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Abstract

One of the most important tasks in ride-hailing is order dis-
patching, i.e., assigning unserved orders to available drivers.
Recent order dispatching has achieved a significant improve-
ment due to the advance of reinforcement learning, which has
been approved to be able to effectively address sequential
decision-making problems like order dispatching. However,
most existing reinforcement learning methods require agents
to learn the optimal policy by interacting with environments
online, which is challenging or impractical for real-world de-
ployment due to high costs or safety concerns. For example,
due to the spatiotemporally unbalanced supply and demand,
online reinforcement learning-based order dispatching may
significantly impact the revenue of the ride-hailing platform
and passenger experience during the policy learning period.
Hence, in this work, we develop an offline deep reinforce-
ment learning framework called NondBREM for large-scale
order dispatching, which learns policy from only the accumu-
lated logged data to avoid costly and unsafe interactions with
the environment. In NondBREM, a Nondeterministic Batch-
Constrained Q-learning (NondBCQ) module is developed to
reduce the algorithm extrapolation error and a Random En-
semble Mixture (REM) module that integrates multiple value
networks with multi-head networks is utilized to improve the
model generalization and robustness. Extensive experiments
on large-scale real-world ride-hailing datasets show the supe-
riority of our design.

Introduction
Ride-hailing services (e.g., Uber, Lyft, and Didi) have grown
significantly in the last decade due to high mobility demand
and the rapid development of the mobile Internet. One of
the most important tasks in ride-hailing is real-time order
dispatching, which directly impacts passenger experience,
driver income, platform profit, and also transportation ef-
ficiency. Hence, in this paper, we focus on real-time order
dispatching for large-scale ride-hailing services.

Due to the significance of order dispatching, it has at-
tracted lots of interest from both industry and academia, and
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a plethora of works (Zhang et al. 2017; Xu et al. 2018; Tang
et al. 2021; Sadeghi Eshkevari et al. 2022; Sun et al. 2022;
Jiang et al. 2023; Qin, Zhu, and Ye 2021; Zhou et al. 2019;
Xi et al. 2022; Si et al. 2023; Wang et al. 2023a,b)have
been conducted to address this problem. Especially, with
the recent advance in deep learning and computing power,
deep reinforcement learning (DRL) has shown great poten-
tial for sequential decision-making problems such as ride-
hailing order dispatching. For example, (Sadeghi Eshkevari
et al. 2022) proposed a standalone DRL-based dispatching
strategy that is equipped with multiple novel mechanisms
to ensure robust and efficient on-policy learning and infer-
ence while being adaptable for full-scale deployment. (Tang
et al. 2021) designed a value function and hierarchical DRL
to unify order dispatching and vehicle relocation problems.
(Zhou et al. 2019) developed an independent Q-learning
method to solve the communication and interaction prob-
lems among multiple agents and the vehicle distribution and
order distribution are balanced. (Sun et al. 2022) proposed
a novel multi-agent DRL framework to help drivers obtain
better orders and make repositioning decisions.

Although those DRL methods show great advantages in
the order dispatching problem, they require agents to interact
with the environment to collect huge data for model training,
which causes a huge challenge to put those algorithms into
practice since interacting with the environment online may
lead to serious adverse consequences including decreasing
drivers’ income, passengers’ ride experience, as well as in-
creasing operational costs and causing dangerous actions. To
deal with these issues, offline DRL as a promising technol-
ogy has been developed. Compared with traditional online
or off-policy DRL, offline DRL trains agents through the
logged datasets and does not require agents to interact with
the environment, thus avoiding adverse consequences in the
learning process. Researchers have been trying to develop
offline DRL algorithms for different domains including rec-
ommendation systems (Swaminathan et al. 2017) (Xiao and
Wang 2021) (Deffayet et al. 2023),healthcare (Fatemi et al.
2022) (Tang et al. 2022), and autonomous driving (Shi et al.
2021) (Fang et al. 2022) and have achieved satisfactory per-
formance. A key challenge to developing offline DRL is to
obtain large-scale logged real-world data. Fortunately, due to
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the development of mobile devices and communication tech-
nologies, large-scale ride-hailing data including order data
and vehicle GPS data are recorded for business and security
purposes, and the Data for Social Good initiatives also make
them available for research. These data provide a good op-
portunity for us to develop effective offline DRL algorithms
for ride-hailing order dispatching.

