
Prot2Text: Multimodal Protein’s Function Generation with GNNs and
Transformers

Hadi Abdine1, Michail Chatzianastasis1, Costas Bouyioukos2, 3, Michalis Vazirgiannis1
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3Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
{hadi.abdine, michail.chatzianastasis}@polytechnique.edu, costas.bouyioukos@u-paris.fr, mvazirg@lix.polytechnique.fr

Abstract

In recent years, significant progress has been made in the field
of protein function prediction with the development of var-
ious machine-learning approaches. However, most existing
methods formulate the task as a multi-classification problem,
i.e. assigning predefined labels to proteins. In this work, we
propose a novel approach, Prot2Text, which predicts a pro-
tein’s function in a free text style, moving beyond the con-
ventional binary or categorical classifications. By combining
Graph Neural Networks(GNNs) and Large Language Mod-
els(LLMs), in an encoder-decoder framework, our model ef-
fectively integrates diverse data types including protein se-
quence, structure, and textual annotation and description.
This multimodal approach allows for a holistic representa-
tion of proteins’ functions, enabling the generation of detailed
and accurate functional descriptions. To evaluate our model,
we extracted a multimodal protein dataset from SwissProt,
and demonstrate empirically the effectiveness of Prot2Text.
These results highlight the transformative impact of multi-
modal models, specifically the fusion of GNNs and LLMs,
empowering researchers with powerful tools for more accu-
rate function prediction of existing as well as first-to-see pro-
teins.

1 Introduction
Understanding proteins’ function is a central problem in bio-
logical sciences, as proteins are the fundamental elements of
almost all biological functions. Accurate prediction of pro-
teins’ function is essential for understanding biological sys-
tems as well as for various applications, such as drug dis-
covery, enabling researchers to identify and target specific
proteins that play critical roles in disease pathways (Ha et al.
2021). Traditionally, proteins’ functions prediction has been
approached through classification methods, assigning prede-
fined labels to proteins based on their characteristics (Kul-
manov and Hoehndorf 2019). However, this approach often
oversimplifies the complexity of proteins’ functionality, lim-
iting the depth of our understanding. To overcome this lim-
itation, we propose a novel view on proteins’ functions pre-
diction based on reformulating the task using free-text pro-
teins’ descriptions instead of relying on predefined labels.
The rapid progress in transformer-based models has brought
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a massive revolution to the field of Natural Language Pro-
cessing (NLP). These models have demonstrated impressive
language generation capabilities, allowing them to perform
a wide range of NLP tasks with remarkable performance,
including text completion, translation, sentiment analysis
and question-answering (Vaswani et al. 2017; Radford et al.
2019; Brown et al. 2020). On the other hand, Graph Neu-
ral Networks(GNNs) have emerged as a powerful tool for
modeling graph-structured data, capturing the intricate rela-
tionships between different elements in a graph (Kipf and
Welling 2017; Reiser et al. 2022). However, the integration
of GNNs and transformers faces various challenges, such
as effectively handling the heterogeneity of data represen-
tations, therefore the field is still in its early stages. De-
spite this, the potential benefits of leveraging both GNNs
and transformers for graph-to-text applications, such as pre-
dicting the functional properties of proteins are substantial.
To that end, we develop a novel multimodal framework,
Prot2Text, that can generate detailed and accurate descrip-
tions of proteins’ functions in free text. We effectively in-
tegrate GNNs and Large Language Models (LLMs), to en-
compass both structural and sequential information of the
protein’s 3D structure and amino acid’s sequence respec-
tively. The encoder-decoder architecture forms the backbone
of our model, with the encoder component employing a Re-
lational Graph Convolution Network (RGCN) (Schlichtkrull
et al. 2018) to process the proteins’ graphs and the ESM
protein language model (Lin et al. 2023a) to encode the
proteins’ sequences. The decoder component utilizes a pre-
trained GPT-2 model to generate detailed proteins’ descrip-
tions. To train our multimodal model, we compile a dataset
of proteins extracted from SwissProt, a comprehensive col-
lection of protein annotations obtained from the UniProt
database (Consortium 2015). This dataset encompasses a
vast number of proteins, each annotated with its correspond-
ing function or description. In addition to the textual infor-
mation, we obtain the 3D structure representation of the pro-
teins from AlphaFold (Varadi et al. 2022). We further release
this curated dataset to the public, allowing other researchers
to use it for benchmarking and further advancements in the
field. Code, data and models are publicly available1. Our
main contributions can be summarized as follows:

1https://github.com/hadi-abdine/Prot2Text
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• We introduce the Prot2Text framework, a novel multi-
modal approach for generating proteins’ functions in free
text. Our model combines both GNNs and ESM to en-
code the protein in a fused representation while a pre-
trained GPT-2 decodes the protein’s text description.

