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Abstract

The human brain can effortlessly and reliably perceive emo-
tions, whereas existing facial emotion recognition (FER)
methods suffer from drawbacks such as complex model struc-
tures, high storage requirements, and poor interpretability. In-
spired by the role of emotion concepts in visual perception
coding within the human brain, we propose a dual-pathway
framework emulating the neural computation of emotion
recognition. Specifically, these two pathways are designed to
model the representation of emotion concepts in the brain and
the visual perception process, respectively. For the former, we
adopt a disentangled approach to extract emotion concepts
from complex facial geometric attributes; for the latter, we
employ an emotional confidence evaluation strategy to deter-
mine which concept is optimal for regularizing the percep-
tual coding. The proposed concept-regularized coding strat-
egy endows the framework with flexibility and interpretabil-
ity, as well as good performances on several benchmarking
FER datasets.

Introduction
The recent proliferation of large-scale models (e.g., GPT-4)
has swept across the entire deep learning community. These
large-scale models have also achieved impressive perfor-
mance in vision tasks (Ding et al. 2023; Wang et al. 2023).
However, they suffer from issues such as prohibitively high
memory and computational costs, as well as poor inter-
pretability. For human beings, vision perception tasks can be
conducted rapidly and seemingly effortlessly (Schiller 1995;
Freeman and Simoncelli 2011; DiCarlo, Zoccolan, and Rust
2012). This remarkable ability implies the essential collab-
oration among multiple brain regions and the visual cor-
tex during visual perception (Lumer and Rees 1999; Cela-
Conde et al. 2004; Lee, Yeung, and Barense 2012). In this
work, we take emotion recognition as an example to exploit
the biological plausibility of the human brain to build up
intelligent systems with reduced complexity and biological
interpretability.

Facial emotion recognition (FER) aims to discern and in-
terpret emotions displayed on other people’s faces. In re-
cent years, FER has received increasing interest in the deep
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learning community, as it holds promise for various applica-
tions, such as human-computer interaction and mental health
assessment. Computer scientists have attempted to endow
computers with the capability of FER by devising different
algorithms, such as CNN (Li, Deng, and Du 2017a; Pons
and Masip 2017; Zeng, Shan, and Chen 2018) and Trans-
former (Li et al. 2021a; Xue, Wang, and Guo 2021), and
have made remarkable progress in this field. The current
techniques have demonstrated that increasing the network
size is not the only way to improve FER performance. It is
natural to ask whether it is possible to design brain-inspired
FER algorithms based on the neural computation of emotion
recognition in the human brain.

It has long been believed that the neural representations
of emotion concepts are formed and maintained in the high-
level brain regions, such as the prefrontal cortex, the amyg-
dala, and the hippocampus (Rolls 2023; Camacho et al.
2023). However, recent evidence suggests that the brain’s vi-
sual pathway also encodes the emotion concepts to facilitate
efficient emotion recognition (Brooks and Freeman 2018;
Kragel et al. 2019; Brooks et al. 2019), which can be both
fast and energy-saving. Therefore, the concept-regularized
coding in the visual pathway provides a brain-inspired way
of elevating the efficiency and reducing the complexity of
the artificial neural network for emotion recognition.

In light of the concept-regularized coding, we proposed
a brain-inspired network for emotion recognition with re-
duced complexity and enhanced interpretability. As depicted
in Figure 1, our framework contains two pathways, named
the conceptual pathway and the perceptual pathway. The
former models the representation of emotional concepts in
high-level brain regions. The latter employs a simple CNN
to model the process of visual perception, as considerable
evidence indicates that CNNs currently offer the best quan-
titative models of the hierarchical response patterns within
the visual system (Kriegeskorte 2015; Zhuang et al. 2021;
Kanwisher, Khosla, and Dobs 2023). The conceptual path-
way shapes the visual emotion perception in the perceptual
pathway by providing emotional concepts. To the best of our
knowledge, we are the first to utilize concept-regularized
coding in the brain to advance the FER algorithms. It is
worth noting that, when modeling the conceptual pathway,
we adopted a disentangled form to extract abstract emotional
concepts (captured by emotion features in our model) from
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intricate and diverse facial attributes, thus avoiding the in-
fluence of confounding factors on the perceptual pathway.
Meanwhile, an adaptive module for importance evaluation
is implemented in this pathway to evaluate the emotional
confidence of the emotion features. The acquisition of such
confidence is crucial for associating the conceptual pathway
with the perceptual pathway. One way to provide emotion
concepts to the perceptual pathway is through knowledge
distillation. After training the conceptual pathway, a facial
emotion image is inputted into both pathways to simultane-
ously obtain emotion features and perceptual features. Sub-
sequently, we can distill knowledge from emotion features
to perceptual features. Although this distillation method can
successfully transfer knowledge from the conceptual path-
way to the perceptual pathway, it overlooks the relative sta-
bility of the human brain in representing emotion concepts.
To avoid the potential disruption of visual encoding in the
perceptual pathway caused by high-ambiguity emotion fea-
tures, we employed a confidence evaluation strategy. If the
emotional confidence of an image’s emotion feature is high,
we use this emotion feature to guide perceptual encoding.
Otherwise, we use emotion features from other images with
higher confidence in the same emotion category to guide the
encoding in the perceptual pathway. The effectiveness of this
approach can be observed in the experiment section.