However, it is still challenging to develop effective offline
DRL for ride-hailing order dispatching even with massive
logged data due to the following three key challenges: (i)
extrapolation error caused by inconsistencies in the distribu-
tion of data accessed by policy and the distribution of the
logged data. (ii) Dynamic nondeterministic action space. In
ride-hailing order dispatching, each possible order-vehicle
match is considered as an action, so both those continuous
control algorithms (e.g., BCQ (Fujimoto, Meger, and Pre-
cup 2019) and DDPG (Lillicrap et al. 2015) Based) and ex-
isting offline DRL algorithms with fixed output units (e.g.,
Discrete BCQ (Fujimoto et al. 2019)) are not applicable to
the order dispatching problem. (iii) Real-time guarantee. We
need to generate the decisions in a short limited time to sat-
isfy passenger demand under the scenario with large-scale
agents and huge actions.

To address the above three challenges, in this work,
we develop a nondeterministic offline reinforcement learn-
ing framework called NondBREM for large-scale order
dispatching, which learns policy from only the accumu-
lated logged data to avoid costly and unsafe interactions
with the environment. In NondBREM, we first construct
a dataset for offline training based on real-world logged
data, and a Nondeterministic Batch-Constrained Q-learning
(NondBCQ) module is then developed to address the algo-
rithm extrapolation error by considering the dynamic non-
deterministic action space. A Random Ensemble Mixture
(REM) (Agarwal, Schuurmans, and Norouzi 2020) module
that integrates multiple value networks with multi-head net-
works is further utilized to improve the model generalization
and robustness. The key contributions of our work are sum-
marized as follows:

• We develop a nondeterministic offline DRL framework
for real-time large-scale order dispatching called Nond-
BREM, which learns policy from only logged data and
improves performance by limiting action sets. It can be
easily integrated into existing order dispatching systems.

• In NondBREM, We design a nondeterministic BCQ
module, which can help reduce the extrapolation error
and deal with dynamic nondeterministic action spaces. A
REM module is also developed to improve the general-
ization and robustness of the model.

• Extensive experiments on real-world large-scale ride-
hailing datasets from over 50,000 vehicles and 20 mil-
lion orders show that our nondeterministic offline DRL
algorithm NondBREM using logged data for large-scale
order dispatching achieves better performance than tradi-
tional DRL methods in both online and offline scenarios,
with a 3.76% order response rate improvement.

Problem Statement
Formally, we model the order dispatching problem as a
Markov game (MG) (Littman 1994), which is defined by a
five-tuple G = N(S,A,R, P, γ), where S is a set of states;
A is a set of actions;R is the reward function; P is the transi-
tion probability function; γ is a discount factor, and N rep-
resents the number of agents. The detailed descriptions of
each element are given as follows:
• N : We take vehicles that can be dispatched (i.e., vehicles

without passengers) in the current time period as agents
and N is the number of available vehicles. We divide the
city into a set of grids, and vehicles in the same grid share
the same state and action set, i.e., they are homogeneous.

• State st ∈ S: st represents the global state in time period
t. sit represents the state of agent i in period t. Formally
it is represented as a four-tuple: sit = (l, nv, no, t), where
l is the index of the grid that agent i located, nv denotes
the number of available vehicles in the current grid, no
denotes the number of orders in the queue at the current
grid, and t represents the current time period.

• Action At ∈ A: In this problem, we take all possi-
ble matches of available drivers and orders as the action
set. For each agent i, Ait represents the action of agent
i in period t. An action can be denoted as a five-tuple
(s, e, g, d, p), which consists of the index of the origin
grid of the order, the index of the destination grid, the
generation time period, the estimated time duration and
the price of the order.