• We propose various baselines for protein text generation
and demonstrate that the integration of both graph and
sequence protein information leads to better generation
capabilities.

• We further release a comprehensive multimodal protein
dataset, which includes 256, 690 protein structures, se-
quences, and textual function descriptions. Researchers
can leverage this dataset to benchmark and compare their
models, thereby driving advancements in the field and
enabling for a more robust and standardized evaluation
of proteins’ functions prediction methods in free text for-
mat.

2 Related Work
Transformers. The transformer-based encoder-decoder
model was first introduced by Vaswani et al. (2017). Since
then, this model architecture has become the de-facto stan-
dard encoder-decoder architecture in Natural Language Pro-
cessing (NLP). Despite significant research on different pre-
training objectives for transformer-based encoder-decoder
models such as T5 (Raffel et al. 2019) and Bart (Lewis et al.
2020), the model architecture has remained largely the same.
Radford et al. took advantage of the transformer architec-
ture, which is superior and conceptually simpler than Recur-
rent Neural Networks to introduce the OpenAI GPT model.
Specifically, they pretrained a left-to-right transformer de-
coder as a general language model using the transformer
architecture. Following, they fine-tuned the model on 12
different language understanding tasks by applying various
transformations to the input. Later, GPT-2 (Radford et al.
2019), a more advanced version of GPT with more trainable
parameters, was introduced. The authors showed that as long
as general language models have very high capacities, they
can reach reasonable performance on many specific natural
language processing tasks. The use of the transformer ar-
chitecture later expanded to include modalities other than
natural language, such as images (Dosovitskiy et al. 2021),
protein amino acid sequence (Rives et al. 2021; Lin et al.
2023a), and molecules SMILES string (Fabian et al. 2020;
Chithrananda, Grand, and Ramsundar 2020).

Multimodal models. The success of the transformer’s
uni-modality tasks made this architecture broadly studied
for multimodal representation learning. One example is The
CLIP (Contrastive Language-Image Pre-training) model
(Radford et al. 2021) which is a transformer model that
facilitates cross-modal understanding between images and
text. It combines a ViT vision encoder, with a transformer-
based language encoder to learn joint representations of im-
ages and their associated textual descriptions. Another ex-
ample is the MolT5 (Edwards et al. 2022) which is a self-
supervised learning framework based on the T5 model for
pretraining models on a vast amount of unlabeled natural
language text and molecule SMILES strings. MolT5 is able

to perform bidirectional translation between molecule repre-
sentations and natural language allowing molecule caption-
ing and generation providing text prompts. ProtST (Xu et al.
2023), enhances the protein language model classification
and retrieval capabilities by co-training it with biomedical
text. While ProteinDT (Liu et al. 2023) uses protein lan-
guage models and pretrained language models to perform
text-guided protein generation. Both of the aforementioned
text-protein multimodal frameworks take only the protein
sequence into consideration to encode the proteins.

Graph Neural Networks. Graph neural networks
(GNNs) have emerged as a powerful framework for mod-
eling and analyzing graph-structured data (Scarselli et al.
2009; Kipf and Welling 2017). By iteratively exchanging
and integrating information among nodes, GNNs can prop-
agate and refine features throughout the graph, ultimately
encoding a comprehensive understanding of the graph’s
structure and semantics. This ability to capture complex
relationships within graphs has contributed to the success
of GNNs in various domains, including social network
analysis, recommendation systems, and bioinformatics
(Zitnik, Agrawal, and Leskovec 2018; Zhang et al. 2021;
Chatzianastasis, Vazirgiannis, and Zhang 2023). Numerous
studies have suggested various enhancements and expan-
sions to the GNNs’ models. Some notable contributions
include the introduction of more expressive and adaptable
aggregation functions, such as those proposed by Murphy
et al. (2019), Seo, Loukas, and Perraudin (2019) and
Chatzianastasis et al. (2023). Moreover, several schemes
have been developed to incorporate different local struc-
tures or high-order neighborhoods, as explored by Morris,
Rattan, and Mutzel (2020) and Nikolentzos, Dasoulas, and
Vazirgiannis (2020). Furthermore, the domain of GNNs
has expanded to encompass heterogeneous graphs, where
nodes and edges can have different types and semantics,
leading to the development of Heterogeneous Graph
Neural Networks effectively handling such complex graph
structures (Schlichtkrull et al. 2018; Zhang et al. 2019).

