, the spending on higher quantiles (e.g., higher than
70%) grows significantly while the spending on lower quantiles increases relatively slowly. For example,
when credit lines change from Low to High, the spending at 90% quantile increases from 381.0 to 1020.3
(increasing about 167.8%) while the spending at 10% quantile only increases from 28.0 to 30.6 (increasing
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about 9.3%). This suggests that users tend to increase their spending on luxury goods or services when they
are able to access higher credit.

6 Conclusion

We study the causal inference on distributional outcomes with multiple treatments in the Wasserstein space.
Our target quantity, the causal effect map, is the analogy to ATE in classical causal inference literature. We
then propose three estimators, i.e., DR, IPW, and DML estimators, and study their asymptotic properties.
Our proposed NFR Net captures complex patterns among covariates, treatments, and functional outcomes,
which is verified by the synthetic experiment. Moreover, we apply it to a credit dataset and explore the causal
relationship between credit lines and spending distributions. We find that when credit lines increase, the
spending at every quantile level increases, with a more significant change at higher quantiles.

Generally, the credit lines is measured continuously, and a potential future research direction involves
investigating causal inference in the context of continuous treatment. Additionally, the realized distribution
can be multivariate, such as the joint distribution of spending behavior and credit risk, providing an opportunity
to explore such scenarios.
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A Causal Assumptions

We introduce the assumptions that are used for causal inference in Section 3.1. Here, we explain the
importance of each assumption.

Consistency It assures that the observed outcome is due to the assigned intervention that allows us to
examine the target quantities from the observable dataset.

Ignorability/Unconfoundness It has two meanings. First, if two units have the same X, then the joint
distributions of (Y(d1), · · · ,Y(dr)) conditioning on the covariates X and the treatment assignment
of the two units are the same. Second, the treatment assignment mechanism should be the same if
two units have the same X. This assumption is not stronger than the assumption for scalar outcomes
since the outcome distribution should be understood as a whole part. In our context, this assumption
indicates that given one’s covariates, the spending behavior under different treatments is independent
of the treatment assignment.

Positivity It assures that every treatment has the chance to be assigned to the units. Indeed, if the probability
of a particular treatment is 0, then it is impossible to evaluate the effects due to the treatment.

Apart from the Consistency, Ignorability/Unconfoundness, and Overlap assumptions, we also assume the
SUTVA assumption:

Assumption 1. It contains two parts:

1. The potential outcome of a unit is not influenced by the treatment assignment to other units.

2. For each unit, there are no different forms of treatment levels that lead to different potential outcomes.

Indeed, Statement (1) assures that the potential outcome of a unit is due to the treatment level that the unit
receives but not the treatment assignment to other units. Statement (2) ensures that each treatment level
should be clearly characterized. Concretely, consider the case that we are interested in the effects of taking
Aspirin. If the treatment variable is binary (either taking Aspirin or not), then every patient who takes Aspirin
should take the same type of Aspirin and dosage. No patients are allowed to take different dosages. If the
dosage is essential, then the treatment should be the dosages of Aspirin a patient takes but not dichotomous.

B Causal Quantities on Distributions

We emphasize that (Y,Y(d)) and (Y, Y (d)) have different meanings. (Y, Y (d)) is the outcome variable, and
its realization is scalar values, while (Y,Y(d)) is the outcome variable such that its realization is distribution.
In the main paper, we give a parametric example illustrating the meaning of (Y,Y(d)). Here, we give two
concrete examples illustrating the differences when the outcome is either (Y, Y (d)) and (Y,Y(d)).
Example 1 (When Y for each unit under treatment di is scalar/vector). Suppose the potential outcome
distribution is N (0, 1). Then Y for each unit under treatment di is a realization from the distribution
N (0, 1).

Example 2 (When Y for each unit under treatment di is a distribution). We give a parametric example.
Denote µ and σ as the mean and standard deviation of a normal distribution. Suppose that (µ, log σ) ∼

N
([

0
0

]
,

[
0 1
1 0

])
. If one realization of (µ, log σ) is (0.1,−0.5), then (µ, σ2) = (0.1, e−1). It means that

for a given unit, there is a collection of observations that are drawn from N (0.1, e−1). If another realization
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of (µ, log σ) is given (say (−0.3, 1)), it means that a new unit would have a collection of observations that
are drawn from N (−0.3, e2).

We further provide two examples to illustrate the differences between the ATE (average treatment effect) and
the causal effect map.

Example 3 (When Y for each unit under treatment di is scalar/vector). Consider three units A, B, C, whose
observations and potential outcomes are as follows:

Unit Y (0) Y (1) Y (1)− Y (0)

A 2 6 4
B 1 5 4
C 3 3 0

Then, the sampled average treatment effect (ATE) = (4+4+0)/3=8/3. The sampled quantile treatment effect
(QTE) at τ = 0.5 = median of Y (1) - median of Y (0) = 5 - 2 = 3.