• State transitions: We assume that state transitions are de-
terministic, i.e., there are no cancellations and changes
to orders during the delivery process. After T time steps,
the agent reaches the destination of the order, and its state
will be updated and also receives a reward.

• Reward: The reward determines the objective of the op-
timization. We use 0.1 times the order price as the re-
ward. This linear transformation is conducive to the con-
vergence of neural networks. This has been proven to be
effective both in previous works and in our experiments.

For each agent i at period t, Ait ∈ A and rit represent ac-
tion set and reward function respectively. The state transition
occurs after each decision (i.e., action execution). The state
sit of the agent at time t will transform to sit+1 at time t+ 1,
and the agent will receive a reward from the environment.
Based on the above definitions, the main purpose of each
agent is to learn to maximize the cumulative reward Gt:T
from t to T ,

maxGt:T = max
T∑
t=0

γtrit, where ait ∼ πθ
(
sit
)

(1)

where πθ(·) parameterized with θ represents the policy with
respect to the state at time t.

Methodology
NondBREM Framework Overview
In this work, we propose a nondeterministic offline re-
inforcement learning framework called NondBREM. The
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Figure 1: (a) describes the training process of NondBREM. The Q-value neural network is divided into two parts, namely the
shared learning network of the lower layers and the multi-head network of the upper layers. There are three steps at the green
circle in the figure: calculating the similarity matrix of two sets, obtaining the similarity vector from the similarity matrix,
sorting and intercepting a

′

sim according to the similarity to get the set a
′

sim. (b) describes the inference process of the model,
which uses a trained network to interact with the simulation environment.

overall framework of NondBREM is shown in Fig. ref-
fig:overview. NondBREM consists of two major compo-
nents: (i) a Nondeterministic Batch-Constrained Q-learning
(NondBCQ) module that uses similarity to constrain dy-
namic nondeterministic action space is developed to reduce
the algorithm extrapolation error and complexity, and (ii) a
Random Ensemble Mixture (REM) module that integrates
multiple value networks with multi-head networks is de-
signed to improve the model generalization and robustness.

NondBCQ
Due to extrapolation errors, traditional online/off-policy RL
methods such as DQN and DDPG struggle to adapt to real-
world data, so many recent works focus on data-driven DRL
(i.e., offline DRL). One of the most popular offline RL meth-
ods is Batch-Constrained Q-learning (BCQ), which gener-
ates states and actions similar to those in the offline dataset
to reduce the distribution offset between the real dataset and
generated data accessed by the policy. However, in our set-
ting, each possible match of vehicles and orders is consid-
ered an action, so the action set is not fixed and we can only
select orders provided by the environment, making BCQ not
suitable in our scenario. Addressing the issue of dynamic
nondeterministic action space, a NondBCQ method is pro-
posed in this work. In particular, we first remove the dis-
turbance network in the canonical BCQ network. We then
calculate the cosine similarity matrix of the generated action
set and action set from the real offline dataset, and we finally
sort the actions from the real dataset according to the sim-
ilarity. Therefore, an action set similar to the actions in the
dataset is obtained. After that, we utilize the obtained action
set to calculate the target q value. Since we have multiple
agents in our setting, the environment will become unstable
if each agent interacts with the environment, so we optimize
the joint policy of agents and maximize the matching rate

between vehicle distribution and order distribution as much
as possible, leading to the advantage of easily coping with
the dynamic agents and lower computational overhead.

Algorithm 1 shows the process of NondBCQ and the de-
tails are as follows.

