The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Gated Attention Coding for Training High-Performance and Efficient Spiking
Neural Networks

Xuerui Qiu'**, Rui-Jie Zhu’, Yuhong Chou®, Zhaorui Wang* Liang-Jian Deng**, Guoqi Li

1,2%

nstitute of Automation, Chinese Academy of Sciences, China
ZPeng Cheng Laboratory, China
3School of Future Technology, University of Chinese Academy of Sciences
4 University of Electronic Science and Technology of China, China
5 University of California, Santa Cruz, USA
Xi’an Jiaotong University
{qiuxuerui2024, guoqi.li} @ia.ac.cn, rzhu48 @ucsc.edu, zhaorui_wang @std.uestc.edu.cn, liangjian.deng @uestc.edu.cn

Abstract

Spiking neural networks (SNN’s) are emerging as an energy-
efficient alternative to traditional artificial neural networks
(ANNS5s) due to their unique spike-based event-driven nature.
Coding is crucial in SNNGs as it converts external input stimuli
into spatio-temporal feature sequences. However, most exist-
ing deep SNNs rely on direct coding that generates powerless
spike representation and lacks the temporal dynamics inher-
ent in human vision. Hence, we introduce Gated Attention
Coding (GAC), a plug-and-play module that leverages the
multi-dimensional gated attention unit to efficiently encode in-
puts into powerful representations before feeding them into the
SNN architecture. GAC functions as a preprocessing layer that
does not disrupt the spike-driven nature of the SNN, making it
amenable to efficient neuromorphic hardware implementation
with minimal modifications. Through an observer model theo-
retical analysis, we demonstrate GAC’s attention mechanism
improves temporal dynamics and coding efficiency. Experi-
ments on CIFAR10/100 and ImageNet datasets demonstrate
that GAC achieves state-of-the-art accuracy with remarkable
efficiency. Notably, we improve top-1 accuracy by 3.10% on
CIFAR100 with only 6-time steps and 1.07% on ImageNet
while reducing energy usage to 66.9% of the previous works. To
our best knowledge, it is the first time to explore the attention-
based dynamic coding scheme in deep SNNs, with exceptional
effectiveness and efficiency on large-scale datasets. Code is
available at https://github.com/bollossom/GAC.

Introduction

Artificial neural networks (ANNs) have garnered remarkable
acclaim for their potent representation and astounding tri-
umphs in a plethora of artificial intelligence domains such as
computer vision (Krizhevsky et al. 2017), natural language
processing (Hirschberg 2015) and big data applications (Niu
et al. 2020). Nonetheless, this comes at a significant cost
in terms of energy consumption. In contrast, spiking neural
networks (SNNs) exhibits heightened biological plausibility
(Maass 1997), spike-driven nature, and low power consump-
tion on neuromorphic hardware, e.g., TrueNorth (Merolla

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (Www.aaai.org). All rights reserved.

601

Direct Coding

Conv

— . . —
BN LIF

GAC (Ours)
——— Conv

— + —_—

BN
Attention

Layer
(a): Comparison of GAC and direct coding scheme.

Other SNN-oriented attention network architecture

Conv)
Input — + — —N x | Attention _, C‘inv - — Out
BN LIF Layer BN LIF
GAC architecture (Ours)
Conv Conv
Input — + — — NXx + — — Out
BN . LIF BN LIF
Attention

Layer

(b): Comparison of GAC and other SNN attention methods.

Figure 1: How our Gated Attention Coding (GAC) differs
from existing SNNs’ coding (Wu et al. 2019) and attention
methods (Yao et al. 2021, 2023c¢). In (a), the solid-colored
cube represents the float values, the gray cube denotes the bi-
nary spike values, and the cube with the dotted line represents
the sparse values. In comparison with direct coding, GAC
generates spatio-temporal dynamics output with powerful
representations. In (b), compared to other attention methods,
GAC only adds the attention module to the encoder without
requiring N Multiply-Accumulation (MAC) blocks for dy-
namically calculating attention scores in subsequent layers.

et al. 2014), Loihi (Davies et al. 2018), Tianjic (Pei et al.
2019).

Moreover, the versatility of SNNs extends to various tasks,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

including image classification (Hu et al. 2021; Wei et al. 2023;
Xu et al. 2023), image reconstruction (Qiu et al. 2023b), and
language generation (Zhu et al. 2023), although the majority
of their applications currently lie within the field of computer
vision.

To integrate SNNs into the realm of computer vision, the
initial challenge lies in transforming static images into spatio-
temporal feature sequences. Various coding schemes have
emerged to address this issue, such as rate coding (Van Rullen
and Thorpe 2001), temporal coding (Comsa et al. 2020), and
phase coding (Kim et al. 2018). Among these, direct coding
(Wu et al. 2019) as shown in Fig. 1-(a), excel in training SNNs
on large-scale datasets with minimal simulation time steps.
Moreover, by adopting direct coding, recent SNN models (Li
et al. 2021b; Shen et al. 2023; Zhou et al. 2023) achieve state-
of-the-art performance across various datasets, showcasing
the immense potential of coding techniques. However, this
approach utilizes a trainable layer to generate float values
repetitively at each time step. The repetitive nature of direct
coding leads to periodic identical outputs at every time step,
generating powerless spike representations and limiting spatio-
temporal dynamics. In addition, the repetitive nature of direct
coding fails to generate the temporal dynamics inherent in
human vision, which serves as the fundamental inspiration
for SNN models. Human vision is characterized by its ability
to process and perceive dynamic visual stimuli over time. The
repetitive nature of direct coding falls short in replicating
this crucial aspect, emphasizing the need for alternative
coding schemes that can better emulate the temporal dynamics
observed in human vision.

Humans can naturally and effectively find salient regions in
complex scenes (Itti, Koch, and Niebur 1998). Motivated by
this observation, attention mechanisms have been introduced
into deep learning and achieved remarkable success in a wide
spectrum of application domains, which is also worth to be
explored in SNNs as shown in Fig. 1-(b) (Yao et al. 2021,
2023c). However, it has been observed that implementing
attention mechanisms to directly modify membrane potential
and dynamically compute attention scores for each layer,
rather than using static weights, disrupts the fundamental
asynchronous spike-driven communication in these methods.
Consequently, this approach falls short of providing full
support for neuromorphic hardware.