Overall, our contributions can be summarized as follows,

• We design a biologically interpretable and lightweight
FER algorithm, drawing inspiration from how emotion
concepts are represented in the brain and their guidance
in visual perception encoding.

• In our framework, we adopt a disentangled approach to
establish the abstract emotion concepts, which are inde-
pendent of facial geometric features.

• We employ a confidence evaluation strategy to provide
the perceptual pathway with stable and reliable emotion
concepts, thereby avoiding interference from confound-
ing factors.

Related Works
Facial Expression Recognition
Recently, an increasing number of FER methods have been
proposed, driven by the advancements in deep neural net-
works and the availability of large-scale FER datasets. In
our opinion, these deep methods designed for FER can
be roughly grouped into two broad categories: CNN-based
methods and Transformer-based methods.

CNN-based methods may incorporate attention mecha-
nisms (Li et al. 2018, 2020; Wang et al. 2020c) or consider
the issue of uncertainty (Wang et al. 2020a; She et al. 2021).
With the attention mechanism, multiple branches can be set
in the model, each taking different facial regions as input.
The model then adaptively learns the attention weights of
each part to capture the importance of various facial regions
in making the recognition. When considering the annota-
tion or emotion ambiguity, the models can dynamically learn
the ambiguity of each sample. Subsequently, the impact of
samples with higher ambiguity on the loss function can be

reduced, thereby facilitating the learning of discriminative
features.

Transformer-based methods typically divide the input
original image or the embedded representation of the orig-
inal image into different patches. By learning the correla-
tions between each patch and other patches, discriminative
features can be obtained (Li et al. 2021a; Xue, Wang, and
Guo 2021). However, the increase in computational cost
of Transformer-based methods does not necessarily corre-
spond to a proportional improvement in performance. More-
over, the biological interpretability in visual processing us-
ing Transformers is far less advanced compared to CNNs,
which exhibit similar computational mechanisms to the hu-
man visual cortex. Therefore, in this paper, we did not ex-
tensively explore Transformers.

Feature Regularization
Regularization techniques (Srivastava et al. 2014; DeVries
and Taylor 2017) have gained widespread popularity for
training deep neural networks. These techniques aim to pre-
vent overfitting and enhance the generalization performance
of the models. Knowledge distillation (Hinton, Vinyals, and
Dean 2015) can be viewed as a kind of feature regulariza-
tion. It involves transferring knowledge from a more com-
plex teacher model to a simpler student model by minimiz-
ing the discrepancy between their intermediate features or
predicted logits (Heo et al. 2019; Park et al. 2019; Zhao
et al. 2022). This process helps the student model learn infor-
mative representations from the teacher model. However, if
knowledge is distilled directly from the teacher model to the
student model without any quality control, it may introduce
noise to the student model. In this paper, we propose a novel
feature regularization technique using emotional confidence
evaluation to guide the visual encoding of facial emotions,
leading to improved performance in a simple network simu-
lating the visual cortex.