We first get B transitions (s, a, r, s
′
, a

′

set), where (s, a) is
state-action pair at the current time period and (s

′
, a

′

set) is
state-action pair at the next period. s

′
is used to generate an

action set a
′

sample with the same length n to a
′

set by a Vari-
ational AutoEncoders (VAE) network trained on all (s, a)

pairs in a real dataset. A similarity matrix M of a
′

set and
a

′

sample with size as n×n is calculated with cosine similar-
ity as measurement. It should be noted that a

′

set and a
′

sample

are both action set, and the former is the action set from of-
fline data and the latter is the action set generated by the VAE
network. The similarity here is utilized to reduce the distri-
bution of actions in the actual decision and the distribution
of actions in the offline dataset, thus reducing the extrapola-
tion error. We sort actions in a

′

set according to the maximum
similarity between an action and all actions in a

′

sample, and
reserve a part of actions with greater similarity as the new
action set a

′

sim. Specifically, the specific operation process
of calculating the similarity and constructing the new set is
as follows:

(i) We define and calculate a similarity matrix M , where
M [i, j] represents the cosine similarity of the i-th element
in a

′

set and the j-th element in a
′

sample.
(ii) After calculating the corresponding similarity matrix,

we put the maximum value in each row of the similarity ma-
trix into the similarity vector m, m[k] representing the max-
imum similarity of the k-th element of a

′

set to all elements
in a

′

sample.
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Algorithm 1: NondBCQ
Input: Batch B, horizon T , target network update rate
τ ,mini-batch size B,Ratio of the maximum candidate order
to the number of vehicles β, minimum weighting λ, DKL

coefficient η.
Initialize Q-networks Qθ1 , Qθ2 and VAE Gω =
(Eω1 , Dω2),with random parameters θ1, θ2, ω,and target
networks.Qθ′1 , Qθ

′
2

with θ
′

1 ← θ1, θ
′

1 ← θ1. Parame-
ter:θ1, θ2, ω1, ω2

1: for t = 1 to T do
2: Sample mini-batch of B transitions (s, a, r, s′, a′set)

from B
3: µ, σ = Eω1

(s, a), ã = Dω2
(s, z), z ∼ N (µ, σ)

4: ω ← argminω
∑

(a − ã)2 +
DKL(N (µ, σ)||N (0, 1))

5: Get the length of a
′

set n and available vehicles in the
current area n

′
from s

′

6: Sample na′set actions: {ai ∼ Gω (s′)}ni=1 as a′sample
7: Compute the similarity matrix of a′sample and a′set

Mi,j

8: m[k] = max(M [i = 1, 2, ...n, j = k])
9: Sort the a′set by vector m in descending order, and

truncate the action set size to β × n and get the set
a

′

sim
10: Compute optimizer goal Lθ
11: θi ← argminLθ
12: Update target networks: θ

′

i ← τθi + (1− τ)θ
′

i
13: end for

(iii) We then sort a
′

set in descending order according to
the similarity vector m and crop it to length β ∗ n to obtain
the action set a

′

sim. The a
′

sim corresponds to the new action
set. In the subsequent calculation of the target q values, the
action with the maximal value is selected from the set.

Combined with KL divergence optimization, the opti-
mization objective in Algorithm 1 is as follows:

Lθ = Σi(Q̂θ(s,a) −Qθi(s, a))2 + ηDKL

Q̂θ(s,a) = r + γ max
ai∼a

′
sim

[λ min
j=1,2

Qθ′j (s′, ai)

+ (1− λ) max
j=1,2

Qθ′j (s′, ai)]

(2)

DKL optimization item is used to optimize the distance be-
tween order distribution and vehicle distribution after dis-
patching. This uses a non-explicit communication method to
make the movement of multiple vehicles more coordinated.
The gradient ofDKL to the parameter θi is derived using the
chain rule:
∇θiDKL = ∇πDKL · ∇θiπ

= njt

N∑
i=1

pit+1

[
1

Nvehicle
− 1

nit+1

]
· ∇θiπ

(3)

The gradient of π to θi is:

∇Qi(s,a)π(a | s) · ∇θiQi(s, a) (4)