In this paper, we investigate the shortcomings of tradi-
tional direct coding and introduce an innovative approach
termed Gated Attention Coding (GAC) as depicted in Fig. 1.
Instead of producing periodic and powerless results, GAC
leverages a multi-dimensional attention mechanism for gating
to elegantly generate powerful temporal dynamic encodings
from static datasets. As a preprocessing layer, GAC doesn’t
disrupt the SNNs’ spike-driven, enabling efficient neuromor-
phic hardware implementation with minimal modifications.
Experimental results demonstrate that our GAC not only
significantly enhances the performance of SNNs, but also
notably reduces latency and energy consumption. Moreover,
our main contributions can be summarized as follows:

* We propose an observer model to theoretically analyze
direct coding limitations and introduce the GAC scheme,
a plug-and-play preprocessing layer decoupled from the

602

SNN architecture, preserving its spike-driven nature.

* We evaluate the feasibility of GAC and depict the encod-
ing result under both direct coding and GAC setups to
demonstrate the powerful representations of GAC and its
advantage in generating spatio-temporal dynamics.

* We demonstrate the effectiveness and efficiency of the
proposed method on the CIFAR10/100 and ImageNet
datasets. Our method outperforms the previous state-of-
the-art works and shows significant improvements across
all test datasets with lower energy consumption.

Related Works
Bio-inspired Spiking Neural Networks

Spiking Neural Networks (SNNs) offer a promising approach
to achieving energy-efficient intelligence. These networks
aim to replicate the behavior of biological neurons by em-
ploying binary spiking signals, where a value of 0 indicates
no activity and a value of 1 represents a spiking event. The
spike-driven communication paradigm in SNNs is inspired by
the functionality of biological neurons and holds the potential
for enabling energy-efficient computational systems (Roy,
Jaiswal, and Panda 2019; Zhu et al. 2022; Shan et al. 2023;
Deng et al. 2023). By incorporating advanced deep learning
and neuroscience knowledge, SNNs can offer significant ben-
efits for a wide range of applications (Jin et al. 2022; Qiu
et al. 2023a,b; Kundu et al. 2023). Recently, there exist two
primary methods of training high-performance SNNs. One
way is to discretize ANN into spike form through neuron
equivalence (Li et al. 2021a), i.e., ANN-to-SNN conversion,
but this requires a long simulation time step and boosts the
energy consumption. We employ the direct training method
(Wu et al. 2018) and apply surrogate gradient training.

SNN Coding Schemes

Numerous coding schemes are proposed for image classifica-
tion tasks. Phase coding (Kim et al. 2018) used a weighted
spike to encode each pixel and temporal coding (Park et al.
2020; Comsa et al. 2020; Zhou et al. 2021) represents infor-
mation with the firing time of the first neuron spike. These
methods have been successfully applied to simple datasets
with shallow networks, but achieving high performance be-
comes more challenging as datasets and networks become
larger and more complex. To address this issue, rate coding
(Van Rullen and Thorpe 2001), which encodes each pixel
using spike firing frequency, has been suggested. However,
it suffers from long time steps to remain high performance,
while small time steps result in lower representation resolution.
To overcome these limitations, Wu et al. (2019) proposed the
direct coding, in which input is given straight to the network
without conversion to spikes and image-spike encoding is
done by the first { Conv-BN } layer. Then repeat this procedure
at each time step and feed the results to spiking neurons.
Finally, these encoded spikes will be sent to the SNN archi-
tecture for feature extraction. However, the limited powerless
spike representations in SNNs using direct coding leads to
parameter sensitivity and subpar performance. The repetition
operation fails to generate dynamic output and neglects redun-
dant data, thus underutilizing the spatio-temporal extraction

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

X1T

(b): Gated Attention Unit

Squeeze Temporal

Attention

H
! wC
H W

Spatial Channel [
2 T Attention 2 T
|

Reshape

——

(c): Varients of SNN ResNet Architecture

Spiking-ResNet SEW-ResNet MS-ResNet

[0, 1]

[0.1,2]

e
“D uF
Multiply Accumulate Operator

<— Spatial Forward Pr i -— poral Forward P

Accumulation Operator

Figure 2: The GAC-SNN framework consists of two main components: an encoder and an architecture. In (a), we introduce the
encoder, i.e., the GAC module. (b) focuses on the GAU, which acts as the fundamental building block of the GAC module. It
comprises Temporal Attention, Spatial Channel Attention, and Gating sub-modules. (c) Common SNN ResNet architectures. The
Conv layer in SEW-ResNet uses a multiply-accumulate operator, not spike computations. Spiking-ResNet retains its spike-driven
nature via direct coding, while GAC disrupts it. More details can be seen in discussions. MS-ResNet avoids floating-point
multiplications, preserving its spike-driven nature. Hence, we use the MS-ResNet to benefit from neuromorphic implementations.

ability of subsequent SNN architectures and increasing energy
consumption in neuromorphic hardware.

Attention Mechanism

Initially introduced to enhance the performance of sequence-
to-sequence tasks (Bahdanau, Cho, and Bengio 2014), the
attention mechanism is a powerful technique that enables im-
proved processing of pertinent information (loffe and Szegedy
2015). By effectively filtering out distracting noise, the atten-
tion mechanism facilitates more focused and efficient data
processing, leading to enhanced performance in various ap-
plications. Yao et al. (2021) attach the squeeze-and-excitation
(Hu, Shen, and Sun 2018) attention block to the SNNs’
temporal-wise input, assessing the significance over differ-
ent frames during training and discarding irrelevant frames
during inferencing. However, this method only gets better
performance on small datasets with shallow networks. Yao
et al. (2023c) switch CBAM attention (Woo et al. 2018) to
multi-dimension attention and inject it in SNN architecture,
revealing deep SNNs’ potential as a general architecture to
support various applications.