Approach
Conceptual Pathway
Establish emotion concepts from facial expressions of
emotion. Inspired by the neuroscience studies (Haxby,
Hoffman, and Gobbini 2000; Zhang et al. 2023) on two
distinct neuroanatomical pathways of the human brain in
processing changeable (e.g., facial expression) and invari-
ant characteristics (e.g., identity, age and sex) of a face,
we develop two branches that relate to emotion and non-
emotion encoding respectively. Specifically, we use the emo-
tion encoder Eemo to model the emotion conceptualiza-
tion of emotion-related regions like the prefontal cortex,
amygdala and hippocampus. Meanwhile, we use the non-
emotion encoder Enon to capture the confounding factors
of a face, such as age, gender and identity, in the other
branch. Given the i-th facial image, the emotion feature ex-
tracted by Eemo is denoted as femoi ∈ RP , where P
is the dimension of the emotion feature. Similarly, we can
also obtain the non-emotion feature fnoni

∈ RP by Enon.
The emotion feature is expected to solely reflect emotion
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Figure 1: Overview of our proposed framework and its underlying biological model. Our brain-inspired ANN consists of three
parts: 1) the conceptual pathway, which models the representation of emotion concepts in emotion-related brain regions in a
disentangled manner; 2) the perceptual pathway, which perceives facial emotion information similar to that employed by the
ventral visual stream (i.e., from primary visual cortex (V1) to mid-level visual areas (e.g., V4) and to inferior temporal (IT)
cortex); and 3) the feature regularization from the conceptual domain to the perceptual domain mimics the involvement of
emotion concepts in perceiving visual emotion. Amy, amygdala; Hip, hippocampus; IFG, inferior frontal gyrus.

concepts and remain unaffected by other facial character-
istics. To achieve this, we adopt a disentangled approach
to facilitate the learning of emotion features. Disentangle-
ment involves two aspects of constraints on the concep-
tual pathway: firstly, we employ a soft subspace orthogo-
nality constraint (Chan et al. 2022) to encourage the sep-
aration of emotional and non-emotional features; and sec-
ondly, we append an emotion classifier after the emotion
features to encourage the capture of emotion-related con-
tent. Let F emo = [femo1 ,femo2 , ...,femoN ]T and F non =

[fnon1
,fnon2

, ...,fnonN
]T respectively, where N is the

batch size. We define a orthogonal loss Lorth as

Lorth =
∥∥∥F emo

TF non

∥∥∥2
F
, (1)

where ∥·∥2F is the squared Frobenius norm.
During the training of the emotion classifier, one way is

to directly employ the multi-class cross-entropy loss func-
tion. However, this approach may lead to the learning pro-
cess of emotion features being influenced by samples with
high emotional ambiguity. Therefore, we employ an adap-
tive importance module that can assess the emotional con-
fidence score for each emotion feature. It is expected that
emotion features with ambiguity may have low confidence
scores, while those with high certainty have high scores.
These scores are subsequently used to adjust the loss func-

tion of the emotion classifier. Specifically, this module con-
sists of a linear fully-connected (FC) layer and a sigmoid
activation function, enabling the output confidence scores to
range from 0 to 1, which can be formulated as,

αi = σ(W FC
Tfemoi), (2)

where αi is the confidence score of the femoi , W FC is the
parameters of the FC layer, and σ is the sigmoid function.

Then, these confidence scores can be used to re-weight the
logits in the emotion classifier. We adopt the Logit-Weighted
Cross-Entropy loss LWCE (Wang et al. 2020b) as the loss
function for the emotion classifier.

LWCE = − 1

N

N∑
i=1

log
eαiW yi

T femoi∑C
j=1 e

αjW j
T femoi

, (3)

LRR = max{0, δ1 − (αH − αL)}, (4)

αH =
1

M

M∑
i=0

αi, αL =
1

N −M

N∑
i=M

αi, (5)

where Wyi
and Wj represent the model parameters between

femoi and the ground-truth emotion label yi, and between
femoi and the j-th emotion label, respectively. In a batch, the
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confidence scores of all samples are ranked in descending
order, where M samples belong to the high-score group and
N-M samples belong to the low-score group. LRR is used
to enforce that the mean of the high-score group should be
larger than the mean of the low-score group by a margin δ1.
We set δ1 = 0.15,M = N × 0.7 in this paper.
Contrastive learning on emotion features. Concepts of
specific emotions (anger, happiness, sadness, etc.) exhibit a
high degree of dissociability, eliciting unique activation pat-
terns in the brain (Camacho et al. 2023). Motivated by this
insight, we apply the supervised contrastive learning (Sup-
Con) (Khosla et al. 2020) to emotion features. This con-
trastive technique is conducive to facilitating the proxim-
ity of the same emotion in the feature space. In this work,
we construct positive and negative pairs for each emotion
feature. In a batch, for femoi , the positive pairs consist of
emotion features belonging to the same emotion category as
femoi , while the remaining emotion features form negative
pairs with it. We define concept-contrastive loss for femoi
as

li = −
∑
d∈Di

log
exp(femoi · femod

/τ)∑
j exp(femoi · femoj/τ)