N the number of grids
ni
t+1 the number of idle vehicles in grid i at time t+ 1
nj
t the number of idle vehicles in grid j at time t

pit+1 the rate of orders in grid i at time t+ 1

Table 1: Important notations

The final gradient of Lθ to θ is then calculated as,

∇θiLθ = ∇θiΣi(Q̂θ(s,a) −Qθi(s, a))2 + η∇θiDKL (5)

In the calculation of the target q value, the practice of
BCQ is followed. Specifically, the convex combination of
two q values is used as the target q value. λ has two func-
tions, the first is to give a larger weight to the smaller q
value, so as to avoid the overestimation of the q value net-
work. Secondly, the uncertainty of the future time step can
be controlled. Here we use the mean square error (MSE)
as the loss function. η use to controls the range of DKL.
Table 1 illustrates the variables used to calculate the gradi-
ent of the KL optimization term. τ is the amplitude of net-
work updating, β is used to control the size of final action set
a

′

sim. n
′
/n ≤ β ≤ 1. Where n is the length of a

′

set, which
indicates the number of orders in waiting, and n

′
refers to

the vehicles that can be dispatched in the current state. This
means that the length of final action set a

′

sim is between n
′

and n. When β approaches 1, the action set tends to be un-
controlled. When β approaches n

′
/n, our method selects ac-

tions by similarity instead of their q values.
Action Selection Q-learning learns the action value func-

tion Q(s, a) with a state-action input. Q(s, a) calculates the
expectation of cumulative rewards as,

Q(s, a) = Eπ[Gt:T |sit = s, ait = a] (6)

The decision is then made based on the Q function. The Bell-
man equation of the Q function network can be written as:

Q
(
sit, a

i
t

)
= αQ

(
sit, a

i
t

)
+

(1− α)
[
rit + γ · Eait+1∼π(sit+1)

[
Q
(
sit+1, a

i
t+1

)]] (7)

After the policy is obtained through offline training, during
inference deployment (i.e., decision) state, we sort actions
according to q values and select orders corresponding to the
first n maximum Q values as actions. The formula is as fol-
lows:

π(s, n) = a ∈ A(s)|Q(s, a) ≥ Q(s, an+1) (8)

Where ai is the action corresponding to the first nmaximum
q values in state s. n is the number of idle vehicles in the
current region. The formula selects orders for all vehicles in
the current region.

Random Ensemble Mixture
In order to improve the generalization performance of the
algorithm, we utilize Random Ensemble Mixture (REM) to
combine multiple q value estimations with a convex combi-
nation to a final q value.
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Algorithm 2: NondBREM
Input: Batch B, horizon T , target network update rate
τ ,mini-batch size B,Ratio of the maximum candidate order
to the number of vehicles β, loss weighting α, DKL coeffi-
cient η.
Initialize multi-head Q-networks Qθ1 . . . Qθk and VAE
Gω = (Eω1 , Dω2),with random parameters θ1 . . . θk, ω,and
target networks.Qθ′1 . . . Qθ

′
k

with θ
′ ← θ.

Parameter:θ1 . . . θk, ω1, ω2

1: for t = 1 to T do
2: Sample mini-batch of B transitions (s, a, r, s′, a′set)

from B
3: µ, σ = Eω1

(s, a), ã = Dω2
(s, z), z ∼ N (µ, σ)

4: ω ← argminω
∑

(a − ã)2 +
DKL(N (µ, σ)||N (0, 1))

5: Get the length of a
′

set n and available vehicles in the
current area n

′
from s

′

6: Sample na′set actions: {ai ∼ Gω (s′)}ni=1 as a′sample
7: Compute the similarity matrix of a′sample and a′set

Mi,j

8: m[k] = max(M [i = 1, 2, ...n, j = k])
9: Sort the a′set by vector m in descending order, and

truncate the action set size to β × n and get the set
a

′

sim
10: Compute optimizer goal Lθ
11: θi ← argminLθ
12: Update target networks: θ

′

i ← τθi + (1− τ)θ
′

i
13: end for

In the training stage, REM shares the underlying net-
work and uses the output values of multiple upper-layer
header networks to calculate the weighted loss function. The
weighted loss function is used to train the multi-head and
underlying network. The multi-head network can effectively
avoid the problem of q estimation bias and enhance the ro-
bustness and generalization ability of the policy network.

