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Abstract

Identifying novel drug-drug interactions (DDIs) is a crucial
task in pharmacology, as the interference between pharma-
cological substances can pose serious medical risks. In re-
cent years, several network-based techniques have emerged
for predicting DDIs. However, they primarily focus on lo-
cal structures within DDI-related networks, often overlook-
ing the significance of indirect connections between pairwise
drug nodes from a global perspective. Additionally, effec-
tively handling heterogeneous information present in both
biomedical knowledge graphs and drug molecular graphs re-
mains a challenge for improved performance of DDI predic-
tion. To address these limitations, we propose a Transformer-
based relatIon-aware Graph rEpresentation leaRning frame-
work (TIGER) for DDI prediction. TIGER leverages the
Transformer architecture to effectively exploit the structure of
heterogeneous graph, which allows it direct learning of long
dependencies and high-order structures. Furthermore, TIGER
incorporates a relation-aware self-attention mechanism, cap-
turing a diverse range of semantic relations that exist between
pairs of nodes in heterogeneous graph. In addition to these ad-
vancements, TIGER enhances predictive accuracy by model-
ing DDI prediction task using a dual-channel network, where
drug molecular graph and biomedical knowledge graph are
fed into two respective channels. By incorporating embed-
dings obtained at graph and node levels, TIGER can benefit
from structural properties of drugs as well as rich contextual
information provided by biomedical knowledge graph. Ex-
tensive experiments conducted on three real-world datasets
demonstrate the effectiveness of TIGER in DDI prediction.
Furthermore, case studies highlight its ability to provide a
deeper understanding of underlying mechanisms of DDIs.

Introduction
Drug-drug interactions (DDIs) refer to the biological effects
of concomitantly administered drugs, which can modify the
pharmacological effects of the drug, thereby leading to ad-
verse drug reactions (ADRs) (Vilar et al. 2014). Studies
(Finkel, Clark, and Cubeddu 2009) have shown that when
2-5 drugs are combined, the incidence of adverse reactions
is 18.6%. When more than 5 drugs are taken together, the in-
cidence of adverse reactions is 81.4%. Such situations may
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cause injuries or deaths to patients. Therefore, the identifi-
cation of potential DDIs is of great significance for alleviat-
ing impacts of such emergencies, thus guiding drug devel-
opment and benefiting public health.

In recent years, a significant line of research has been ex-
plored for identifying potential DDIs from graph-structured
data, including homogeneous graphs and heterogeneous
graphs (Zhao et al. 2023). Compared to homogeneous
graphs composed solely of drug entities, heterogeneous
graphs excel in abstracting and modeling complex systems,
thereby generating greater interest. In the field of DDI pre-
dictions, two kinds of heterogeneous graphs are commonly
used. One is biomedical knowledge graph, where each node
represents a molecule, such as drug or protein, and edge
is the relation between them. The other is drug molecular
graph, where each node denotes an atom, and each edge is a
bond.

In view of the success of graph neural networks (GNNs)
(Kipf and Welling 2017), there are several attempts to adopt
GNNs to learn with heterogeneous graphs. In the case of
biomedical knowledge graphs, a relation-specific transfor-
mation is designed to encode semantic relationships between
entities. Subsequently, a message-passing framework can be
employed to propagate and aggregate information through-
out the graph, enabling the learning of drug node-level repre-
sentations. On the other hand, a common paradigm involves
assigning a [VNode] (virtual node) to each atom or utilizing
a pooling function to aggregate information from individ-
ual atoms. This allows for the creation of a drug graph-level
representation that captures the overall structure of the drug
molecule.

Indeed, GNN-based methods have demonstrated impres-
sive performance in the DDI prediction task, significantly
advancing the analysis of biomedical knowledge graphs and
drug molecular graphs. However, they do have certain limi-
tations (Chen, O’Bray, and Borgwardt 2022). The major lim-
itation is that they learn drug representations solely by ag-
gregating information from local neighbors. As a result, they
might encounter challenges in effectively capturing com-
plex graph structures and long-range dependencies. This
limitation could impede their ability to fully comprehend
the intricate relationships inherent in biomedical knowledge
graphs and drug molecular graphs. In addition, these meth-
ods also suffer from the issue of over-squashing. The over-
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squashing leads to information loss and distortion during
iterative message-passing, thereby affecting model perfor-
mances. It is thus essential to design a new architecture be-
yond local neighborhood aggregation.