, (6)

where i, j ∈ {1, 2, ..., N}, Di denotes the set consisting of
the index d of all positive emotion features for femoi and τ
is a temperature parameter. We set τ = 0.07 in this paper.

The FER datasets collected from the Internet suffer from
a significant class imbalance, with insufficient samples for
negative emotions such as anger, disgust, fear and sadness.
Therefore, when comparing the similarity of emotion fea-
tures, we pay more attention to negative emotions.

Guided by a previous work (Li et al. 2022), we design a
weight vector V = [w1, w2, ..., wN ]T ∈ RN×1 to re-weight
the importance of each emotion feature in a batch. When the
feature pertains to negative emotions, the importance coeffi-
cient is relatively large. Let Ec denotes the number of sam-
ples belonging to the c-th emotion in a batch, the importance
coefficient of the i-th emotion feature can be formulated as,

wi = 1− Ec

N
, c = 1, 2, ...C, i = 1, 2, ...N (7)

where C represents the maximum label index. Therefore, the
concept-contrastive loss LCC is

LCC =
1

N

N∑
i=1

Vili, (8)

where Vi is the i-th importance coefficient of V .
In summary, in the training process of conceptual path-

way, the whole loss function is given below,

LCP = αLorth + β(LWCE + LRR) + γLCC , (9)

where the coefficients α, β and γ are used to balance three
parts. After the conceptual pathway is well trained, the pa-
rameters of it are frozen to provide guidance for the percep-
tual pathway.

Perceptual Pathway
From a neuroscience perspective, the perceptual pathway
models the process of visual perception and receives the
guidance of emotion concepts in the conceptual pathway
(Brooks et al. 2019). From a machine learning perspective,
the perceptual pathway can exhibit reduced computational
complexity and storage requirements compared to the con-
ceptual pathway, benefiting from the abundant knowledge
available within the conceptual pathway (Gou et al. 2021).
Hence, the training process of the perceptual pathway is ac-
tually the transfer of conceptual knowledge from the con-
ceptual pathway, which will be detailed below.
The perceptual coding is regularized by emotion con-
cepts. During the training of the perceptual pathway, a
facial emotion image xi simultaneously entered both path-
ways to obtain the perceptual feature fperi

and the emo-
tion feature femoi , respectively. It is worth noting that if the
confidence score of the emotional feature (computed by the
adaptive importance module in the conceptual pathway) is
too low, it may impede the provision of reliable conceptual
knowledge to the perceptual pathway. To alleviate this situ-
ation, we adopt an emotional confidence evaluation strategy
to determine which emotion concept is suitable to regularize
the perceptual coding. Specifically, we set a threshold for the
emotion confidence scores within each emotion label to as-
sess the quality of the emotion feature for each sample. If αi

is greater than the threshold, we use femoi for feature reg-
ularization. Otherwise, we randomly select and aggregate k
emotion features from the high-score pool that belong to the
same label as the femoi and then use them to regularize the
fperi

. The emotion concepts from the conceptual pathway
can be formulated as

feci =

{
femoi , if αi > δc
1
K

∑K
j=0 femoj , otherwise

(10)

where feci denotes the emotion concepts for the i-th sam-
ple used to guide the perceptual pathway, δc is the threshold
for the c-th emotion label that the i-th sample belongs to, and
femoj is the j-th emotion feature from K high-score emotion
features that belong to the same label as the femoi . We in-
dependently arranged the confidence scores of samples for
each emotion label in the training set in ascending order.
Subsequently, we selected the 20th percentile of confidence
scores as the threshold for each label by default. Addition-
ally, we set K = 8 for each emotion label by default. We
will discuss the impact of these two parameters in the abla-
tion studies.