In the inferring stage, the joint decision is made under the
policy constraint. This can make the distribution of data ac-
cessed by the policy similar to the logged dataset, thus alle-
viating the problem of the out-of-distribution query. Mean-
while, the REM algorithm can also enhance the general-
ization of our model. The pseudo-code for the final Nond-
BREM is shown in Algorithm 2.

The optimization objective Lθ in NondBREM is as fol-
lows,

Lθ = Es,a,r,s′,a′set∼B[Eα∼P∆ [`λ (δαθ )]] + ηDKL (9)

δαθ (s, a, r, s′, a
′

set) =
∑
k

αkQ
k
θ(s, a)− r

−γ max
a′∼a′sim

∑
k

αkQ
k
θ′ (s′, a′)

(10)

where `λ is the Huber loss given by,

`λ(u) =

{
1
2u

2, if |u| ≤ λ
λ
(
|u| − 1

2λ
)
, otherwise (11)

P∆ represents a probability distribution over the standard
(K−1)-simplex ∆(K−1) = {α ∈ RK : α1+α2+...+αK =
1;αk ≥ 0; k = 1, . . .K}.The gradient of DKL is similar to
NondBCQ. η is a hyperparameter used for controlling the
range of DKL.

NondBREM trains a family of Q-function approximators
defined by mixing probabilities on (K − 1)-simplex, treat-
ing convex combinations of multiple q values as the final
q value estimator. We use αk to weigh the loss of multi-
ple upper-layer networks to obtain the final loss for training
multi-headed networks.

In the action selection stage, the average value of K Q-
networks is used as the final q value.

Q(s, a) =
∑
k

Qkθ(s, a)/K (12)

Evaluation
Experimental Data
We evaluate our algorithm using real-world ride-hailing data
from a large city, over a period of eight weeks. Two types of
data are utilized, including vehicle GPS data and more than
20 million order data from over 50K vehicles. The dataset
spans from 09/2021 to 11/2021.
• Vehicle GPS data: GPS data is collected through on-

board equipment on each ride-hailing car. Each GPS
record contains fields that describe the real-time status
of the vehicle, including vehicle ID, timestamp, and lon-
gitude and latitude.

• Vehicle order data: The ride-hailing platform will col-
lect information about each order. Features used for dis-
patching include order generation time, departure lati-
tude and longitude, destination latitude and longitude, or-
der price, order end time, vehicle ID, etc.

Dataset Construction. We use the data to generate a five-
tuple dataset (s, a, r, s

′
, a

′

set) to train the value function. In
our setup, the five-tuple data can be divided into four parts:
state, action, reward, and number of agents. There are three
main types of elements in state and action: location index,
time period, number of vehicles, and number of orders. In
the GPS data, we have the latitude and longitude of each
car, making it easy to get a location index. We divide one
day into 144 periods, each of which is 10 minutes long. For
rewards, we generate rewards through order prices easily.
Finally, GPS data contains rich time and location informa-
tion, which enables us to obtain the initial idle time and non-
working time of vehicles, thus dynamically controlling the
number of vehicles. In summary, we have enough informa-
tion to generate the data needed to train the offline reinforce-
ment learning algorithm.

It is worth noting that since our simulator uses sampling
methods to obtain orders, the order data is used in both the
policy training and performance evaluation phases. To eval-
uate the accurate performance of the model, we made a fixed
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division of the data. We use the data from the first 6 weeks
for training the model, and the data from the last 2 weeks are
loaded into the simulator for performance evaluation.