To address the mentioned issues, the Transformer archi-
tecture (Vaswani et al. 2017) is considered a promising so-
lution due to its ability to directly model distant nodes and
capture dependencies across the entire graph. Consequently,
there is active research into extending the Transformer ar-
chitecture to graph-based tasks, such as DDI prediction. An
example of this is Graphormer (Ying et al. 2021), a recent
Transformer-based model tailored for molecular graph-level
representation learning. Graphormer enhances the Trans-
former architecture to handle graph-structured data effec-
tively. This is achieved through the inclusion of graph posi-
tional encoding and attention mechanisms that consider both
node and edge features. As a result, the model not only eval-
uates individual node attributes but also grasps the global
topological information.

Though Graphormer is effective in graph-level represen-
tation learning tasks, its property, which takes the entire
graph as input, limits its scalability and applicability to
large-scale graphs, such as biomedical knowledge graphs.
On the other hand, biomedical knowledge graph is rich in
semantic information and the node pair in it may have var-
ious relationships. For example, a drug may interact with a
protein through different mechanisms or may exhibit vari-
ous side effects depending on the context. However, most of
the existing Transformer architecture-based approaches lack
the ability to differentiate the significance of multiple rela-
tionships between a pair of nodes.

To address above issues, we propose a novel Transformer-
based relatIon-aware Graph rEpresentation leaRning frame-
work, TIGER for brevity, to model DDI predictions at both
graph and node levels. TIGER handles the node-level rep-
resentation learning tasks with sampled subgraphs centred
on drug nodes, rather than the whole graph. TIGER also
implements its encoder by a relation-aware self-attention
mechanism for processing multiple relationships between a
node pair, rather than self-attention mechanism. With these
two designs, TIGER is capable of learning both graph-level
and node-level representations. Then the drug representa-
tion is obtained by fusing representations from different lev-
els. Finally, TIGER makes DDI predictions with obtained
drug representations. The main contributions of this work
are summarized as follows:

• We model the DDI data using a novel dual-channel het-
erogeneous graph approach. Our approach aims to more
effectively uncover potential DDIs by considering the di-
verse aspects of drug characteristics and their relation-
ships within the biomedical domain.

• We introduce a relation-aware self-attention mechanism
designed to capture and leverage the diverse and multiple
semantic relationships present in the graph data.

• We conduct extensive experiments on three datasets to
demonstrate the effectiveness of TIGER in both predict-
ing DDIs and understanding of the underlying mecha-
nisms of drug interactions.

Related Work
Molecular Graph-based Method. Drug molecular
graphs play a crucial role in providing a structural repre-
sentation of drugs, enabling a better understanding of their
chemical composition and potential interactions with other
molecules (Vilar et al. 2014). Deep learning approaches,
such as graph convolutional networks (GCN), graph atten-
tion networks (GAT), have been employed to predict DDIs
based on drug molecular graphs (Guo et al. 2022; Nyamabo
et al. 2021). These methods effectively capture local and
global interactions between atoms within a molecule.
Furthermore, recent advancements include the application
of Graphormer (Zhang et al. 2022), a Transformer-based
method for graph-level representation learning, in DDI
predictions. Notably, this approach differentiates itself from
GNNs by directly modeling distant nodes within the graph.

Biomedical Knowledge Graph-based Method. These
methods (Celebi et al. 2019; Karim et al. 2019) leverage the
rich information available in biomedical knowledge graphs
to enhance the prediction score. KGNN (Lin et al. 2020) pio-
neers to incorporate GCN to encode the structured relation-
ships in knowledge graphs. It learns comprehensive repre-
sentations for drugs by propagating information across the
graph, taking into account the relationships between enti-
ties. Considering multi-relational DDIs, another GNN-based
method, KG2ECapsule (Su et al. 2023), is proposed. It uti-
lizes capsule networks to conduct non-linear transforma-
tions, enriching the representations of entities within a spe-
cific relational space. In addition, DDKG (Su et al. 2022) uti-
lizes GAT in knowledge graph-based DDI predictions. The
attention mechanism in it is employed to uncover the im-
portance of various triplets, enabling the model to focus on
critical drug-relation-drug relationships within the graph.