Example 4 (When Y for each unit under treatment di is a distribution). Consider three units A, B, C,
whose observations can be constituted as distributions (e.g., [2, 0, 1] ∼ N (1, 1)), respectively. The potential
outcomes are as follows:

Unit Y(0) Y(1)
A [2, 0, 1] ∼ N (1, 1) [6] ∼ N (5, 1)
B [1, 3, 5] ∼ N (3, 1) [5, 10] ∼ N (8, 1)
C [3, 4, 5] ∼ N (4, 1) [3, 6, 6, 6] ∼ N (6, 1)

Note that for normal distributions with the same variance, the Wasserstein barycenter for these distributions is
also normal distribution, with its mean equal to the averaged mean of these distributions since the Wasserstein
barycenter is the distribution that has the smallest Wasserstein distance of these distributions. For example,

the Wasserstein barycenter for N (a, s2), N (b, s2), N (c, s2) is N
(

a+b+c
3 , s2

)
with the following CDF:

∫ x

−∞

1√
2πs

exp

(
(z − a+b+c

3
)2

2s2

)
dz.

Thus, in this example, the sampled barycenter for Y(0) is

Erf(x) =

∫ x

−∞

1√
2π

exp

(
(z − 8

3
)2

2

)
dz

and the sampled barycenter for Y(1) is

Erf(x) =

∫ x

−∞

1√
2π

exp

(
(z − 19

3
)2

2

)
dz.

Thus, the causal effect map between Y(0) and Y(1) is

Erf−1(x)− Erf−1(x).

Note that in real cases, the distributions for each unit are more complex than the normal distribution, and
they even may not follow any known distributions.
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C Consistency of DR and IPW estimators

In this section, we are going to study the asymptotic properties of the DR and IPW estimators. The studies
require the following Lemmas:

Lemma 1. Let mdi(X) = E[Y−1|D = di,X]. We have

△di(·) = E[mdi(X)]

Proof. See the proof of Assertion 2 in the proof of Proposition 1.

Lemma 2. Let πdi(X) = P{D = di|X}. We have

△di(·) = E
[
1{D=di}

πdi(X)
Y−1

]

Proof. From the proof of Assertion 1 in the proof of Proposition 1, we notice that△di(·) = E[Y(di)−1]. We
only need to show that

E[Y(di)−1] = E
[
1{D=di}

πdi(X)
Y−1

]
.

Now, we have

E
[
1{D=di}

πdi(X)
Y−1

]
= E

[
E
[
1{D=di}

πdi(X)
Y−1|X

]]
=E
[

1

πdi(X)
E
[
1{D=di}Y−1|X

]]
=E
[

1

πdi(X)

∑
1≤j≤r

E[1{D=di}Y−1|D = dj ,X]P{D = dj |X}
]

=E
[

1

πdi(X)
E[Y−1|D = di,X]P{D = di|X}

]
=E[E[Y−1|D = di,X]]
∗
=E[E[Y(di)−1|D = di,X]]

⋆
= E[E[Y(di)−1|X]]

=E[Y(di)−1].

Here, ∗ follows from Consistency Assumption, and ⋆ follows from Ignorability Assumption.

From Lemmas 1 and 2, we can study the asymptotic properties of △̂di;DR and △̂di;IPW . Recall the estimators
△̂di;DR and △̂di;IPW here:

DR estimator △̂di;DR:

△̂di;DR =
K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

m̂k
di(Xs). (15)

IPW estimator △̂di;IPW :

△̂di;IPW =

K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

1{Ds=di}

π̂k
di
(Xs)

Y−1
s . (16)
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We first study the asymptotic property of △̂di;DR. Write

△̂di;DR =
K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

m̂k
di(Xs)

=

K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

[m̂k
di(Xs)−mdi(Xs)]︸ ︷︷ ︸
I

+

K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

mdi(Xs)︸ ︷︷ ︸
II

.

II is the sample averaging of E[mdi(X)], so II converges to E[mdi(X)] in probability. By Lemma 1,
II converges to △di(·) in probability. Hence, the consistency of the estimator △̂di;DR depends on the
convergence of m̂k

di
(Xs) on mdi(Xs).

We then study the asymptotic property of △̂di;IPW . Similarly, we can write

△̂di;IPW =
K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

1{Ds=di}

π̂k
di
(Xs)

Y−1
s

=

K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

[
1

π̂k
di
(Xs)

− 1

πdi(Xs)

]
1{Ds=di}Y−1

s︸ ︷︷ ︸
I

+

K∑
k=1

Nk

N

1

Nk

∑
s∈Dk

1{Ds=di}

πdi(Xs)
Y−1
s︸ ︷︷ ︸

II

.

Again, II is the sample averaging of E
[
1{D=di}
πdi (X) Y

−1

]
, so II converges to E

[
1{D=di}
πdi (X) Y

−1

]
in probability. By

Lemma 2, II converges to△di(·) in probability. Hence, the consistency of the estimator △̂di;DR depends on
the convergence of π̂k

di
(Xs) on πdi(Xs).