Currently, integrating attention blocks into SNN architec-
tures is difficult because it necessitates designing separate
multiplicative modules in subsequent layers to dynamically
calculate attention scores. This impedes the spike-driven
nature of inherently additive SNNs. Hence, the seamless
integration of SNNs with neuromorphic hardware is hindered,
primarily due to the hardware’s limited support for static
weights, which is a key requirement for conventional attention
implementations. A potential solution to address this issue
involves confining the application of attention mechanisms
solely to the encoder, i.e., the first layer of the SNNs. By
limiting the attention modifications to the initial stage, the
subsequent layers can still maintain the essential spike-driven

603

communication. This approach holds promise in enabling
a more feasible implementation of SNNs on neuromorphic
hardware, as it mitigates the incompatibility arising from
dynamic attention mechanisms throughout the architecture.

Method

In this section, we first introduce the iterative spiking neuron
model. Then we proposed the Gated Attention Coding (GAC)
and Gated Attention Unit (GAU) as the basic block of it. Next,
we provide the overall framework for training GAC-SNN.
Moreover, we conduct a comprehensive analysis of the direct
coding scheme and explain why our GAC outperforms in
generating spatio-temporal dynamics encoding results.

Iterative Spiking Neuron Model
We adopt the Leaky Integrate-and-Fire (LIF) spiking neuron
model and translate it to an iterative expression with the Euler
method (Wu et al. 2018; Yao et al. 2023b). Mathematically,
the LIF-SNN layer can be described as an explicitly iterable
version for better computational traceability:

Ut,n — Ht—l,n + f(Wn7Xt,n—1)

St,n — @(Ut,n _ Vth)

H'" =7U"" - (1 - 8"") + Vyeset U,

where 7 is the time constant, £ and n respectively represent

the indices of the time step and the n-th layer, W denotes
synaptic weight matrix between two adjacent layers, f(-)
is the function operation stands for convolution (Conv) or
fully connected (FC), X is the input, and ©(-) denotes the
Heaviside step function. When the membrane potential U
exceeds the firing threshold V4, the LIF neuron will trigger
a spike S. Moreover, H represents the membrane potential
after the trigger event which equals to 7U if no spike is
generated and otherwise equals to the reset potential V¢ et

ey

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Gated Attention Unit (GAU)

Temporal Attention. To establish temporal-wise relation-
ships between SNNs’ input, we first perform the squeezing
step on the spatial-channel feature map of the repeated in-
put X € RTXCXHXW “where T is the simulation time
step and C' is the channel size. Then we use Avgpool and
Maxpool to calculate the maximum and average of the in-
put X. Additionally, we use a shared MLP network to turn
both average-pooled and max-pooled features into a temporal
weight vector M € RT ie.,

Fr(X) =(W,,(ReLUW , (AvgPool(X))))
+ W (ReLU(W,,(MaxPool(X)))),
where Fr(-) is the functional operation of temporal at-
tention. And W, € RT*+, W, € R+ *7T are the weights
of two shared dense layers. Moreover, r is the temporal
dimension reduction factor used to manage its computing
overhead.

Spatial Channel Attention. To generate the spatial channel
dynamics for encoding result, we use a shared 2-D convolution
operation at each time step to get the spatial channel matrix
N =[N' N? ... N' ¢ RTXOXHXW i o

K-1K—1
Fso(X)=>_ > Wi;- X!,

i=0 j=0

@)

3

where Fgc(+) is the functional operation of spatial channel
attention, W ; is the learnable parameter and K represents
the size of the 2-D convolution kernel size.

Gating. After the above two operations, we get the temporal
vector M and spatial channel matrix IN. Then to extract
SNNs’ input X temporal-spatial-channel fused dynamics
features, we first broadcast the temporal vector to RT*1x1x1
and gating the above result by :

Fa(X)=0(M O N) =0(Fr(X)® Fsc(X)),)

where o(-) and © are the Sigmoid function and Hadamard
Product. By the above three sub-modules, we can get the
functional operation F¢(-) of GAU, which is the basic unit
of the next novel coding.

Gated Attention Coding (GAC)

Compared with the previous direct coding (Wu et al. 2019; Hu
etal. 2021), we introduce a novel encoding called Gated Atten-
tion Coding (GAC). And Fig. 2 describes the specific process.
Given that the input X € RE*#XW of static datasets, we
assign the first layer as an encoding layer. We first use the
Conv layer to generate features, then repeat this procedure
after each time step and feed the results to the LIF neuron
and GAU module respectively. Finally, gating the output of
the above two modules. Hence, the whole GAC process can
be described as:

O = Fo(f**(X)) © SN (f**(X)),)

where X and O is the GAC-SNN’s input and output,
fF<E(.) is a shared 2-D convolution operation with the filter
size of k x k, and SN(+) is the spiking neuron model. More-
over, ® is the Hadamard Product, and F(-) is the functional
operation of GAU, which can fuse temporal-spatial-channel
information for better encoding feature representations.

604

Overall Training Framework

We give the overall training algorithm of GAC for training deep
SNNs from scratch with our GAC and spatio-temporal back-
propagation (STBP) (Wu et al. 2018). In the error backpropa-
gation, we suppose the last layer as the decoding layer, and
the final output K can be determined by: K = % Zthl o',

where O is the SNNs’ output of the last layer and T is the
time steps. Then we calculate the cross-entropy loss function
(Rathi and Roy 2021) between output and label, which can
be described as:

ehi
4 = =% (6)
Zj:l ek]
L=-Y ylog(q:), @)
i=1
where K = (k1, ko, ,ky) andY = (y1,y2, -+, yn) are

the output vector and label vector.

Theoretical Analysis

To understand the highlights of our proposed method and the
role of SNN encoders, we introduce the observer model for
measuring direct coding and our GAC. Encoders are used to
convert static images into feature sequences, incorporating
temporal information into SNNs at each time step. Some
encoders are embedded within the SNN as part of it (e.g.,
the first Conv-based spiking neuron layer for direct coding),
while others are not included in the SNN models, e.g., rate
coding. The embedded encoders can be easily distinguished
from the rest of the network since they use actual values
for linear transformations, unlike spikes or quantized data.
Functionally, encoders convert static data into the temporal
dimension. This definition helps us understand what SNN
encoders are.