Multi-level-based Method. These methods acquire drug
representations at both graph and node levels. The graph-
level representation is obtained from drug molecular graphs,
while the node-level representation is learned from drug-
related interaction graphs. Most of these methods are con-
ducted on homogeneous networks, such as DDI networks.
The Bi-GNN (Bai et al. 2020) employs a bi-level graph
structure to predict DDIs using GAT. At the highest level,
there is a drug interaction graph. Each biological entity
within this graph is then expanded to its molecular graph.
Another multi-view-based method, MIRACLE (Wang et al.
2021), employs GCN to encode DDI relationships and a
bond-aware attentive message propagating to predict DDIs.
While MDNN (Lyu et al. 2021) is designed to detect DDIs
with heterogeneous networks, it introduces two pathways
to effectively model both the topological information of the
knowledge graph and the features of the drugs.

Method
The architecture of TIGER is depicted in Fig. 1. TIGER
learns the drug representations by taking into account both
biomedical knowledge graph and drug molecular graphs,
and then identifies potential DDIs in an end-to-end way.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

250



Figure 1: The framework of proposed TIGER.

Relation-aware Self-Attention
The self-attention mechanism is a foundational component
of the Transformer architecture. However, it is inherently
position-aware and overlooks the nature of the distinct types
of relationship between node pairs. Besides, we have noted:
(i) distant nodes often lack explicit relations, and (ii) a node
pair can have multiple relationships. To address these, we
introduce the notion of relation-aware self-attention by em-
ploying following strategies:
• To incorporate distant nodes, we establish relationships

between them based on the distance of their shortest path.
• To address the presence of multiple relationships, we

consider each relation as a distinct edge.
Given an arbitrary graph in G = (V,E,R), where the

node attribute for node v ∈ V is denoted by xv ∈ Rd and
the node attributes for all nodes are stored in X ∈ R|V |×d.
For any node pair (v, u) with C ≥ 1 types of relations, we
define their attention logits based on both node features and
their relationships as shown below:

ψ(xv, xu, r
c
v⇔u) = (xv + rv→u)W

T
q Wk(xu + ru→v)

= xvW
T
q Wkxu(I) + xvW

T
q Wkru→v(II)

+ rv→uW
T
q Wkxu(III)

+ rv→uW
T
q Wkru→v(IV)

(1)

where rcv⇔u denotes the c-th relation between (v, u) and
rv→u = ru→v when the graph G is an indirected graph.
Wq , Wk ∈ Rdk×d are trainable matrices to generate query
Q and key K representations.

The new defined ψ(·, ·, ·) allows the model to consider
both source-specific (II) and target-specific (III) relation-
ships when attending to different positions (I). It also helps
the model capture common patterns or dependencies that are
present across the entire input by the universal relation bias
(IV). It should be noted, when dealing with pairs of distant

nodes, the function ψ(·, ·, ·) is also capable of capturing their
structural information as the relationship between them is
initialized based on the distance of their shortest path. By
introducing relationships, we define our relation-aware self-
attention as:

RAttn(xv) =
∑
u∈V

∑
c∈C f(xv, xu, r

c
v⇔u)∑

w∈V

∑
c∈C f(xv, xw, r

c
v⇔w)

ϕ(xu)

(2)
where f(·, ·, ·) = exp(ψ(·, ·, ·)/

√
dk) and ϕ(xu) = Wvxu.

Wv ∈ Rdv×d is trainable to generate value V .