D Missing Proofs

D.1 Proof of Proposition 1

Proof of Proposition 1. Proof of Assertion 1: If we can prove that E
[
Y(di)−1

]
= µ−1

di
, then we have

△di = µ−1
di

= E
[
Y(di)−1

]
. Let Q be the set containing all the left-continuous non-decreasing functions on

(0, 1). If we view Q as a subspace of L2([0, 1]), then it is isometric toW2(I) (Panaretos and Zemel, 2020).
Indeed, µdi = argmin

ν∈W2(I)
E
[
D2(Y(di), ν)2

] •
= argmin

ν∈Q
E
[ ∫ 1

0 |Y(d
i)−1(t) − ν−1(t)|2dt

]
. Here, •

= follows

from Theorem 2.18 of Villani (2021). Since we can interchange the integral sign
∫

and E, we notice that
E
[ ∫ 1

0 |Y(d
i)−1(t)− ν−1(t)|2dt

]
=
∫ 1
0 E
[
|Y(di)−1(t)− ν−1(t)|2

]
dt =

∫ 1
0 (E

[
Y(di)−1(t)

]
− ν−1(t))2dt+∫ 1

0 E[(E
[
Y(di)−1(t)

]
− Y(di)−1(t))2]dt, and E

[ ∫ 1
0 |Y(d

i)−1(t) − ν−1(t)|2dt
]

attains its minimum when
ν−1(t) = E

[
Y(di)−1(t)

]
. We can therefore conclude that µdi =

(
E
[
Y(di)−1(t)

])−1.

Proof of Assertion 2: From Proposition 1, △di(·) = E
[
Y(di)−1

]
. Consistency assumption assures

that Y−1 = Y(di)−1 since Y = Y(di) when D = di. Consequently, we have E
[
Y(di)−1

]
=

E
[
E
[
Y(di)−1|X

]] ⋆
= E

[
E
[
Y(di)−1|D = di,X

]] ∗
= E

[
E
[
Y−1|D = di,X

]]
. ∗ follows from Ignorability

Assumption while ⋆ follows from Consistency Assumption. Thus, we conclude that△di(·) is identified.

Before starting the proof of Theorem 1, we introduce some notations that are useful in the proof of Theorem
1.
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We put aˆon top of a random variable which represents the estimate of the random variable. For example, we
use Ŷ and π̂di to represent the estimate of Y and πdi . Since we spit the observed data into K disjoint union
sets D1, · · · ,DK , we also use π̂k

di
to represent the estimate πdi based on the set D−k and evaluate using the

set Dk.

We use mdi(X) = E[Y(di)−1|X] = E[Y−1|D = di,X]. Further, denote m̃k
di

as the estimate us-
ing true Y based on the set D−k and evaluate using the set Dk. Define an inner product space with
inner product ⟨h1, h2⟩ =

∫
h1(t)h2(t)dt such that ∥h∥2 =

∫
h2(t)dt. Further, given two functions

h1(·,X) and h2(·,X), we define ~h1 − h2~2 such that ~h1 − h2~2 =
∫
∥h1(·,x)− h2(·,x)∥2dFX(x) =∫ ∫

|h1(t,x) − h2(t,x)|2dt dFX(x) = E[∥h1 − h2∥2], where FX(x) is the cumulative distribution of X.
Besides, let ρ4π = E[|π̂di(X)− πdi(X)|4]; ρ4m = max{~m̃di −mdi~

4, 1 ≤ i ≤ r}. The expectation E are
conditional expectation conditioning on the estimated nuisance functions. We also assume that E[∥mdi(X)∥4],
E[∥Y−1∥4], and E[∥Y(di)−1∥4λ] <∞ ∀ 1 ≤ i ≤ r.

Next, we state the convergence assumptions which are needed in the proof of Theorem 1.

Convergence Assumption 1. The estimates Ŷ1, · · · , ŶN are independent of each other. Furthermore, there
are two sequences of constants αN = o(1) and νN = o(1) such that

sup
1≤s≤N

sup
v∈W(I)

E[D2
2(Ŷs,Ys)|Ys = v] = O(α2

N )

sup
1≤s≤N

sup
v∈W(I)

V[D2
2(Ŷs,Ys)|Ys = v] = O(ν4N ).

Convergence Assumption 2.

1. There exists such that
P{ϵ < π̂k

di < 1− ϵ, ∀ x} = 1.

2. The outcome regression and propensity score estimates converge: ∀ i ∈ {1, · · · , r} and ∀ 1 ≤ k ≤
K, we have

sup
x
∥m̃k

di −mdi∥ = oP (1) and sup
x
∥π̂k

di − πdi∥ = oP (1).

Convergence Assumption 3. ~m̂k
di
− m̃k

di
~ = OP (N

−1 + α2
N + ν2N ) ∀ i ∈ {1, · · · , r} and 1 ≤ k ≤ K.

Convergence Assumption 4. There exist constants c1 and c2 such that 0 < c1 ≤ Nk
N ≤ c2 < 1 for all N

and 1 ≤ k ≤ K.