The logits from the conceptual pathway also contain
abundant emotional information due to our constraints on
emotion features. Therefore, we design the similarity loss
LS and distillation loss (Li et al. 2021b) LD to encourage
the perceptual pathway to extract rich emotional informa-
tion from the conceptual pathway. We calculate the mean
square error between fec and fper, and calculate the Kull-
back–Leibler (KL) divergence of the distribution of logits
between the perceptual pathway and the conceptual pathway
as follows,
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Method RAF-DB AffectNet Pre-train FED-RO #Params Run time (R)
VGG16 (Simonyan and Zisserman 2014) 85.16 58.21 ImageNet 63.49 138M ×12

ResNet18 (He et al. 2016) 86.08 59.15 ImageNet 65.32 11M ×1
gACNN (Li et al. 2018) 85.07 58.78 R & A 66.50 224M >12

SPWFA-SE (Li et al. 2020) 86.31 59.23 R & A 67.25 21M >2
RAN (Wang et al. 2020c) 86.90 59.50 MS-Celeb-1M 67.98 11M ×6
SCN (Wang et al. 2020a) 87.03 60.23 R & A 68.24 11M ×1
DMUE (She et al. 2021) 89.42 63.11 - - >25M ×2

Ours (percepPath) 86.28 59.52 R & A 66.75 11M ×1
Ours (concepPath) 90.33 63.97 R & A 73.00 24M ×2

Ours (CRPN) 89.71 63.06 R & A 71.00 11M ×1

Table 1: Comparison with State-of-the-art CNNs Methods on RAF-DB, AffectNet and FED-RO (%). Abbreviations: percepPath
– perceptual pathway; concepPath – conceptual pathway; CRPN – concept-regularized perceptual network; #Params – number
of parameters; Run time (R) – the ratio of the computing time of each method to that of Ours (CRPN) for inferring one image
on average (5 milliseconds).

LS =
1

N

∑
i=1

(feci − fperi
)2, (11)

LD =
1

Q

∑
i=1

(V emoi)[log(V emoi)− log(V peri)], (12)

where V emoi and V peri are the logits of the i-th sample
in the conceptual pathway and the perceptual pathway, re-
spectively, and Q is the number of samples in a batch with
confidence scores higher than the thresholds.

In summary, in the training process of the perceptual path-
way, the whole loss function is defined as

LPP = λ1LCE + λ2LS + λ3LD, (13)

where LCE is the multi-class cross-entropy loss in the per-
ceptual pathway.

Experimental Setup
Datasets
We evaluate the proposed framework on three in-the-wild
facial emotion data sets (RAF-DB (Li, Deng, and Du
2017b), AffectNet (Mollahosseini, Hasani, and Mahoor
2017), FED-RO (Li et al. 2018)) and one in-the-lab data
set (IMAGEN face task (Grosbras and Paus 2006)). In our
experiment, we use six basic emotions (happiness, anger,
sadness, fear, disgust, and surprise) and a neutral emotion
in three in-the-wild data sets, along with three emotions
(happiness, anger, and neutral) in the IMAGEN face data
set. We adopt the overall sample accuracy as a performance
metric in each data set.

RAF-DB The RAF-DB data set contains 30,000 facial
images annotated with basic or compound expressions by
40 trained human coders. Consistent with the most previous
work, we use 12,271 images as training data and 3,068
images as test data in this work.

AffectNet The AffectNet data set is by far the largest
data set that provides both categorical and Valence-Arousal

annotations. There are 283,901 images as training data and
3,500 images as test data in this work.

FED-RO The FED-RO dataset is the first FER dataset in
the presence of real occlusions in the wild, and each image
in FED-RO was carefully labeled by three people. There
are 400 images in total. We employ FED-RO to assess the
generalization performance of our framework in this work.

IMAGEN face The face task paradigm is used to elicit
strong activation in the facial emotion processing systems. In
this task, participants passively watched 18-second blocks of
a face video where up to six actors displayed emotions such
as anger, neutrality, or happiness. These three emotions each
consist of four face videos. We converted these videos into a
dataset of facial emotion at 30 frames per second. We use the
model trained on R & A to obtain the predicted probabilities
for each frame in every emotion video from the IMAGEN
face dataset. Subsequently, we select the top 10 frames with
the highest predicted probabilities from each actor’s emo-
tional face within each emotion video. This serves as the
IMAGEN test data, consisting of 240 angry faces, 120 happy
faces, and 230 neutral faces. The remaining frames will be
utilized as the IMAGEN training data.