Protein Representation Learning. In the field of protein
representation learning, various approaches have emerged
over the years, aiming to capture meaningful information
from proteins using different data modalities and computa-
tional techniques. One prominent avenue of research is fo-
cused on sequence-based representations, that extract fea-
tures solely from the amino acid sequences of proteins.
Drawing inspiration from the remarkable achievements of
language models in Natural Language Processing (NLP),
researchers have also developed pretrained language mod-
els tailored specifically for proteins (Brandes et al. 2022;
Lin et al. 2023b). These models leverage large-scale pro-
tein datasets to learn powerful representations that can sub-
sequently be utilized for various prediction tasks. In addition
to sequence-based approaches, graph-based representations
leverage the three-dimensional (3D) structure of proteins
to capture their functional properties. Zhang et al. (2022)
proposed a graph neural network model with a contrastive
pertaining strategy for function prediction and fold classifi-
cation tasks. Chen et al. (2023) proposed a 3D-equivariant

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10758



graph neural network, specifically designed to estimate the
accuracy of protein structural models. Wang et al. (2022)
used a hierarchical graph network, which captures the hi-
erarchical relations present in proteins and learns represen-
tations at different levels of granularity. Hybrid approaches
integrate multiple modalities, including protein sequences,
structures, and functional annotations, to create comprehen-
sive representations. These methods combine the strengths
of sequence-based and graph-based models to capture di-
verse aspects of protein function. Gligorijević et al. (2021)
proposed DeepFRI which combines sequence features ex-
tracted from a protein language model with protein struc-
tures. Our work aims to leverage protein sequence and struc-
ture models to generate free text annotations of proteins.

3 Methodology
In this section, we present our proposed multimodal frame-
work, Prot2Text, for generating protein function descrip-
tions in free text. An illustration of the proposed architecture
can be found in Figure 1.

Graph Construction. Upon obtaining the 3D proteins’
structures using AlphaFold, we proceed to represent the
proteins as a heterogeneous graph G = (V,E,R), where
V = [N ] := {1, ..., N} is the set of vertices representing
the amino acids of the proteins, E ⊆ V × V is the set of
edges representing various interactions between the nodes
and R is a set of different edge interactions. Each node u is
associated with a feature vector xu ∈ Rd, encompassing
relevant information such as local structural features, and
physicochemical properties of the associated amino acids.
This enables the graph to retain fine-grained information
critical to the protein’s structure and function. To model the
diverse interactions and relationships between amino acids,
we introduce different types of edges connecting the nodes.
Therefore, each edge i = (v, u) is associated with an edge
type ei ∈ R. Sequential edges are employed to connect ad-
jacent nodes in the protein sequence, effectively represent-
ing the sequential order of amino acids and capturing the
linear arrangement of the protein’s primary structure. This
sequential information is crucial for understanding the fold-
ing patterns and functional motifs within the protein. Ad-
ditionally, we utilize spatial edges to establish connections
between nodes that are in close spatial proximity within the
3D structure of the protein. These edges play a pivotal role in
encoding the protein’s tertiary structure and folding patterns,
enabling us to capture the intricate spatial arrangements of
amino acids within the protein’s core. We further extend the
graph construction to include hydrogen bond interactions as
an additional edge type. Hydrogen bonds are fundamental
non-covalent interactions that are of paramount importance
in stabilizing protein structures and enabling specific molec-
ular recognition events. Through the integration of the dif-
ferent edge types, our comprehensive protein graph provides
a more holistic and detailed depiction of the protein’s struc-
ture while capturing both short and long-range interactions.