To prove Theorem 1, we require all the Convergence Assumptions. Further, we need to assume that the two
sequences αN and νN in Convergence Assumption 1 satisfy αN = o(N− 1

2 ) and νN = o(N− 1
2 ). Note that

αN = o(N− 1
2 ) and νN = o(N− 1

2 ) holds imply that αN = o(1) and νN = o(1) automatically.

D.2 Proof of Theorem 1

The proof requires two Lemmas.

Lemma 3. For G1, G2 ∈ W2(I), we have ∥G1 −G2∥ = D2(G1, G2).

Lemma 4. Under Convergence Assumption 1, we have 1
N

N∑
s=1
∥Ŷ−1

s − Y−1
s ∥2 = OP (α

2
N + ν2N ).

The proofs of Lemmas 3 and 4 can be found in Lin et al. (2023). Now, we are ready to prove Theorem 1.
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Proof of Theorem 1. In the following proof, we assume that K = 2. The general case is similar. For
simplicity, we define four operators PN , PNk

, EN , and ENk
such that given a random quantity O, PNO =

1
N

N∑
s=1
Os, PNk

= 1
Nk

∑
s∈Dk

Os, EN = 1
N

N∑
s=1

E[Os], and ENk
= 1

Nk

∑
s∈Dk

E[Os]. Given the distributions λ.

Define Lλ = λ−1. Let Zs = LYs, and if the sth subject belongs to the k partition, then Ẑs = LŶs and
Rs = Ẑs − Zs. Define Dk

di
(x) = m̂k

di
(x)− m̃k

di
(x). Under the causal assumptions, we have

△di = E
[
1{D=di}LY
πdi(X)

−
(
1{D=di}

πdi(X)
− 1

)
mdi(X)

]
.

Denote the corresponding sampled version using Dk as

△̂
k

di;DML = PNk

[
1{D=di}LŶ
π̂k
di
(X)

−
(
1{D=di}

π̂k
di
(X)

− 1

)
m̂k

di(X)

]
.

As a result, we have the cross-fitting estimator △̂di;DML such that

△̂di;DML =
2∑

k=1

Nk

N
△̂k

di;DML

=
1

N
(N1△̂

1

di;DML +N2△̂
2

di;DML).

Next, we consider the difference △̂di;DML −△λ
di

. Indeed, we have

1

N
(N1△̂

1

di;DML +N2△̂
2

di;DML)−△di =
1

N

∑
k=1,2

NkAk −△di ,

where

Ak = PNk

[
1{D=di}Z + 1{D=di}R

π̂k
di
(X)

−
(
1{D=di}

π̂k
di
(X)

− 1

)
(m̃k

di(X) +Dk
di(X))

]
.

We then decompose 1
N

∑
k=1,2

NkAk −△i into the sum of five quantities as follows:

1

N

∑
k=1,2

Nk(I + II + III + IV + V)

where

I = (PNk
− ENk

)

[
1{D=di}(Z − m̃k

di
(X))

π̂k
di
(X)

+ m̃k
di(X)−

1{D=di}(Z −mdi(X))

πdi(X)
−mdi(X)

]
II = (PNk

− ENk
)

[
1{D=di}(Z −mdi(X))

πdi(X)
+mdi(X)

]
III = ENk

[
(m̃k

di
(X)−mdi(X))(π̂k

di
(X)− 1{D=di})

π̂k
di
(X)

]
IV = PNk

{(
1−

1{D=di}

π̂k
di
(X)

)
Dk

di(X)

}
V = PNk

{
1{D=di}R

π̂k
di
(X)

}
.
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Proof of Theorem 1.1: The proof follows from the bounds of I - V (see more details in the sequel).

Proof of Theorem 1.2: The proof follows from the Central Limit Theorem and Slutsky’s Lemma after we get
the bounds of I - V.

In the sequel, we bound I - V subsequently.

Boundness of I: Let

G(D,X, Z) =
1{D=di}{Z − m̃k

di(X)}
π̂k
di
(X)

+ m̃k
di(X)−mdi(X)

H1(D,X, Z) =
1{D=di}Z{πdi(X)− π̂k

di(X)}
π̂k
di
(X)πdi(X)

H2(D,X, Z) =
1{D=di}{π̂k

di(X)mdi(X)− πdi(X)m̃k
di(X)}

π̂k
di
(X)πdi(X)

H3(D,X, Z) = m̃k
di(X)−mdi(X)

H(D,X, Z) = H1(D,X, Z) +H2(D,X, Z) +H3(D,X, Z).

We consider E[∥I∥2]. Note that

H(D,X, Z) =

[
1{D=di}(Z − m̃k

di(X))

π̂k
di
(X)

+ m̃k
di(X)−

1{D=di}(Z −mdi(X))

πdi(X)
−mdi(X)

]
.

Hence, we have

E[∥I∥2] = E[∥(PNk
− ENk

)H(D,X, Z)∥2].