Data Processing and Encoders
In our experiments, we use Retinaface (Deng et al. 2020)
to detect and resize all facial emotions to the size of 224 ×
224× 3. ResNet-50/18(He et al. 2016) is used for two path-
ways. Specifically, we use the ResNet-50 pre-trained on VG-
Gface2 as the backbone for the non-emotion encoder and fix
its parameters. The emotion encoder has the same structure
as the non-emotion encoder but with trainable parameters.
For the percept encoder, we use ResNet-18 pre-trained on
Ms-Celeb-1M as the backbone. We remove the last classi-
fiers for all these ResNet models and project the embeddings
into a 256-dimension feature, respectively.

Training Setting
We conduct all experiments with the PyTorch toolbox and
four NVIDIA GeForce RTX 3090 GPUs. During training,
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Lorth LCC LRR + LWCE RAF-DB AffectNet
× × × 87.06 60.01
✓ × × 87.52 61.33
× ✓ × 87.64 61.26
× × ✓ 88.02 61.97
✓ ✓ × 88.78 63.08
✓ × ✓ 89.16 63.23
× ✓ ✓ 88.25 62.89
✓ ✓ ✓ 90.33 63.97

Table 2: Accuracy (%) comparsion of the different compo-
nents in the conceptual pathway. When we do not use the
combination of LRR + LWCE , we use the general multi-
class cross-entropy loss as a replacement.

Method RAF-DB AffectNet
perceptPath 86.28 59.52

Knowledge distillation 88.36 61.63
CRPN 89.71 63.06

Table 3: Evaluation of the influence of emotion concepts on
the accuracy (%) of the perceptual pathway.

the batch size is 64. We use Adam with weight decay of
1e-5 and initial learning rate of 1e-4. The learning rate is
updated by a cosine function with a period of 5. The train-
ing ends at epoch 100 and 40 for the conceptual and per-
ceptual pathways, respectively. The α, β and γ are set as
0.1, 1 and 0.01 in the conceptual pathway, while the λ1,
λ2 and λ3 are set as 2, 1 and 1 in the perceptual pathway,
as this combination can achieve the highest performance
in this work. The source code of this paper is available at
https://github.com/hanluyt/emotion-conceptual-knowledge.

Results and Analysis
Comparison With State-of-the-Art Methods
We construct the concept-regularized perceptual pathway
of our network (i.e., CRPN) using a CNN, therefore, we
compare its performance with several state-of-the-art CNN
methods for emotion recognition. As listed in Table 1, our
methods are among the best on both the RAF-DB and the
AffectNet data sets. When we combine the RAF-DB and the
AffectNet data sets (i.e., R & A) for training, our proposed
CRPN achieves the best performance when tested using the
independent FED-RO data set, but is also among the lightest
(i.e., 11M parameters) and fastest networks (i.e., 5 ms per
image for inference).

Ablation Studies
Evaluation of three components in the conceptual path-
way. To assess the effect of each components, we design an
ablation study to investigate Lorth, LCC and LRR +LWCE

on RAF-DB and AffectNet. We show the experimental re-
sults in Table 2. Several observations can be concluded in the
following. First, when adding only one module into the base-
line (1st row), the use of LRR+LWCE (4th row) resulted in

The i-th percentile K RAF-DB AffectNet
15 4 88.40 61.77
15 6 88.44 61.95
15 8 88.89 62.04
15 10 89.11 62.19
20 4 88.78 62.14
20 6 89.26 62.65
20 8 89.71 63.06
20 10 89.74 63.02

Table 4: Ablation studies for the parameters of different val-
ues in the emotional confidence evaluation strategy.

Figure 2: Visualization of the disentangled features in the
conceptual pathway on RAF-DB.