Relation-aware Heterogeneous Graph Transformer
After defining our relation-aware self-attention function, the
remaining components of the relation-aware heterogeneous
graph transformer follow the same architecture as the Trans-
former, depicted in Fig. 1. To enrich the graph structural in-
formation, we also incorporate the position embedding spec-
ified by node degree to each node feature as following:

x(0)v = xv + zdeg(v), ∀v ∈ V (3)

where x(0)v is the input to the relation-aware self-attention
block, deg(v) denotes the degree of node v, and z(·) is an
embedding layer specified by node degree.

After a relation-aware self-attention block, its output
RAttn(x(0)v ) is passed through a skip connection and a two
layer feed-forward neural network (FFN) to generate up-
dated representations x(1)v . This process is defined by:

X̂(l) = X(l−1) +RAttn(X(l−1)) (4)

X(l) = FFN(X̂(l)) := ReLU(X̂(l)W
(l)
1 )W

(l)
2 (5)

where X(l) is the updated representation and W
(l)
1 and

W
(l)
2 are trainable parameters in the FNN of l-th (1 ≤ l ≤

L) layer of TIGER.
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Dual-channel Representation Learning
After the introduction of the main block of TIGER,
we present the proposed novel dual-channel representa-
tion combining drug graph-level representation learning in
molecular graph (MG) and drug node-level representation
learning in biomedical knowledge graph (BKG).

Molecular Graph Channel Given the molecular graph
MG(i) = (A,B, T ) of drug di, where A is the set of atoms,
B is the set of bonds, and T is the set of relations. The drug
graph-level representation gi ∈ Rd is the summarization
over the X(L) via a READOUT(·) function:

gi = READOUT({x(L)
a }|A|

a=1) (6)

The READOUT function can be any permutation-invariant
function. Specifically, we apply a simple averaging strategy
as the READOUT function throughout the paper.

Biomedical Knowledge Graph Channel As previously
mentioned in the introduction, biomedical knowledge
graphs are typically much larger than molecular graphs and
the Transformer architecture is also constrained by long in-
puts. To apply the TIGER for learning node-level representa-
tions in BKG, we first extract the subgraph BKG(i) for each
drug di contained in BKG. Three alternative subgraph ex-
traction methods are provided and explored in this work:

• k-subtree-based Extractor: The subgraph for each node
is constructed by including the node itself and its con-
nected nodes within k levels. Moreover, within the sub-
tree, each node, excluding the leaf nodes, possesses a
constant number of child nodes.

• DeepWalk-based Extractor: The subgraph for each
node is formed by utilizing fixed-length random walk se-
quences initiated from that specific node.

• Probability-based Extractor: The subgraph is gener-
ated by selecting a fixed-size set of nodes with the prob-
abilities defined in pagerank matrix (Page et al. 1998).

The sampled subgraph BKG(i) is then fed into the
relation-aware graph transformer module. The drug node-
level representation si is defined as si = X(L)[idx], where
idx denotes the index of drug di in BKG(i).

Drug Dual-channel Representation Once the drug
graph-level representation and node-level representation
have been obtained afterL upper layers of the relation-aware
graph transformer, they are concatenated and passed through
the multi-layer perceptron (MLP) to obtain the drug dual-
channel representation hi ∈ Rd as follows:

hi = MLP(g
(L)
i ||s(L)

i ) (7)

where g(L)
i and s(L)

i denote the output ofL-th relation-aware
graph transformer block.

Drug-Drug Interaction Prediction
The DDI prediction task in our study can be defined as a link
prediction problem based on BKG and MG:= {MG(i)}|D|

i=1,
where D is the drug set of BKG. Considering a drug pair

(di, dj), where di, dj ∈ BKG, and their molecular graphs
MG(i) and MG(j), we can derive their dual-channel repre-
sentations hi and hj . Then they are concatenated and fed
into MLP to predict a link prediction score:

pij = MLP(hi||hj) (8)

Formally, we formulate the cross entropy loss Llabel for
all DDI pairs:

Llabel = −
∑

(i,j)∈Y

yij log(pij)+(1−yij) log(1−pij) (9)

where Y denotes the drug pair set and yij is the ground-truth
value.