We simplify the quantity E[∥(PNk
− ENk

)H(D,X, Z)∥2]. Indeed, we have

E[∥(PNk − ENk )H(D,X, Z)∥2]

=
1

N2
k

E[∥
∑
s∈Dk

{H(Ds,Xs, Zs)− E[H(Ds,Xs, Zs)]}∥2]

=
1

N2
k

∑
s∈Dk

E[∥H(Ds,Xs, Zs)− E[H(Ds,Xs, Zs)]∥2] +
1

N2
k

∑
s,s̄∈Dk
s ̸=s̄

Css̄ := I1 + I2,

where Css̄ = E[⟨Hs − E[Hs], Hs̄ − E[Hs̄]⟩] and Hs = H(Ds,Xs, Zs). Consider the term I1. We have

I1 ≲
1

N2
k

∑
s∈Dk

E[∥H(Ds,Xs, Zs)∥2]

≤ 1

N2
k

∑
s∈Dk

E[∥H1(Ds,Xs, Zs)∥2] +
1

N2
k

∑
s∈Dk

E[∥H2(Ds,Xs, Zs)∥2] +
1

N2
k

∑
s∈Dk

E[∥H3(Ds,Xs, Zs)∥2].

Consider the bound E[∥H1(Ds,Xs, Zs)∥2], Using the assumption that there exists ϵ > 0 such that π̂k
di
(X)

and πdi(X) are bounded below by ϵ ≤ π̂k
di
(X), πdi(X) ≤ 1− ϵ, we have

E[∥H1(Ds,Xs, Zs)∥2] = E
[∥∥∥∥1{D=di}Z{πdi(X)− π̂k

di(X)}
π̂k
di
(X)πdi(X)

∥∥∥∥2]
≲E[∥Z{πdi(X)− π̂k

di(X)}∥2] = E[|πdi(X)− π̂k
di(X)|2∥Z∥2]

≤
(
E[|πdi(X)− π̂k

di(X)|4]
) 1

2
(
E[∥Z∥4]

) 1
2 ≲ ρ2π.
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Next, consider the bound E[∥H2(Ds,Xs, Zs)∥2]. Again, using the assumption that there exists ϵ > 0 such
that π̂k

di
(X) and πdi(X) are bounded below by ϵ ≤ π̂k

di
(X), πdi(X) ≤ 1− ϵ, we have

E[∥H2(Ds,Xs, Zs)∥2]

= E
[∥∥∥∥1{D=di}{π̂k

di(X)mdi(X)− πdi(X)m̃k
di(X)}

π̂k
di
(X)πdi(X)

∥∥∥∥2]
≲E
[∥∥π̂k

di(X)mdi(X)− πdi(X)mdi(X)
∥∥2]+ E

[∥∥πdi(X)mdi(X)− πdi(X)m̃k
di(X)

∥∥2]
≲E[|π̂k

di(X)− πdi(X)|2∥mdi(X)∥2] + E[∥mdi(X)− m̃k
di(X)∥2]

≤(E[|π̂k
di(X)− πdi(X)|4])

1
2 (E[∥mdi(X)∥4])

1
2 + E[∥mdi(X)− m̃k

di(X)∥2] ≲ ρ2π + ρ2m.

Besides, we can bound E[∥H3(Ds,Xs, Zs)∥2] similarly. Indeed, we have

E[∥H3(Ds,Xs, Zs)∥2] = E[∥m̃k
di(X)−mdi(X)∥2] ≤ ρ2m.

As a result, we have
I1 ≲

1

Nk
(ρ2π + ρ2m) =

N

Nk

1

N
(ρ2π + ρ2m) ≲

1

N
(ρ2π + ρ2m).

We now consider the quantity I2. Note that

H(D,X, Z) =

[
1{D=di}(Z − m̃k

di(X))

π̂k
di
(X)

+ m̃k
di(X)−

1{D=di}(Z −mi(X))

πdi(X)
−mdi(X)

]
= G(D,X, Z)−

1{D=di}(Z −mdi(X))

πdi(X)

and E[H(D,X, Z)] = E[G(D,X, Z)]. Abbreviating the notation that G(D,X, Z) = G, since the sth-unit
and the s̄th-unit are independent of each other, we have

E[⟨Hs − E[Hs], Hs̄ − E[Hs̄]⟩] = E[⟨Gs − E[Gs], Gs̄ − E[Gs̄]⟩]
=E[⟨Gs, Gs̄⟩]− ⟨E[Gs],E[Gs̄]⟩ ≲ ∥E[Gs]∥ × ∥E[Gs̄]∥.

Note that

E[Gs] = E
[
1{D=di}{Z − m̃k

di(X)}
π̂k
di
(X)

+ m̃k
di(X)−mdi(X)

]
=E
[
E
[
1{D=di}{Z − m̃k

di(X)}
π̂k
di
(X)

|X
]]

+ E[m̃k
di(X)−mdi(X)]

=E
[E[1{D=di}|X]

π̂k
di
(X)

{mdi(X)− m̃k
di(X)}

]
+ E[m̃k

di(X)−mdi(X)]

=E
[
πdi(X)− πk

di(X)

π̂k
di
(X)

{mdi(X)− m̃k
di(X)}

]
≲E[{πdi(X)− πk

di(X)}{mdi(X)− m̃k
di(X)}].