Graph Encoding. To encode the protein graph G into a
vector hG ∈ Rdout , we employ a Relational Graph Convo-
lutional Neural Network(RGCN) (Schlichtkrull et al. 2018),

which effectively considers the various edge types present
in the graph in the message-passing mechanism. We denote
the neighborhood of type r of a vertex u by Nr(u) such that
Nr(u) = {v : (v, u) ∈ Er}, where Er is the set of edges
with r edge type. In layer k of the GNN, we update the node
representations as follows:

xk
i = σ

W k
root · xk−1

i +
∑
r∈R

∑
j∈Nr(i)

1

|Nr(i)|
W k

r · xk−1
j

 ,

(1)
where W k

root represents the learnable weight matrix for the
root transformation in layer k, W k

r denotes the learnable
weight matrix of layer k for relation r and σ(·) is an element-
wise activation function such as ReLU. This formulation al-
lows nodes to update their representations by incorporating
information from neighboring nodes based on the specific
edge types, capturing the structural and relational dependen-
cies within the protein graph. To obtain the graph represen-
tation from the node representations of the last layer K of
the GNN, we apply a mean-pooling layer as follows:

hG =
1

N

N∑
i=1

xK
i (2)

The resulting vector hG serves as an informative encoded
representation of the protein graph, capturing the essential
structural and relational characteristics. This representation
plays a crucial role in the subsequent text generation pro-
cess, where it will be utilized to generate detailed and accu-
rate protein functions.

Sequence Encoding. To encode the protein sequence PS ,
we used ESM2-35M (Lin et al. 2023a) as our base model.
ESM2 is a protein language model that uses a transformer-
based architecture and an attention mechanism to learn the
interaction patterns between pairs of amino acids in the input
sequence. This allows the ESM model to capture amino acid
sequence evolutionary information about proteins and their
properties. In order to achieve uniform representation di-
mensions for all modalities within the spatial domain, a pro-
jection layer is applied after the last hidden layer of the ESM
model. This layer functions as a projection layer that trans-
forms the individual amino acid representations, derived
from the ESM embedding dimension, into the graph embed-
ding dimension dout. As a result, a matrix H0

S ∈ RN,dout is
formed, containing the amino acid representations:

H0
S = ESM(PS)Wp (3)

where Wp is a trainable matrix.

Multimodal Fusion To obtain the final protein encoding,
we utilize a fusion block that combines the representation of
each amino acid inside the matrix H0

S with the graph rep-
resentation vector hG. The fusion process involves a simple
element-wise addition of the two representations, followed
by a projection layer. This fusion block enables the integra-
tion of information from both the sequence and the graph
representations in a straightforward manner. Thus, allow-
ing each amino acid to be contextually enriched with infor-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10759



Modified GPT-2 Model
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ESM Tokenizer

Protein Sequence
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Is associated with a DNA binding complex that binds

 to the G box, a well-characterized cis-acting DNA
 regulatory element found in plant genes

Text Tokenizer + Right Shifting

Protein Description

RGCN Encoder
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 binding complex that binds
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Protein Description Generation
(CLM Training Objective)

Fusion Block

Figure 1: Architecture of the proposed Prot2Text framework for predicting protein function descriptions in free text. The model
leverages a multimodal approach that integrates protein sequence, structure, and textual annotations. The encoder component
utilizing an RGCN to process the protein graphs, and an ESM model to process the protein sequence. A fusion mechanism
facilitates the exchange of relevant information between the graph-encoded and the sequence-encoded vectors, creating a fused
representation synthesizing the structural and textual aspects. The decoder component employs a pretrained GPT-2 model, to
generate detailed and accurate protein descriptions from the fused protein representation. By combining the power of GNNs and
LLMs, Prot2Text enables a holistic representation of protein function, facilitating the generation of comprehensive descriptions.

mation from the graph representation. Additionally, a nor-
malization layer is applied after each fusion block to main-
tain stable training and further enhance the learning process.
Specifically, for each amino acid representation in Hk

S , and
the graph representation hG, the fusion block computes the
combined representation Hk+1

S as follows:

Hk+1
S =

(
Hk

S + 1nhGW
k
V

)
W k

O, (4)

where W k
V and W k

O are trainable matrices in fusion block k
and 1n is a vector of ones of size n (length of the amino acid
sequence).
By using this fusion block multiple times in the architec-
ture (four times in this case), the model can capture com-
plex interactions and dependencies between the sequence
and graph representations, leading to an effective and con-
textually enriched encoding of the protein data. The fusion
block could be seen as a special case of the transformers
cross-attention block when the the input from the encoder
represents only one token.