To ensure the acquisition of a discriminative drug dual-
channel representation, we employ the Jensen-Shannon (JS)
mutual information (MI) estimator (Nowozin, Cseke, and
Tomioka 2016) on drug dual-channel representation hi. This
is done to maximize the estimated MI over the given drug
molecular graph gi and extracted drug subgraph sBKG(i) =

READOUT({x(L)
v }|BKG(i)|

v=1 ), respectively. By introducing
the discriminator D : Rd × Rd → R, the MI enhancement
loss function Lhg

MI between h: and g: can be formulated as a
binary cross-entropy loss:

Lhg
MI =

1

n+ nneg
(

n∑
i∈D

log(D(hi, gi)+

nneg∑
k∈D

log(D(hi, g̃k))))

(10)
where nneg denotes the number of negative samples and the
negative samples are generated in a batch-wise fashion. The
Lhs
MI is formulated in the same way as shown in Lhg

MI .
With the supervised classification loss Llabel and self-

supervised MI loss LMI , we train TIGER with following
objective function:

L = Llabel + β1Lhg
MI + β2Lhs

MI (11)

where β1 and β2 are hyper-parameters for the trade-off for
different loss components.

Experiment
In this section, we first describe the datasets, comparison
methods, and evaluation metrics used in the experiment.
Then, we compare the performances of TIGER with other
comparative methods. Finally, we make detailed analysis of
TIGER under different experimental settings.

Datasets and Settings
Datasets. We evaluate the TIGER on three benchmark
drug-related heterogeneous graph datasets, i.e., DrugBank
(Wishart et al. 2018), KEGG (Kanehisa et al. 2017), and
OGB-biokg (Hu et al. 2020), with different scales for ver-
ifying the scalability and robustness of TIGER.

• DrugBank: We parse the verified DDIs of provided pro-
file from DrugBank, compile an edge list of drug iden-
tifier combinations, and finally obtain 10,404 approved
DDIs span 1,052 drugs;
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DrugBank KEGG OGB-biokg
#Drugs 1,052 786 808
#DDIs 10,404 13,787 111,520
#Nodes 391,116 129,910 93,773
#Relations 71 167 13
#Links 1,587,305 362,870 3,892,462

Table 1: The statistic of three heterogeneous networks.

• KEGG: We parse the sources from KEGG and map them
to DrugBank identifiers, which results in 786 approved
drugs and 13,787 approved DDIs;

• OGB-biokg: We download it from OGB website, and fi-
nally obtain 111,520 DDIs span 808 approved drugs.

Moreover, for the drug nodes in above datasets, we also
collect their drug SMILES strings, respectively. After that,
we convert drug SMILES strings into molecular 2D graphs
by rdkit (Landrum et al. 2013). It should be noted that we
remove the data items that cannot be converted into graphs
from SMILES strings, and their related interactions in het-
erogeneous graphs in our preprocessing. Meanwhile, the
heterogeneous network should not contain any explicit infor-
mation about DDIs. Hence, we also remove all DDIs from
the original datasets, respectively. The statistics of three
datasets are shown in Table 1.

Baselines. TIGER is against a variety of baselines which
can be categorized as follows:
• Molecular Graph-based: We select two representative

methods, SSI-DDI (Nyamabo et al. 2021) and Molormer
(Zhang et al. 2022), as baselines. They aim to predict
DDIs by utilizing graph-level representations learned
from drug molecular graphs.

• Biomedical Knowledge Graph-based: Three represen-
tative methods are listed as baselines, including KGNN
(Lin et al. 2020), KG2ECapsule (Su et al. 2023), and
DDKG (Su et al. 2022). They employ drug node-level
representations learned from the biomedical knowledge
graph to model DDI predictions.

• Multi-level-based: We select three related work as base-
lines, involving Bi-GNN (Bai et al. 2020), MIRACLE
(Wang et al. 2021), and MDNN (Lyu et al. 2021). Specif-
ically, Bi-GNN and MIRACLE are constructed based on
homogeneous networks, while MDNN is designed for
heterogeneous networks.

Evaluation Metrics To evaluate the effectiveness of
TIGER and all baselines, we employ four metrics for evalu-
ation, including ACC, F1 score, AUC, and AUPR.