Hence, we have
∥E[Gs]∥ ≲ E[|πdi(X)− πk

di(X)| × ∥mdi(X)− m̃k
di(X)∥]

≤ (E[|πdi(X)− πk
di(X)|2])

1
2 (E[∥mdi(X)− m̃k

di(X)∥2])
1
2

≤ (E[|πdi(X)− πk
di(X)|4])

1
4 ρm = ρπρm.

Hence, we have Css̄ ≲ ρ2πρ
2
m and I2 ≲

(
1− 1

Nk

)
ρ2πρ

2
m. As a result, we can show that

E[∥I∥2] = O(N−1ρ2π +N−1ρ2m + ρ2πρ
2
m).
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Thus, we have I = OP (N
− 1

2 ρπ +N− 1
2 ρm + ρπρm).

Boundness of II: Note that the quantity II does not involve any estimation of nuisance functions based on the
observed dataset (the function πdi) and mdi are the limits of some estimated sequences). It is equivalent to
the following problem:

Claim. Given a random quantity W such that E[W ] < ∞, the sample averaging of W (i.e., 1
N

N∑
s=1

Ws)

converges to E[W ] in probability, or 1
N

N∑
s=1

Ws − E[W ] = OP

(
1√
N

)
.

Using the Claim and Assumption 4, we have

P
{∣∣∣∣ II

1√
N

∣∣∣∣ ≥ M

}
= P

{∣∣∣∣ (PNk − ENk )

[
1{D=di}(Z−m

di
(X))

π
di

(X)
+mdi(X)

]
1√
N

∣∣∣∣ ≥ M

}

≤ N

Nk

E
[(

1{D=di}(Z−m
di

(X))

π
di

(X)
+mdi(X)

)2]
M2

.

We can choose sufficiently large M to make P
{∣∣∣∣ II

1√
N

∣∣∣∣ ≥ M

}
< ϵ. Hence, we have II = OP (N

− 1
2 ).

Boundness of III: For simplicity, we denote

A = ENk

[
(m̃k

di(X)−mdi(X))(π̂k
di(X)− 1{D=di})

π̂k
di
(X)

]
.

We consider the quantity E[∥A∥]. Since A is an expectation already, we have E[∥A∥] = ∥A∥. Further, we
can simplify ∥A∥ as follows:

∥A∥ =

∥∥∥∥ENk

[
(m̃k

di(X)−mdi(X))(π̂k
di(X)− 1{D=di})

π̂k
di
(X)

]∥∥∥∥
=

∥∥∥∥E[ (m̃k
di(X)−mdi(X))(π̂k

di(X)− 1{D=di})

π̂k
di
(X)

]∥∥∥∥
=

∥∥∥∥E[E[ (m̃k
di(X)−mdi(X))(π̂k

di(X)− 1{D=di})

π̂k
di
(X)

|X
]]∥∥∥∥

=

∥∥∥∥E[ (m̃k
di(X)−mdi(X))

π̂k
di
(X)

(π̂k
di(X)− E[1{D=di}|X])

]∥∥∥∥
=

∥∥∥∥E[ (m̃k
di(X)−mdi(X))

π̂k
di
(X)

(π̂k
di(X)− πdi(X))

]∥∥∥∥
≲ ∥E[(m̃k

di(X)−mdi(X))(π̂k
di(X)− πdi(X))]∥

≤ E[|π̂k
di(X)− πdi(X)|∥(m̃k

di(X)−mdi(X))∥]

≤
(
E[|π̂k

di(X)− πdi(X)|2]
) 1

2
(
E[∥(m̃k

di(X)−mdi(X))∥2]
) 1

2

≤
(
E[|π̂k

di(X)− πdi(X)|4]
) 1

4
(
E[∥(m̃k

di(X)−mdi(X))∥2]
) 1

2

≤ ρπρm.

Boundness of IV: Let A = PNk

{(
1−

1{D=di}
π̂k
di
(X)

)
Dk

di
(X)

}
.
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Consider ∥A∥2. We have

∥A∥2 =

∥∥∥∥PNk

{(
1−

1{D=di}

π̂k
di
(X)

)
Dk

di(X)

}∥∥∥∥2
=

1

N2
k

∑
s∈Dk

∥∥∥∥(1− 1{Ds=di}

π̂k
di
(Xs)

)
Dk

di(Xs)

∥∥∥∥2︸ ︷︷ ︸
IV1

+
1

N2
k

∑
s,s̄∈Dk

s̸=s̄

⟨(1−
1{Ds=di}

π̂k
di
(Xs)

)Di,k(Xs), (1−
1{Ds̄=di}

π̂k
di
(Xs̄)

)Dk
di(Xs̄)⟩

︸ ︷︷ ︸
IV2

.