Definition 1. Encoder. An encoder in SNNs for image classifi-
cation tasks is used to translate static input X € RCn>*HxW
into dynamics feature sequences A € RT*Cout xXHXW,

Moreover, two points should be noted in Definition 1.
Firstly, A is used to indicate the encoders’ output no matter
spikes or real values. And Membrane Shortcut (MS) ResNet
architecture (Hu et al. 2021) is considered to use sequential
real values as input after the encoder. Secondly, although two
dimensions (C,,¢,T) are changed, the spatial one C,,; is
similar to the operation in ANNs, which means 7T is unique
for SNN encoders. In other words, the time step 7" is the secret
of the time information, and the SNN encoder is designed to
generate this added dimension. The discussion above implies
that to understand and metric an encoder, we should focus on
its temporal dimension and find a proper granularity.

Definition 2. Neuron Granularity. Considering A €
RTXCous xHXW s output feature sequences of the encoder,
given a fixed position c, h, w for the output A, so that we get a
vector along temporal axis a = A. ¢ = [al, a?,- - ,at].

Here the encoding feature vector a is not subscripted in
Definition 2 because the encoder is usually symmetric, and
the choice of position for analysis does not affect its generality.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

(b)

" le)

(d)

Figure 3: Visualization results. (a) Original image. (b)(c)(d)(e) Encoding results of the direct coding (top) and GAC (bottom) at
different time steps. Compared to direct coding, GAC enhances dynamics by introducing variations at each time step.

To measure the vector a, we introduce the observer model and
information entropy (Jaynes 1957). Assuming an observer is
positioned right behind the encoder, recording and predicting
the elements of vector a in a time-ordered manner. Hence,
the observer model can be formally established as follows:

» The observer notices the elements of encoded feature
sequences a € R” or {0,1}7 in time step order.

* At any time step ¢, the observer remembers all elements
from time 1 to time ¢ — 1, and it is guessing the element
a® of encoded feature sequences a € RT.

¢ The observer is aware of the mechanism or the encoder
structure, but not its specific parameters.

Moreover, at time step ¢, guessing a?, the observer should
answer it with probability. The probability can be described
as:

p'(a’) =p(a'la’, - a'™h), ®)

And we use the information entropy to measure the quantity
of information gotten by the observer, i.e.,

H(V') = p'(a") log(p'(a)), ©)

where V' is used to indicate the random variable version of a’.
Specifically, when pf(a?) = 0 or 1, pt(a?) log(pt(at)) = 0t
means that a deterministic event contribute 0 to information
entropy. Moreover, for the observer model, when the element
al is deterministic, there is no additional information that
deserves observing at time step t.

To better understand the concept of information entropy in
this context, it is crucial to consider the role of an encoder
whose task is to convert information into tensors that generate
temporal dynamics. Ideally, the encoder should utilize as
numerous time steps as possible to code information, result-
ing in a positive information entropy along the time axis.
The positive entropy indicates the presence of information,
which is crucial for spiking neural networks. While precisely
quantifying entropy value is difficult, it is possible to measure
the duration of positive entropy. In this way, longer-lasting
positive entropy can be considered a more effective use of the
temporal dimension.

Definition 3. Dynamics Duration & Dynamics Loss. Con-
sidering a specific position with encoded feature vector
a = [a',a?, - a'] alone temporal dimension, if 3t. such

605

that V't > t., the observer model’s entropy H(V'*) about pos-
sible encoding results is 0. Let T . be the greatest lower bound
of te. And T, = inf (t.) is defined as Dynamics Duration.
Then we call the time steps after T . is Dynamics Loss.

According to Definition 3, we can delineate the encoder’s
effective encoding range. Dynamics duration indicates when
encoding results entropy H(V"*) > 0. And at dynamics loss
time steps, the entropy H (V") remains 0, rendering encoding
unnecessary. Moreover, to metric the encoder’s dynamics, the
key is to compare the dynamics duration time step T'..

Proposition 1. Assuming that the dynamic duration of GAC
and direct coding be T ; and T respectively, we have T ; >
T, when giving same {Conv-BN} parameters.

Proof. Denoted that X € RT*CoutxHxW g the repetitive
output of direct coding and GAC after same {Conv-BN}
module, @ € RT is the encoded feature vector.

For direct coding, it sends the repetitive output X to the
spiking neuron for coding, resulting in the encoded feature
vector a being powerless and periodic with 0 or 1. Moreover,
the period T, is:

Vth(l—T))"7

T, = [logT(l ——r (10)
3

where 7 is the time constant, V4, is the firing threshold
and z; ; is the pixel of the input X after { Conv-BN} module.
Hence, the subsequent output is predictable when the observer
has found the first spike. Thus, the direct coding’s dynamic
duration Ty = T',. Moreover, the derivation of T, and
analysis of other coding schemes’ dynamics can be found in
Appendix.

For GAC, we multiplied the output of direct coding and
GAU to expand the dynamic duration of the encoding results.
Thus, the GAC’s dynamic duration Ty = LTldj T. It can be
seen that T'y > T'g. O

According to Proposition 1, GAC lasts its dynamics longer
than direct coding. Moreover, this reflects the superiority of
GAC in generating dynamic encoding results. As depicted
in Fig. 3, GAC’s encoding results on static datasets vary
significantly at each time step, i.e., temporal dynamics.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

. Params Time CIFAR10 CIFAR100
Methods Architecture M) Steps Acc.(%) Acc.(%)
ANN2SNN (Hao et al. 2023)4447 VGG-16 33.60/33.64 32 95.42 76.45
tdBN (Zheng et al. 2021)4441 Spiking-ResNet-19 12.63/12.67 6 93.16 71.12
TET (Deng et al. 2022)CLR Spiking-ResNet-19 12.63/12.67 6 94.50 74.72
GLIF (Yao et al. 2022)NeurIPS Spiking-ResNet-19 12.63/12.67 6 95.03 77.35
MS-ResNet* (Hu et al. 2021) MS-ResNet-18 12.50/12.54 6 94.92 76.41
MS-ResNet-18 12.63/12.67 6 96.46+0.06 80.45+0.27
GAC-SNN MS-ResNet-18 12.63/12.67 4 96.24+0.08 79.83+0.15
MS-ResNet-18 12.63/12.67 2 96.18+0.03 78.92+0.10
ANN? (Hu et al. 2021) MS-ResNet-18 12.50/12.54 N/A 96.75 80.67

Table 1: Comparison between the proposed methods and previous works on CIFAR datasets. ¥ denote self-implementation results
with open-source code (Hu et al. 2021). The ’Params” column indicates network parameter size on CIFAR10/100 datasets.