Experimental Settings. We perform five-fold cross-
validation to train TIGER and the aforementioned baselines
on three datasets. Negative samples are randomly selected
from the complement set of positive samples, ensuring an
equal number of positive samples in all datasets.

TIGER is implemented using Pytorch v1.10.2 and trained
on NVIDIA A100 GPU. We use the Adam optimizer for
model training. The training process is conducted for 50

epochs, and all trainable parameters are optimized by Adam
algorithm with a learning rate of 0.001. We set the d = 64,
β1 = β2 = 0.1, L = 2 for all extractors. For k-subtree-
based extractors, k is set to 2 and the constant number of
child nodes is set to 4. The size of subgraph for probability
and DeepWalk-based extractors is set to 32. For all base-
lines, they are retrained on the same machine with the same
hyper-parameter settings reported in their original work.

Main Results
Table 2 reports all performances on three datasets. The num-
ber in bold denotes the best results of all methods and that
in bold denotes the best result of baselines. Based on the re-
sults presented in Table 2, it can be observed that TIGER
outperforms the other eight baseline methods in DDI pre-
dictions across all three datasets. When compared with the
best baseline method on each dataset, there is an average
improvement of 3.66% in ACC, 4.17% in F1 score, 3.78%
in AUC, and 4.83% in AUPR. This demonstrates its effec-
tiveness in predicting DDIs. Among the three datasets, we
find that TIGER is particular effective in handling sparse
networks, as it has the most significant performance im-
provement on the DrugBank dataset. The observed improve-
ment suggests that TIGER has the capability to capture more
valuable structural information, such as long dependencies,
which can be credited to its utilization of the Transformer
architecture. It is worth highlighting that TIGER demon-
strates remarkable performances on the other two datasets as
well. Despite the OGB-biokg dataset being extremely dense,
TIGER achieves an impressive improvement by surpassing
an ACC of 0.90 on it. This observation suggests that TIGER
can effectively distinguish and leverage useful information
even in challenging scenarios characterized by dense data.
Therefore, the consistent superiority of TIGER across mul-
tiple datasets further reinforces its potential as a robust and
reliable approach for DDI predictions.

Ablation Study
Effects of Subgraph Extractors. The results displayed in
Table 2 shows: (i) the probability-based extractor tends to
be compatible with low-density datasets; (ii) the DeepWalk-
based extractor shows better suitability for dense datasets;
(iii) the k-subtree-based extractor demonstrates robustness
and versatility in extracting subgraphs from various types of
networks, but it may experience a loss in accuracy compared
to other extractors.

Effects of Dual-Channels. We further investigate whether
the MG(·) and BKG(·) bring the complementary information
to TIGER. The presented Fig. 2 shows that BKG(·) has a
more pronounced positive impact on DDI prediction tasks
compared to MG(·). It also indicates that incorporating both
MG(·) and BKG(·) together contributes the most to accurate
DDI predictions.

Hyper-Parameter Studies
Effect of k/L. We first explore the effect of k in the k-
subtree extractor by changing it from 1 to 8. In the initial
setting, we set k equal to the number of model layers L. As
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Method DrugBank KEGG OGB-biokg

ACC F1 AUC AUPR ACC F1 AUC AUPR ACC F1 AUC AUPR

SSI-DDI 0.6847 0.6830 0.7510 0.7316 0.7722 0.7795 0.8506 0.8293 0.7849 0.7878 0.8695 0.8837
(±0.71) (±1.77) (±1.12) (±1.32) (±1.42) (±1.18) (±1.47) (±1.71) (±0.87) (±0.57) (±0.57) (±0.53)

Molormer 0.5763 0.5941 0.6086 0.5990 0.6371 0.6608 0.6916 0.6760 0.7357 0.7251 0.8091 0.8169
(±1.12) (±1.13) (±1.05) (±0.87) (±2.72) (±1.54) (±3.69) (±3.88) (±1.59) (±2.02) (±1.83) (±2.01)

KGNN 0.6681 0.6784 0.7219 0.6614 0.7802 0.7815 0.8536 0.8185 0.8253 0.8189 0.9059 0.9184
(±0.56) (±1.96) (±0.56) (±0.71) (±0.95) (±1.14) (±0.54) (±0.79) (±0.19) (±2.67) (±0.09) (±0.06)