Consider IV1 first. Using Assumption 2, we see that IV1 ≤ c
N2

k

∑
s∈Dk

∥Dk
di
(Xs)∥2 for some constant c. Note

that, for any δ > 0, we have

P
{

1

Nk

∑
s∈Dk

∥Dk
di(Xs)∥2 ≥

~m̂k
di
− m̃k

di
~2

δ

}

≤
δE
[

1
Nk

∑
s∈Dk

∥Dk
di
(Xs)∥2

]
~m̂k

di
− m̃k

di
~2

=
δE[∥Dk

di
(X)∥2]

~m̂k
di
− m̃k

di
~2
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Indeed, the inequality follows from Markov inequality. The last equality follows from the Definition of ~ ·~2.
According to the definition, we have E[∥Dk
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~2. It means that 1
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Using Assumptions 3 and 4, we have IV1 = OP (N
−2 +N−1α2

N +N−1ν2N ).

Next, we consider IV2. Let
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Here,
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Indeed, using the fact that the unit s and the unit s̄ are independent of each other, we have
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Now, using Assumption 2, we can further have
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Boundness of V: Observe that

PNk

{
1{D=di}R

π̂k
di
(X)

}
=PNk

{
1{D=di}R

πdi(X)

}
+ PNk

{
1{D=di}R

π̂k
di
(X)

−
1{D=di}R

πdi(X)

}
=PNk

{
1{D=di}R

πdi(X)

}
+ PNk

{
1{D=di}R(πdi(X)− π̂k

di(X))

π̂k
di
(X)πdi(X)

}
.

(17)

Using the fact that 0 < ϵ ≤ π̂i
k(X), πi(X) ≤ 1− ϵ < 1, we have
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By Lemma 4 and the assumptions of αN and νN given in Convergence Assumption 1, we have V =
OP (αN + νN ).
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E Synthetic Experiments

E.1 Data Generation Process and Dataset Description

We simulate one synthetic dataset with non-linear causal maps and sample selection bias to test our proposed
framework. The data-generating process (DGP) is as follows:

Ys(Ds)
−1 = c+ (1− c)(E[D] +

√
Ds)×

n
2∑

j=1

exp(X2j−1
s X2j

s )
n
2∑

k=1

exp(X2k−1
s X2k

s )

B−1(αj , βj) + ϵs,

Ds = σ

(
exp(γT

wXs)
r∑

w=1

exp(γT
wXs)

)
,

where n is an even number which indicates the number of covariates, Y−1
s is the inverse distribution of unit

s, Xs is the covariates of unit s, and Ds is the treatment of unit s. B−1(α, β) is the inverse cumulative
distribution function (CDF) of beta distribution with the shapes’ parameters α and β. σ is a function that
maps the features to treatment D such that D takes five treatment levels {d1, d2, d3, d4, d5}. c is the constant
that controls the strength of the causal relationship between D and Y−1. ϵ is the noise that follows N(0, 0.05).
In our experiments, we set n = 10. We assume that X1, X2 ∼ N (−2, 1), X3, X4 ∼ N (−1, 1), X5, X6 ∼
N (0, 1), X7, X8 ∼ N (1, 1), X9, X10 ∼ N (2, 1). 5 inverse beta CDFs are needed, and we set each beta
distribution with different parameters to ensure the complexity of the distribution function. For each unit
s, 100 observations are sampled from inverse CDF using the inverse transform sampling method. In one
experiment, 5, 000 instances are generated.

E.2 Training Details

The hyperparameters are tuned using the random search for both models, and we set the hyperparameters as
follows: learning rate: 0.003, batch size: 128, number of epochs: 150, dropout: 0.1, weight decay: 0.001. We
use Adam as the optimizer. The adaptive learning rate is used for training, and if the test accuracy does not
decrease for 10 epochs, the learning rate will decrease by half.

F Empirical Experiments

Our data is collected from a large E-commerce platform that introduced the “Buy now, pay later” (BNPL)
credit service to boost the spending of consumers. The objective of our study was to examine the impact of
changes in credit lines on spending distribution. We collect data from 4,043 users on the platform over a
period of 24 months, from January 2018 to December 2019. The data included demographic information
such as gender, age, and location, as well as shopping behaviors such as the amount paid for each order, the
total number of orders, and financial information such as the presence of default records, the total number of
loans, and the credit line assigned by the platform. To eliminate the impact of the two promotion seasons in
June and November, we selected July, August, September, and October of 2019 as our target research period.
All the paid amounts of each order by each user during this period constitute a spending distribution for each
user.

The statistical descriptions of the aforementioned features are presented in Table 4. Specifically, the average
age of users in our data is 35, the number of males accounts for 59.8%, and the number of females accounts
for 41.2%. The mean age of the users in our data was found to be 35, with 59.8% being male and 41.2% being
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Table 4: The statistical description of training features.