Theoretical Energy Consumption Calculation

The GAC-SNN architecture can transform matrix multipli-
cation into sparse addition, which can be implemented as an
addressable addition on neuromorphic chips. In the encoding
layer, convolution operations serve as MAC operations that
convert analog inputs into spikes, similar to direct coding-
based SNNs (Wu et al. 2019). Conversely, in SNN’s architec-
ture, the Conv or FC layer transmits spikes and performs AC
operations to accumulate weights for postsynaptic neurons.
Additionally, the inference energy cost of GAC-SNN can be
expressed as follows:
Etotat = Eniac - FLp,+

conv

N M
Eac T (> FLly, - fr"+ Y FLE.- fr™),

n=2 m=1

(11)

where N and M are the total number of Conv and FC

layers, E'pr ac and E 4¢ are the energy costs of MAC and AC

operations, and fr™, fr", FLg,,, and F'LY, are the firing

rate and FLOPs of the n-th Conv and m-th FC layer. Previous

SNN works ((Horowitz 2014; Rathi and Roy 2021; Yao

et al. 2023a)) assume 32-bit floating-point implementation

in 45nm technology, where Ep; 40 = 4.6pJ and Eac = 0.9pJ
for various operations.

Experiments

In this section, we evaluate the performance of GAC-SNN
on static datasets, e.g., CIFAR10, CIFAR100, ImageNet (Li
et al. 2017; Krizhevsky et al. 2017). To verify the effective-
ness and efficiency of the proposed coding, we integrate
the GAC module into the Membrane Shortcut (MS) ResNet
(Hu et al. 2021), to see if the integrated architecture can
generate significant improvement when compared with pre-
vious state-of-the-art works. Specifically, the details of the
architecture are shown in Fig. 2-(c), and why we use it is illus-
trated in the discussions. And Experiments are also verified
using Mind-Spore. The code implemented by MindSpore will
be open-sourced to this link (https://github.com/mindspore-
lab/models/tree/master/research/cas/GAC_AAAI).

606

80.5
80.0 1
£
2 79.54
g
3
Q
2 79.04
T=2
78.5- T=4
T=6
T T T
2 4 6

Kernel Size

Figure 4: Ablation study on CIFAR100.

GAC Can Produce Powerful and Dynamics Results

We evaluated GAC’s effectiveness in reducing redundant
temporal information and improving encoding results for
static datasets. By training MS-ResNet-34 on ImageNet with
and without GAC, we generated the encoding output shown
in Fig. 3. And it can be seen that our GAC can help SNNs
to capture more texture information. Hence, our approach
enhances SNNs’ representation ability and temporal dynamics
by introducing significant variations in GAC results at each
time step, compared to the periodic output of direct coding.

GAC Can Get Effective and Efficient SNNs

Effectiveness. The GAC-SNN demonstrate remarkable per-
formance enhancement compared to existing state-of-the-
art works (Table. 1-2). On CIFAR10 and CIFAR100, GAC
achieves higher accuracy than previous advanced works using
only 2-time steps. With the same time steps, GAC improves
1.43% and 3.10% on CIFAR10 and CIFAR100 over GLIF
(Yao et al. 2022). And compared to the baseline MS-ResNet
(Hu et al. 2021), our method outperforms it on CIFAR10 and
CIFAR100 by 1.54% and 4.04% with 6-time steps. For the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

. Spike Params Time Power Top-1
Methods Architecture ——_given (M) Steps (m]) Acc.(%)

ANN2SNN (Hao et al. 2023)44 ResNet-34 v 21.79 64 - 68.61

TET (Deng et al. 2022)/¢tR Spiking-ResNet-34 v/ 21.79 6 - 64.79

tdBN (Zheng et al. 2021)444/ Spiking-ResNet-34 v 21.79 6 6.39 63.72

SEW-ResNet (Fang et al. 2021)w?’S SEW-ResNet-34 X 21.79 4 4.04 67.04

MS-ResNet-18 v 11.69 6 4.29 63.10

MS-ResNet (Hu et al. 2021) MS-ResNet-34 v/ 21.80 6 sl 69.43

Att-MS-ResNet-18 X 11.96(+027) 6 411 64.15*

TPAMI

Att-MS-ResNet (Yao et al. 2023c) Att-MS-ResNet-34 X 22.30(+0.50) 6 5.05 69.35*
GAC.SNN MS-ResNet-18 Vo 11.82(+0.13) 6/4 2.34/1.49 65.14/64.05
MS-ResNet-34 v 21.93(+0.13) 6/4 3.38/2.20 70.42/69.77

MS-ResNet-18 X 11.69 N/A 14.26 69.76

ANN (Hu et al. 2021) MS-ResNet-34 X 21.80 N/A 16.87 73.30

Table 2: Comparison between the proposed method and previous works on the ImageNet dataset. Power is the average theoretical
energy consumption when predicting a batch of images from the test set, details of which are shown in Eq.11. The ”’Spike-driven”
column indicates if an independent design of the multiplication module is required in the SNN architecture. And the mark X
in the ”Spike-driven” column denotes hindering neuromorphic hardware implementation. * needs a large training time (1000

epochs and 600 batch size) compared to other methods.

Accuracy (%)

~
o
1

TA
SCA
Full
—=— Baseline

~
o
1

~
N
1

T T T
2 4 6

Time step

Figure 5: Ablation study on CIFAR100.

larger and more challenging ImageNet dataset, compared with
the baseline MS-ResNet (Hu et al. 2021), we apply our GAC
to MS-ResNet-18 and can significantly increase the accuracy
(65.14% v.s. 63.10%). Compared with other advanced works
(Fang et al. 2021; Yao et al. 2023c), GAC-based MS-ResNet-
34 achieves 70.42% top-1 accuracy and surpasses all previous
directly-trained SNNs with the same depth.