Baselines and Experimental Setting
The experiments in this section prove that NondBREM can
overcome extrapolation errors in offline order dispatching
tasks and achieve excellent performance. We evaluated the
performance of several algorithms for comparison, and we
briefly described each algorithm and the details of the ex-
periments. Several state-of-the-art algorithms are employed
as baselines, including,

• IL (Van Hasselt, Guez, and Silver 2016): Each agent
uses the same double Deep Q-network for dispatching,
regardless of interactions between agents.

• Tabular Value function (TVal) (Xu et al. 2018): The
state evaluations only consider two variables, i.e., the
time and location. The values are obtained by performing
dynamic programming in a discrete tabular space, and it
updates the tabular with historical data.

• KL-Based (Zhou et al. 2019): Based on the independent
order dispatching, the KL divergence optimization term
is added to reduce the distance between the available ve-
hicles and the order distribution in waiting, which is an
off-policy method.

• PolarB (Yansheng Wang and Tong 2020): A value-
based method that received the first prize in the order
dispatching task of the KDD Cup 2020 RL track com-
petition.

Noting that KL-Based and PolarB are trained in both on-
line and offline situations and the performance under both
settings is reported. We use KL-Based offline and PolarB
offline to indicate offline training. The IL method is used as
a baseline for training only in online scenarios.

We utilize two widely-adopted metrics to evaluate the pro-
posed method, including the total driver income (also called
dispatch score) in a day and the improvement rate of Order
Response Rate (ORR) in a day compared to the baseline.
Specifically, if the price of an order is denoted as ra, the
dispatch score is defined as

dispatch score =
∑
a∈A

ra (13)

where A is the set of accepted orders in a day. And the
ORR’s improvement rate ORRIR of a method M is for-
mulated as,

ORRIRM = (ORRM −ORRIL)/ORRIL (14)

The tuned hyperparameters are set as follows. γ = 0.95,
τ = 1, λ = 0.75, β = min(max(n′/n, 0.9, 1)), β is se-
lected in a range and we will analyze the influence of dif-
ferent values of β on performance later. Our experiment is
implemented in Python with TensorFlow 1.15, and executed
under the environment with a CPU as Intel(R) Xeon(R) E5-
2620 v4 @ 2.10GHz and one GPU as Nvidia Tesla V100
16GB.
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Figure 2: MSE of different algorithms in offline training and
online decision-making processes.

Method Dispatch score ORRIR(%)
IL 1903297.08 0

TVal 1951672.68 +1.63
KL-Based 2007472.11 +3.12

KL-Based offline 1864928.20 -2.35
PolarB 2024634.79 +2.52

NondBCQ 2005392.15 +2.61
NondBREM 2043643.57 +3.76

Table 2: Performance under different algorithms. NondBCQ
and NondBREM are our proposed algorithms.

Results and Analysis
In Table 2, we can see that although traditional reinforce-
ment learning methods have acceptable performance in on-
line scenarios, their performance in offline scenarios fails to
outperform that of IL in online scenarios. Our NondBREM
uses offline data training, and its performance exceeds that
of traditional reinforcement learning algorithms trained on-
line and offline. We report two weeks’ average dispatching
score and ORRIR.

Meanwhile, in Figure. 2, we report the errors of the
five main methods in offline training and online decision-
making, errors in the decision stage are only used for eval-
uation and do not update the Q function. In order to unify
the results, we reported mean squared error (MSE). It can
be seen that the errors of the five algorithms in the actual
decision-making stage are all larger than those in offline
training. This error is caused by the inconsistent distribution
of training data and policy access data. The error difference
between our two methods in the two cases is the smallest,
which validates that our method can reduce the extrapola-
tion error and learn an optimal dispatching policy.