KG2ECapsule 0.6628 0.6694 0.7131 0.6557 0.8227 0.8278 0.8960 0.8699 0.8282 0.8230 0.9087 0.9203
(±0.47) (±0.42) (±0.63) (±0.92) (±0.55) (±0.49) (±0.44) (±0.69) (±0.16) (±0.20) (±0.10) (±0.07)

DDKG 0.7035 0.7089 0.7638 0.7292 0.8305 0.8355 0.9000 0.8690 0.8048 0.7957 0.8821 0.8961
(±1.04) (±2.53) (±0.32) (±0.50) (±0.83) (±0.85) (±0.75) (±1.18) (±0.97) (±0.98) (±0.58) (±0.48)

Bi-GNN 0.7165 0.7419 0.7672 0.7054 0.8503 0.8580 0.9147 0.8840 0.8510 0.8472 0.9298 0.9361
(±2.18) (±0.25) (±4.11) (±4.41) (±0.60) (±0.58) (±0.63) (±0.93) (±0.22) (±0.27) (±0.18) (±0.16)

MIRACLE 0.6636 0.6630 0.7102 0.6698 0.8379 0.8421 0.9090 0.8801 0.8923 0.8930 0.9495 0.9526
(±0.58) (±0.41) (±0.74) (±0.86) (±0.42) (±0.81) (±0.25) (±0.53) (±0.20) (±0.14) (±0.07) (±0.11)

MDNN 0.7394 0.7313 0.8052 0.7653 0.8410 0.8459 0.9099 0.8821 0.8578 0.8547 0.9351 0.9423
(±0.21) (±0.43) (±0.36) (±0.98) (±0.42) (±0.28) (±0.41) (±0.56) (±0.16) (±0.29) (±0.17) (±0.17)

TIGER-KS 0.7903 0.8027 0.8642 0.8342 0.8752 0.8815 0.9407 0.9244 0.8548 0.8517 0.9336 0.9414
(±0.36) (±0.44) (±0.65) (±1.15) (±0.32) (±0.24) (±0.30) (±0.40) (±0.09) (±0.25) (±0.15) (±0.18)

TIGER-DW 0.7849 0.7977 0.8572 0.8261 0.8781 0.8848 0.9414 0.9238 0.9162 0.9143 0.9693 0.9748
(±0.38) (±0.41) (±0.31) (±0.33) (±0.45) (±0.44) (±0.26) (±0.34) (±0.09) (±0.12) (±0.07) (±0.10)

TIGER-P 0.7905 0.8033 0.8662 0.8370 0.8850 0.8899 0.9473 0.9350 0.8791 0.8754 0.9477 0.9571
(±0.87) (±0.94) (±0.57) (±0.68) (±0.19) (±0.24) (±0.21) (±0.35) (±0.16) (±0.17) (±0.14) (±0.12)

Improv. (%) 5.11 7.20 6.10 7.17 3.47 3.19 3.26 5.10 2.39 2.13 1.98 2.22

Table 2: The performances with TIGER and baseline methods on three datasets, reported as the average value and standard
deviation (%) across five folds.
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Figure 2: The performances with TIGER and other two
variants on three datasets, where TIGERMG and TIGERBKG
solely considers MG and BKG, respectively.

shown in Fig. 3a, when k is set to 2, TIGER shows the best
performance on all indicators. As k increases beyond 4, the
performance of TIGER starts to degrade and becomes unsta-
ble. This may be due to the significant increase in the noise
contained in subgraph, since the size of the subgraph grows
exponentially as k increases. However, it is noteworthy that
TIGER does not experience over-fitting as L increases to 7
when k is fixed, as shown in Fig. 3b. This observation high-
lights the robustness of TIGER as its performance is not ad-
versely affected by the increase of L.