mean std min 25% 50% 75% max

Age 35.211 7.272 21 30 34 39 60
Gender 0.598 0.490 0 0 1 1 1

Num of orders 209.801 108.096 78 147 180 232 2187
Default rate 0.357 0.479 0 0 0 1 1
Credit Line 10190.840 4516.421 0 7342 10000 11707 51792
Q = 10% 24.467 21.315 0 6 23.61 35.934 182.98
Q = 20% 41.589 33.711 0 14.88 39 59.97 779
Q = 30% 60.316 76.464 0 27.97 57.4 88.952 3999
Q = 40% 80.459 94.739 0 43.979 80.722 104.151 4799
Q = 50% 105.422 120.121 0 63.995 99.93 126.665 4998.99
Q = 60% 139.409 161.367 0 90.767 119.24 162.587 5298
Q = 70% 195.481 258.942 0 105.926 155 215.935 7364
Q = 80% 298.639 415.584 0 147.824 211.64 315.036 8380
Q = 90% 588.585 827.340 0 237.13 365.12 599.442 15320

female. Additionally, the mean number of orders was 210, indicating a relatively high level of activity among
the users in our sample. The presence of default records in 35.7% of the users highlights the need to consider
financial stability. Additionally, with respect to the spending distribution, the mean of the distribution,
computed from quantiles 0.1 to 0.9, varies from 24.467 to 588.585. The large variance of spending at each
quantile highlights the substantial variability of the distribution of consumption among users, demonstrating
the diversity of spending patterns among the individuals in the sample.

The hyperparameters are tuned using random searching for both models. We set the hyperparameters as
follows: learning rate: 0.005, batch size: 128, number of epochs: 150, dropout: 0.1, weight decay: 0.001. We
use Adam as the optimizer. The adaptive learning rate is used for training, and if the test accuracy does not
decrease for 10 epochs, the learning rate will decrease by half. Here, we give the specific values in Table 5.
Generally, the lower quantile stands for some small amount of spending, such as life necessities, while the
higher quantiles represent the larger amount of spending, such as luxury goods or services.

Consistent with prior research, our findings indicate a positive correlation between credit lines and spending,
highlighting the stimulating impact of credit on consumption. Additionally, we find that such an effect is
heterogeneous across different quantiles. Specifically, when the credit lines increase (e.g., from Low to
Middle or from Middle to High), the spending on higher quantiles grows significantly (e.g., increase from
801.57 to 1217.40 or from 1217.40 to 1770.66 at quantile 95%) while the spending on lower quantiles
increases relatively slowly (e.g., increase from 19.94 to 21.27 or from 21.27 to 21.96). This suggests that
users tend to increase their spending on luxury goods or services when they are able to access credit.

G G. Computation Infrastructure

All experiments are run on Dell 7920 with Intel(R) Xeon(R) Gold 6250 CPU at 3.90GHz, and a set of
NVIDIA Quadro RTX 6000 GP. All models are implemented in Python 3.8. The versions of the main
packages of our code are Pytorch 1.8.1+cu102, Sklearn: 0.23.2, Numpy: 1.19.2, Pandas: 1.1.3, Matplotlib:
3.3.2.
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Table 5: The results of the empirical experiment.

Quantiles Low (0-9,000) Middle (9,000-15,000) High (>15,000)

5% 19.9 (19.6, 20.3) 21.3 (21.1, 21.4) 22.0 (21.2, 22.7)
10% 28.0 (27.8, 28.3) 29.9 (29.8, 30.0) 30.6 (30.0, 31.2)
15% 35.4 (35.1, 35.7) 37.4 (37.3, 37.6) 39.2 (38.6, 39.9)
20% 43.6 (43.4, 43.9) 47.4 (47.1, 47.8) 48.8 (47.9, 49.5)
25% 51.2 (50.9, 51.6) 57.2 (56.8, 57.5) 57.8 (56.9, 58.5)
30% 58.7 (58.3, 59.0) 65.5 (65.1, 65.9) 67.5 (66.5, 68.4)
35% 66.6 (66.2, 67.1) 75.7 (75.3, 76.1) 78.1 (77.0, 79.0)
40% 75.2 (74.7, 75.6) 86.8 (86.3, 87.2) 91.0 (90.0, 92.1)
45% 83.9 (83.4, 84.5) 99.6 (98.8, 100.5) 104.3 (103.3, 105.4)
50% 94.9 (94.3, 95.6) 115.8 (114.9, 116.9) 122.4 (121.1, 123.8)
55% 105.6 (104.9, 106.2) 131.1 (130.0, 132.2) 142.8 (140.6, 145.4)
60% 119.0 (118.2, 119.7) 150.8 (149.7, 152.0) 170.8 (167.4, 174.7)
65% 134.8 (133.8, 135.7) 174.0 (172.7, 175.3) 206.3 (202.3, 210.9)
70% 155.1 (153.7, 156.4) 207.0 (205.6, 208.5) 256.0 (251.8, 261.5)
75% 180.7 (178.8, 182.2) 259.0 (256.9, 261.1) 327.4 (321.5, 334.5)
80% 212.9 (210.8, 214.6) 325.6 (323.2, 328.3) 433.0 (424.4, 442.7)
85% 264.1 (260.3, 266.9) 434.4 (431.4, 437.7) 615.5 (605.7, 628.6)
90% 381.0 (374.1, 386.7) 654.5 (650.7, 658.4) 1020.3 (1003.8, 1036.9)
95% 801.6 (784.5, 817.2) 1217.4 (1211.2, 1225.0) 1770.7 (1731.5, 1803.3)
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