Ablation Study
Impact of β. In NondBCQ and NondBREM, the hyperpa-
rameter β is used to control the size of the action set, and
we have n

′
/n ≤ β ≤ 1. When β = 1, the size of the ac-

tion set is the same as the number of orders given by the
environment. According to our statistics, n′/n ranges from
0.6 to greater than 1, so we tested five different β values to
evaluate the effect of different β values on the algorithm per-
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formance, including β1 = min(max(n′/n, 0.8), 1), β2 =
min(max(n′/n, 0.85), 1), β3 = min(max(n′/n, 0.9), 1),
β4 = min(max(n′/n, 0.95), 1), and β5 = 1. We train
NondBREM with different values of β and report their
losses and normalized cumulative reward. It can be seen
in Figure 3 that the cumulative reward value is the largest
when β = β3. However, the loss value is the smallest when
β = β1. When β is small, the action set is also small.
Although the corresponding loss is small in this scenario,
the actions are too restricted, resulting in poor performance.
When β=1, a larger loss leads to a larger error, resulting in
poor performance. When β is set appropriately, our algo-
rithm can greatly reduce the extrapolation error and achieve
better extrapolation performance.
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(a) Mean squared error under
different β values
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(b) Normalized cumulative re-
wards under different β values

Figure 3: Loss value and normalized return of NondBREM
in online decision process under different values of β.

Effectiveness of the action constraint module. We study
the effectiveness of the action constraint module in Nond-
BREM. We change the action constraint module mainly to
the extent of VAE-generated network constraints to evaluate
its importance. In Figure 3, we can see that when β equals 1,
it means we have no restriction on the set of actions, so the
algorithm will degenerate into the traditional reinforcement
learning method. In this case, the test error of the algorithm
becomes large and the cumulative return is small based on
the experiment. When a smaller β is selected, the test error
becomes smaller and the cumulative return increases. This
shows that our action constraint module can effectively re-
duce the extrapolation error of NondBREM, which is more
suitable for offline training.

Methods
25% of Data 50% of Data

Dispatch score Dispatch score

KL-Based offline 1831410.23 1834626.25
NondBCQ 1981308.81 1989275.19

NondBREM 2012126.03 2024210.18

Table 3: Performance comparison under different data sizes

Impact of dataset size. We analyzed the influence of dif-
ferent data sizes on the offline algorithms. We experimented
with different offline algorithms using 25%, and 50% of the
whole data. We extract the corresponding amount of tran-
sitions for training. We report the two weeks’ average dis-
patching score in Table 3.

As shown in Table 3, both the traditional algorithms and
the offline algorithms achieve better results when more data
is available. In experiments with different data sizes, the per-
formance of our algorithm is better than the traditional rein-
forcement learning algorithm. Moreover, as shown in Fig-
ure 4, the larger dataset promotes the convergence of the al-
gorithm. Therefore, in the offline scenario, training on the
larger dataset leads to better policy and speeds up the con-
vergence of the algorithm.

Figure 4: The convergence of NondBREM under differ-
ent dataset sizes. Each iteration corresponds to 500 training
steps and the learning curves for 200 iterations are reported.

Inference time. For large-scale order dispatching, the in-
ference time of the model is important. We thus compare
the inferring time consumption of our model with the base-
lines in Table 4. In the experiments with over 50,000 ve-
hicles (agents), although our model has a longer inference
time (1.1435 seconds) due to the VAE network compared
to existing methods, it is still short enough for large-scale
real-time order dispatching.

Methods Inference time (s)

IL 0.0526
NondBCQ 1.1277

NondBREM 1.1435

Table 4: The average dispatching time in an episode

Conclusion
In this paper, we design a nondeterministic offline reinforce-
ment learning method called NondBREM for large-scale or-
der dispatching problems. NondBREM learns policy from
only the accumulated logged data to avoid costly and un-
safe interactions with complicated real-world environments.
In NondBREM, a nondeterministic Batch- Constrained Q-
learning module (i.e., NondBCQ) using similarity to con-
strain dynamic nondeterministic action space is developed
to reduce the algorithm extrapolation error and a REM mod-
ule that integrates multiple value networks with multi-head
networks is utilized to improve the model generalization and
robustness. Extensive experiments on large-scale real-world
ride-hailing datasets show the superiority of our design, with
3.76% ORR improvement compared to SOTA baselines.
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