Efficiency. Compared with prior works, the GAC-SNN
shines in energy consumption (Table. 2). We first make an
intuitive comparison of energy consumption in the SNN field.
Specifically, GAC-SNN (This work) vs. SEW-ResNet-34 at
4-time steps: Power, 2.20mJ vs. 4.04mlJ. That is, our model
has +3.22% higher accuracy than SEW-ResNet with only
the previous 54.5% power. And GAC-SNN (This work) vs.
MS-ResNet-34 vs. Att-MS-ResNet-34 at 6-time steps: Power,

607

Architecture Schemes T Acc.(%)
ResNet19 Phase Coding 8 91.40
VGG16 Temporal Coding 100 92.68
ResNet19 Rate Coding 6 93.16
MS-ResNet18 Direct Coding 6 94.92
MS-ResNet18 GAC 6 96.46

Table 3: Comparisons with different coding schemes.

2.34ml] vs. 4.29m]J vs. 4.11mlJ. That is, our model has the low-
est power under the same structure and time steps. For instance,
as the layers increase from 18 to 34, MS ResNet (baseline) has
1.83x(4.29mJ/2.34mJ) and 1.51x(5.11mJ/3.38mlJ) higher en-
ergy consumption than our GAC-SNN. At the same time, our
task performance on the above same depth network structures
has improved by +2.04% and +0.99%, respectively.

Ablation Study

Comparison between Different SNN Coding Schemes. To
future demonstrate the advantage of GAC, we evaluate the
performance of our GAC and other coding schemes e.g.,
Phase coding (Kim et al. 2018), Temporal coding (Zhou et al.
2021), Rate coding (Wu et al. 2019), Direct coding (Wu et al.
2019). Table. 3 displays CIFAR1O0 test accuracy, where GAC
achieves 96.46% top-1 with MS-ResNet-18 in 6-time steps.
The Effect of Parameter Kernel Size K. We investigate
the impact of the 2D convolution kernel size K in the Spatial
Channel Attention module of our GAC. Specifically, there is
a trade-off between performance and latency as kernel size
increases. It is almost probable that when kernel size increases,
the receptive region of the local attention mechanism also

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

does so, improving SNN performance. These benefits do,
however, come at a cost of high parameters and significant
latency. To this end, we trained the GAC-based MS-ResNet-
18 on CIFAR100 with various K values. As shown in Fig. 4,
accuracy rises with increasing /, plateauing after K exceeds
4. This indicates our GAC maintains strong generalization
despite large K variations. To maintain excellent performance
and efficiency, we consider employing K = 4 in our work.
Comparison of Different Attention. We conducted ab-
lation studies on the Temporal Attention (TA) and Spatial
Channel Attention (SCA) modules to assess their effects.
Fig. 5 indicates that the SCA module contributes more to
performance improvement due to the most SNNs designs that
channels outnumber time steps. The SCA module extracts
additional significant features compared to the TA module.
Notably, regardless of the module we ablate, performance
will be affected, which may help you understand our design.

Discussions

Analysis of Different GAC-SNN’s ResNet Architecture.
Residual connection is a crucial basic operation in deep SNN§s’
ResNet architecture. And there are three shortcut techniques in
existing advanced deep SNNs. Spiking-ResNet (Hu, Tang, and
Pan 2021) performs a shortcut between membrane potential
and spike. Spike-Element-Wise (SEW) ResNet (Fang et al.
2021) employs a shortcut to connect the output spikes in
different layers. Membrane Shortcut (MS) ResNet (Hu et al.
2021), creating a shortcut between membrane potential of
spiking neurons in various layers. Specifically, we leverage
the membrane shortcut in the proposed GAC for this reason:

Spike-driven describes the capacity of the SNN architecture
to convert matrix multiplication (i.e., high-power Multiply-
Accumulation) between weight and spike tensors into sparse
addition (i.e., low-power Accumulation). The spike-driven
operations can only be supported by binary spikes. However,
as the SEW shortcut creates the addition between binary
spikes, the values in the spike tensors are multi-bit (integer)
spikes. Additionally, GAC-based Spiking-ResNet is not en-
tirely spike-driven. Because GAC will change the second
layer convolution’s inputs to floating-point numbers on the
Spiking-ResNet. By contrast, as shown in Fig. 2-(c), spiking
neurons are followed by the MS shortcut. Hence, both Conv
and FC layers act as sparse addition operations in GAC-based
MS-ResNet and always get binary spikes as their input.

Impact of GAC and Other SNNs’ Attention Methods on
the Spike-driven Nature. As shown in Fig. 1-(b), other SNN-
oriented attention works (Yao et al. 2021, 2023c) adding an
attention mechanism to the SNN architecture need to design
numerous multiplication blocks and prevent all matrix multi-
plications related to the spike matrix from being converted
into sparse additions, which hinders the implementation of
neuromorphic hardware. However, adding an attention mech-
anism in the encoder doesn’t hinder it. As the encoder and
architecture are decoupled in SNN hardware design (Li et al.
2023), our GAC, like direct coding (Wu et al. 2019), only
incorporates a multiplication block for analog-to-spike con-
version in the encoder without impacting the spike-driven
nature of the sparse addition SNN architecture.

608

Conclusion

This paper focuses on the SNNs’ coding problem, which is
described as the inability of direct coding to produce powerful
and temporal dynamic outputs. We have observed that this is-
sue manifests as periodic powerless spike representations due
to repetitive operations in direct coding. To tackle this issue,
we propose Gated Attention Coding (GAC), a spike-driven
and neuromorphic hardware-friendly solution that seamlessly
integrates with existing Conv-based SNNs. GAC incorporates
a multi-dimensional attention mechanism inspired by atten-
tion mechanism and human dynamics vision in neuroscience.
By effectively establishing sptiao-temporal relationships at
each moment, GAC acts as a preprocessing layer and effi-
ciently encodes static images into powerful representations
with temporal dynamics while minimizing redundancy. Our
method has been extensively evaluated through experiments,
demonstrating its effectiveness with state-of-the-art results:
CIFARI10 (96.46%), CIFAR100 (80.45%), and ImageNet
(70.42%). We hope our investigations pave the way for more
advanced coding schemes and inspire the design of high-
performance and efficient spike-driven SNNs.