Effect of Subgraph Size. Fig. 3c and Fig. 3d show that
TIGER achieves the optimal and stable performance when
the subgraph size is set to 32. It is worth highlighting that
even though the performance of TIGER starts to decline be-
yond the optimal size, it still manages to achieve AUC and
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Figure 3: The results of TIGER with varying values of k, L,
and |BKG(i)|.

AUPR values above 0.90. These two observations suggest:
(i) selecting a subgraph with the size of 32 provides the suf-
ficient contextual and topological information; (ii) TIGER
possesses the capability to capture and leverage key struc-
tural patterns and dependencies, regardless of the specific
size of the subgraph being considered.

Case Study
To gain insights into the reasons behind the strong perfor-
mance of TIGER in DDI prediction tasks, we first aims to
uncover how connections within the network structure con-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

254



1 2 3 4 5 6
1

2

3

4

5

Layers 

Head1
Head2
Head3
Head4M

ea
n 

at
te

nt
io

n 
di

st
an

ce
 

(h
op

)

Figure 4: Attention distance by head and network depth on
the KEGG dataset. Each dot show mean attention distance
in hops across graphs of a head at a layer.
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Figure 5: The subgraphs centered on Donepezil and On-
dansetron, which are extracted by probability-based extrac-
tors.

tribute to the performance of TIGER. We compute the at-
tention distance (Dosovitskiy et al. 2021) across heads and
network depth by averaging pairwise distances on subgraphs
weighted by attention scores. Fig. 4 shows that heads attend
globally over the subgraphs in the lowest layers and they
tend to be local in deeper layers. It also highlights that high-
order structures play a significant role in DDI predictions,
as node with 3-hop receive higher attention weights. These
observations suggest that TIGER is able to leverage global
dependencies and uncover valuable patterns that contribute
to its superior performance.

We next demonstrate its explanatory effectiveness using
a specific example (Donepezil, Ondansetron). Fig. 5 effec-
tively highlights connections and nodes influencing the rep-
resentations of target drugs and their interaction patterns
in the network. In Fig. 5, it is evident that the use of On-
dansetron has been linked to decreased blood potassium
levels. This reduction can subsequently elevate blood pres-
sure levels, increasing the risk of blood clot formation and
middle cerebral artery occlusion in certain circumstances.
Consequently, combining Donepezil and Ondansetron may
have potential adverse effects on the central nervous sys-
tem. This observation based on TIGER align with the exist-
ing knowledge surrounding the medications involved (Wilde
and Markham 1996; Shigeta and Homma 2001). TIGER also
exhibits its ability to discern between multiple relations, as it
identifies the catalytic role of OPRM1 and P2RY12 as being

Figure 6: The molecular graphs of Donepezil and On-
dansetron.

more significant in determining the importance of P2RY12.
All of these observations suggest that TIGER is capable of
providing valuable insights into drug interactions.

We also visualize the molecular graphs of Donepezil
and Ondansetron in Fig. 6 and label the important compo-
nents based on the attention weights obtained from TIGER.
TIGER accurately recognizes the critical constituents within
both molecules. The benzyl group (-CH2C6H5) attached to
the piperidine ring and the indanone group enable Donepezil
to function as an acetylcholinesterase inhibitor, preventing
the breakdown of acetylcholine. TIGER also pinpoints the
significance of the imidazole ring and the indole ring linked
with a carbonyl group, which allow it to act as a selective
serotonin 5-HT3 receptor antagonist, blocking serotonin sig-
naling in specific areas of the central nervous system (Brit-
tain 2002). As both medications affect the central nervous
system (CNS), combining them may enhance their CNS-
related side effects. This observation highlights that TIGER
can provide deeper insights into molecular structures.

Conclusion
This paper presents TIGER, a novel dual-channel relation-
aware graph transformer model designed for predicting
DDIs. TIGER utilizes the combined representation learn-
ing from drug molecular graphs and biomedical knowledge
graphs to predict DDIs. It effectively captures long depen-
dencies and high-order structures, which are vital for accu-
rate DDI predictions. Moreover, TIGER demonstrates ex-
ceptional proficiency in handling multiple relations within
the graph. By providing valuable insights into DDI predic-
tions, TIGER enhances our understanding of the complex
biological system underlying drug interactions.
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