the highest improvement, indicating the significance of con-
sidering emotional confidence in FER. Secondly, when com-
paring rows 5-7, we can observe that disentanglement leads
to better performance, indicating the contribution of disen-
tanglement in extracting discriminative features for FER.
Evaluation of the effect of emotion concepts in the per-
ceptual pathway. We show the experimental results in Ta-
ble 3. To evaluate the impact of emotion concepts on visual
perception encoding, we compared three scenarios for the
perceptual pathway: 1) training the perceptual pathway in-
dependently (1st row); 2) using the emotion features from
the conceptual pathway to regularize the perceptual features
in the perceptual pathway (2nd row); and 3) employing the
emotional confidence evaluation strategy to obtain stable
and reliable emotion concepts for guiding the encoding of
the perceptual pathway (3rd row). Firstly, when comparing
the 1st row with the 2nd and 3rd rows, we can observe that
the transfer of emotional information from the conceptual
pathway leads to better performance of the perceptual path-
way. Secondly, when comparing the 2nd row with the 3rd
row, we can observe the effectiveness of the emotional con-
fidence evaluation strategy.
Evaluation of the parameters in the emotional confidence
evaluation strategy. We assess the perceptual pathway’s
performance by varying parameters in the emotional confi-
dence evaluation. Confidence thresholds at the 15th or 20th
percentile and K values of 4, 6, 8, and 10 are considered. We
show the experimental results in Table 4. Firstly, increasing
the confidence threshold from the 15th percentile to the 20th
percentile enhances the performance of the perceptual path-
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Figure 3: Exploring emotional concepts across faces with
different styles. (a) The flowchart depicting the separate
training process of our framework using human faces and
animated faces. (b) The distribution of the emotion features
obtained from IMAGEN’s human faces and animated faces
in the Human model. (c) The distribution of the emotion fea-
tures obtained from IMAGEN’s human faces and animated
faces in the Animate model.

way, highlighting the significance of avoiding highly am-
biguous emotion features. Secondly, increasing the value of
K effectively improves the performance of the perceptual
pathway, indicating that aggregating more high-confidence
emotional features leads to more stable and reliable emo-
tional concepts. However, the performance improvement be-
comes marginal when increasing K from 8 to 10, while de-
manding additional computational cost and time. Therefore,
we choose the combination of the 20th percentile threshold
and K=8.

Visualization
Emotion features vs. Non-emotion features. We demon-
strate the effectiveness of the disentangled approach in
our framework using the RAF-DB dataset as an example.
We adopt t-SNE (Van der Maaten and Hinton 2008) to
visualize the feature distribution of the RAF-DB test data
in the conceptual pathway. As shown in Figure 2, emotion
features of the same emotion label are clustered together,
with clear boundaries between different emotion labels.
While non-emotion features cannot distinguish emotions as
expected, this indicates that the non-emotion features do not
contain emotional information.

Emotion concepts are not affected by facial geometric
attributes. We randomly divide the R & A data into
two halves. One half is directly used to train our frame-
work, resulting in the Human model. The other half is
first transformed into animated faces using AnimeGAN
(Chen, Liu, and Chen 2020) and then used to train our

Figure 4: The distribution of non-emotion features for the
same actor with different emotions in the IMAGEN test data,
indicating that identity information is preserved.

framework, resulting in the Animate model (Figure 3a).
We also randomly split the IMAGEN test data into two
halves, with one half transformed into animated faces using
AnimeGAN. Then, we adopt t-SNE to observe the emotion
feature distributions of the human faces and animated faces
from the IMAGEN test data in both the Human model
and the Animate model (Figures 3b, 3c). We observe that
the emotion features from the same emotion across faces
with different styles can be effectively aggregated together,
indicating that our framework is capable of extracting
abstract emotional concepts.

Identity can be extracted from the non-emotion features.
We append an identity recognition classifier after the non-
emotion features and fine-tune the conceptual pathway us-
ing the IMAGEN training data. This allows the non-emotion
features to better reflect identity features. Subsequently, we
utilize the IMAGEN test data to observe the t-SNE distri-
bution of non-emotion features for the same actor display-
ing different emotions. As shown in Figure 4, the fine-tuned
model achieves a clear boundary between different actors
with a large blank space. Moreover, different emotions of
the same actor are clustered together. This indicates that the
fine-tuned non-emotion features can better capture identity
information, independent of emotional information.

Conclusion
Inspired by the neuroscience studies on the important role of
emotion concepts in visual emotion perception, we proposed
a novel brain-inspired FER model that is more lightweight
and offers better interpretability compared to traditional
FER algorithms. We considered a disentangled design to
extract abstract emotion concepts that are independent of
facial geometric attributes. Furthermore, we employed an
emotional confidence evaluation strategy to select suitable
and reliable emotion concepts for assisting visual encoding.
The experiments validate the performance, showing the ef-
fectiveness and generality of our proposed framework.
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