Appendix

Derivation of the direct coding period T',. T, is the first
time step of firing and the period of firing for the correspond-
ing LIF model. It is trivial that T" increases monotonically
with x and the resolution of the encoding depends on the value
of x. The most important thing is that after the LIF model, the
direct coding is period coding, making the 0, 1 output period-
ical. Moreover, the derivation of the direct coding’s period
is as follows: Suppose when ¢ = 0, the membrane potential
U" = 0, and the neuron fires at time step t = T,. According
to the direct coding, the input of any specific neuron is x; ; (a
constant). Since the threshold and the attenuation factor are
separately denoted as V', and 7.According to the iterative
formula of the LIF model before the spike fire time, we have:

-1 t—1
U =7U""+a;,;= E ;= xi g ™, (12)
k=0 k=0

Also, we have: UT» ' <V, < U”", Bringing Eq.12 to
above, we have:

T,—2 T,—1
L5 Z Tk S Vth S L5 Z Tk, (]3)
k=0 k=0
Vi (l—1
T, = log, (1 - L1 =Ty (14)
xi,j
Acknowledgments

This work is supported by National Science Foundation
for Distinguished Young Scholars (62325603), National
Natural Science Foundation of China (Grants 62236009,
U22A20103), and CAAI-MindSpore Open Fund, developed
on Openl Community.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Comsa, I. M.; Potempa, K.; Versari, L.; Fischbacher, T.;
Gesmundo, A.; and Alakuijala, J. 2020. Temporal coding
in spiking neural networks with alpha synaptic function. In
2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 8529-8533. IEEE.
Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.;
Choday, S. H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.;
et al. 2018. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1): 82-99.

Deng, H.; Zhu, R.; Qiu, X.; Duan, Y.; Zhang, M.; and Deng,
L. 2023. Tensor Decomposition Based Attention Module for
Spiking Neural Networks. arXiv preprint arXiv:2310.14576.

Deng, S.; Li, Y.; Zhang, S.; and Gu, S. 2022. Temporal
Efficient Training of Spiking Neural Network via Gradient
Re-weighting. In International Conference on Learning
Representations (ICLR).

Fang, W.; Yu, Z.; Chen, Y.; Huang, T.; Masquelier, T.; and
Tian, Y. 2021. Deep residual learning in spiking neural
networks. In Advances in Neural Information Processing
Systems (NeurIPS), volume 34, 21056-21069.

Hao,Z.;Bu, T.; Ding, J.; Huang, T.; and Yu, Z. 2023. Reducing
ANN-SNN Conversion Error Through Residual Membrane
Potential. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 37, 11-21.

Hirschberg. 2015. Advances in natural language processing.
Science, 349(6245): 261-266.

Horowitz, M. 2014. 1.1 computing’s energy problem (and
what we can do about it). In 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC),
10-14. IEEE.

Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 7132-7141.
Hu, Y.; Deng, L.; Wu, Y.; Yao, M.; and Li, G. 2021. Advancing
Spiking Neural Networks Towards Deep Residual Learning.
arXiv preprint arXiv:2112.08954.

Hu, Y.; Tang, H.; and Pan, G. 2021. Spiking deep residual net-
works. IEEE Transactions on Neural Networks and Learning
Systems, 1-6.

Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In International conference on machine learning
(ICML), 448-456. pmlr.

Itti, L.; Koch, C.; and Niebur, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(11):
1254-1259.

Jaynes, E. T. 1957. Information theory and statistical mechan-
ics. Physical review, 106(4): 620.

Jin, C.; Zhu, R.-J.; Wu, X_; and Deng, L.-J. 2022. Sit: a bionic
and non-linear neuron for spiking neural network. arXiv
preprint arXiv:2203.16117.

609

Kim, J.; Kim, H.; Huh, S.; Lee, J.; and Choi, K. 2018. Deep
neural networks with weighted spikes. Neurocomputing, 311:
373-386.

Krizhevsky, A.; Sutskever, 1.; Hinton, G. E.; et al. 2017.
ImageNet Classification with Deep Convolutional Neural
Networks. Commun. ACM, 60(6): 84-90.

Kundu, S.; Zhu, R.-]J.; Jaiswal, A.; and Beerel, P. A. 2023. Re-
cent Advances in Scalable Energy-Efficient and Trustworthy
Spiking Neural networks: from Algorithms to Technology.
arXiv preprint arXiv:2312.01213.

Li, H.; Liu, H.; Ji, X.; Li, G.; and Shi, L. 2017. Cifar10-dvs:
an event-stream dataset for object classification. Frontiers in
Neuroscience, 22: 244131.

Li, J.; Shen, G.; Zhao, D.; Zhang, Q.; and Zeng, Y. 2023. Fire-
Fly: A High-Throughput Hardware Accelerator for Spiking
Neural Networks With Efficient DSP and Memory Optimiza-
tion. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 31(8): 1178-1191.

Li, Y.; Deng, S.; Dong, X.; Gong, R.; and Gu, S. 2021a. A
free lunch from ANN: Towards efficient, accurate spiking
neural networks calibration. In International conference on
machine learning (ICML), 6316-6325. PMLR.

Li, Y.; Guo, Y.; Zhang, S.; Deng, S.; Hai, Y.; and Gu, S.
2021b. Differentiable Spike: Rethinking Gradient-Descent
for Training Spiking Neural Networks. In Advances in Neu-
ral Information Processing Systems (NeurIPS), volume 34,
23426-234309.

Maass, W. 1997. Networks of spiking neurons: the third
generation of neural network models. Neural networks, 10(9):
1659-1671.

Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.;
Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo,
C.; Nakamura, Y.; et al. 2014. A million spiking-neuron
integrated circuit with a scalable communication network and
interface. Science, 345(6197): 668—673.

Niu, X.; Li, B.; Li, C.; Xiao, R.; Sun, H.; Deng, H.; and Chen,
Z.2020. A dual heterogeneous graph attention network to
improve long-tail performance for shop search in e-commerce.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD),
3405-3415.

Park, S.; Kim, S.; Na, B.; and Yoon, S. 2020. T2FSNN: deep
spiking neural networks with time-to-first-spike coding. In
2020 57th ACM/IEEE Design Automation Conference (DAC),
1-6. IEEE.

Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang,
G.; Zou, Z.; Wu, Z.; He, W.; et al. 2019. Towards artificial
general intelligence with hybrid Tianjic chip architecture.
Nature, 572(7767): 106-111.

Qiu, X.; Luan, Z.; Wang, Z.; and Zhu, R.-J. 2023a. When
Spiking Neural Networks Meet Temporal Attention Image
Decoding and Adaptive Spiking Neuron. In International
Conference on Learning Representations Tiny Paper.

Qiu, X.-R.; Wang, Z.-R.; Luan, Z.; Zhu, R.-J.; Wu, X.; Zhang,
M.-L.; and Deng, L.-J. 2023b. VTSNN: a virtual tempo-
ral spiking neural network. Frontiers in Neuroscience, 17:
1091097.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Rathi, N.; and Roy, K. 2021. Diet-snn: A low-latency spik-
ing neural network with direct input encoding and leakage
and threshold optimization. /EEE Transactions on Neural
Networks and Learning Systems, 34(6): 3174-3182.

Roy, K.; Jaiswal, A.; and Panda, P. 2019. Towards spike-based
machine intelligence with neuromorphic computing. Nature,
575(7784): 607-617.

Shan, Y.; Qiu, X.; Zhu, R.-j.; Li, R.; Wang, M.; and Qu,
H. 2023. OR Residual Connection Achieving Comparable
Accuracy to ADD Residual Connection in Deep Residual
Spiking Neural Networks. arXiv preprint arXiv:2311.06570.

Shen, J.; Xu, Q.; Liu, J. K.; Wang, Y.; Pan, G.; and Tang,
H. 2023. ESL-SNNs: An Evolutionary Structure Learning
Strategy for Spiking Neural Networks. In Proceedings of the
AAAI conference on artificial intelligence (AAAI), volume 37,
86-93.

Van Rullen, R.; and Thorpe, S. J. 2001. Rate coding versus
temporal order coding: what the retinal ganglion cells tell the
visual cortex. Neural computation, 13(6): 1255-1283.

Wei, W.; Zhang, M.; Qu, H.; Belatreche, A.; Zhang, J.; and
Chen, H. 2023. Temporal-Coded Spiking Neural Networks
with Dynamic Firing Threshold: Learning with Event-Driven
Backpropagation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 10552-10562.

Woo, S.; Park, J.; Lee, J.-Y.; and Kweon, I. S. 2018. Cbam:
Convolutional block attention module. In Proceedings of the
European conference on computer vision (ECCV), 3—19.

Wu, Y.; Deng, L.; Li, G.; Zhu, J.; and Shi, L. 2018. Spatio-
temporal backpropagation for training high-performance spik-
ing neural networks. Frontiers in Neuroscience, 12: 331.

Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Xie, Y.; and Shi, L. 2019.
Direct training for spiking neural networks: Faster, larger,
better. In Proceedings of the AAAI conference on artificial
intelligence (AAAI), volume 33, 1311-1318.

Xu, Q.; Li, Y.; Shen, J.; Liu, J. K.; Tang, H.; and Pan, G. 2023.
Constructing deep spiking neural networks from artificial
neural networks with knowledge distillation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 7886-7895.

Yao, M.; Gao, H.; Zhao, G.; Wang, D.; Lin, Y.; Yang, Z.;
and Li, G. 2021. Temporal-wise attention spiking neural
networks for event streams classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 10221-10230.

Yao, M.; Hu, J.; Zhou, Z.; Yuan, L.; Tian, Y.; Xu, B.; and
Li, G. 2023a. Spike-driven transformer. arXiv preprint
arXiv:2307.01694.

Yao, M.; Zhang, H.; Zhao, G.; Zhang, X.; Wang, D.; Cao,
G.; and Li, G. 2023b. Sparser spiking activity can be better:
Feature Refine-and-Mask spiking neural network for event-
based visual recognition. Neural Networks, 166: 410-423.

Yao, M.; Zhao, G.; Zhang, H.; Hu, Y.; Deng, L.; Tian, Y.;
Xu, B.; and Li, G. 2023c. Attention Spiking Neural Net-

works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8): 9393-9410.

610

Yao, X.; Li, F.; Mo, Z.; and Cheng, J. 2022. GLIF: A Unified
Gated Leaky Integrate-and-Fire Neuron for Spiking Neural
Networks. In Advances in Neural Information Processing
Systems (Neurips), volume 35, 32160-32171.

Zheng, H.; Wu, Y.; Deng, L.; Hu, Y.; and Li, G. 2021. Going
Deeper with Directly-Trained Larger Spiking Neural Net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 35, 11062-11070.

Zhou, S.; Li, X.; Chen, Y.; Chandrasekaran, S. T.; and Sanyal,
A. 2021. Temporal-coded deep spiking neural network with
easy training and robust performance. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), volume 35,
11143-11151.

Zhou, Z.; Zhu, Y.; He, C.; Wang, Y.; YAN, S.; Tian, Y.; and
Yuan, L. 2023. Spikformer: When Spiking Neural Network
Meets Transformer. In The Eleventh International Conference
on Learning Representations (ICLR).

Zhu, R.-J.; Zhao, Q.; Eshraghian, J. K.; and Li, G. 2023.
Spikegpt: Generative pre-trained language model with spiking
neural networks. arXiv preprint arXiv:2302.13939.

Zhu, R.-J.; Zhao, Q.; Zhang, T.; Deng, H.; Duan, Y.; Zhang,
M.; and Deng, L.-J. 2022. TCJA-SNN: Temporal-Channel
Joint Attention for Spiking Neural Networks. arXiv preprint
arXiv:2206.10177.