Text Generation We employed the transformer decoder
architecture for generating protein descriptions. We initial-
ized the main components of the decoder, namely the text
embedding matrix, self-attention, and language modeling

head, with the weights of GPT-2. By doing so, we leveraged
the GPT-2 model’s capacity to grasp the underlying textual
semantics. We forward the protein representation obtained
from the protein encoder as input to the multi-head cross-
attention module within the transformer decoder. This inter-
action enabled the model to effectively incorporate context
from the protein representation, contributing to the genera-
tion of coherent protein descriptions. We adopted the iden-
tical vocabulary and tokenizer from the GPT-2 model, with
the introduction of two unique special tokens. These addi-
tional tokens serve as essential markers, enabling the model
to discern the precise boundaries of each protein descrip-
tion within the input text. In the training phase, we em-
ployed Causal Language Modeling (CLM) as the training
objective to optimize our model. Causal Language Model-
ing involves training the model to predict the next token in
a sequence given the preceding tokens. This unidirectional
prediction process ensures that the model generates text in
a causal manner, without access to future tokens. The maxi-
mum length of each description is 256 tokens.

4 Experimental Results
Dataset To train the Prot2Text framework using proteins’
structures, sequences and textual descriptions, we build a
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multimodal dataset with 256, 690 proteins. For each pro-
tein, we have three crucial information: the correspond-
ing sequence, the AlphaFold accession ID and the textual
description. To build this dataset, we used the SwissProt
database (Bairoch and Apweiler 1996), the only curated
proteins knowledge base with full proteins’ textual descrip-
tion included in the UniProtKB (Consortium 2016) Release
2022 04. Initially, The SwissProt database in this release
has 568, 363 proteins on which we perform the following:
(1) Select the following properties: name that gives the full
name of the protein, sequence that gives the amino acid
sequence of the protein, AlphaFoldDB that gives the ac-
cession ID of the protein in AlphaFold database, taxon and
text that gives the protein textual description. (2) Elimi-
nate all samples that do not have all three crucial informa-
tion. (3) Remove all samples with a duplicate amino acid
sequence. (4) Remove all the samples where the textual de-
scription contains ”(By Similarity)”. (5) Apply the CD-HIT
clustering algorithm (Li and Godzik 2006) to create a train/-
validation/test scheme with 248, 315, 4, 172 and 4, 203 pro-
teins respectively. The maximum similarity threshold be-
tween the (train, validation test) sets used in the CD-HIT
algorithm is 40%. (6) Preprocess the textual description to
remove the ”PubMed” information. The AlphaFoldDB ac-
cession is then used to download the protein structure in a
”.PDB” file format using version 4 from AlphaFoldDB.
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Figure 2: The test BLEU score for Prot2Text models as a
function of the percentage identity using BLAST hit be-
tween the test and the train sets.

Baselines. In our experimental evaluation, we employed
a comprehensive set of baselines to rigorously assess the
text generation performance of the Prot2Text framework.
Specifically, we compared our approach against unimodal
encoders, namely RGCN, ESM, and a vanilla-Transformer
trained from scratch. These encoders exclusively focus on
either the protein graph or the protein sequence representa-
tion. Furthermore, we compared it with a multimodal base-
line, RGCN+ESM, that concatenates the graph and se-
quence representations without fusing the representation of
each amino acid and the structure representation. Finally,
we compare with RGCN × vanilla-Transformer baseline,

which has similar architecture as Prot2Text but instead uses
a vanilla-Transformer model from scratch instead of the pre-
trained ESM2. In all ESM models, we use the last hidden
state. The vanilla-Transformer baseline follows the same
configuration and as the pretrained ESM2-35M.

Training Details. We implemented all the models using
PyTorch and utilized 64 NVIDIA V100 GPUs for train-
ing. We used the AdamW optimizer (Loshchilov and Hut-
ter 2019) with ϵ = 10−6, β1 = 0.9, β2 = 0.999, with a
learning rate starting from 2.10−4 and decreasing to zero
using a cosine scheduler. We used a warm-up of 6% of the
total training steps. We fixed the batch size to four per GPU
and we trained the models for 25 epochs. For the GNN en-
coder, we used 6 layers with a hidden size equal to GPT-
2’s hidden size (768 for the base model of GPT-2) in each
layer. As for the amino acid sequence tokenization, We used
the same tokenizer and configuration of ESM2. The train-
ing for each Base model lasted for approximately 12 hours.
All experiments were carried out using the HuggingFace
transformers library (Wolf et al. 2020). More details
are available in the appendix of the preprint2.

Metrics. In the experiments, we used several metrics to
evaluate the performance of the model in the text genera-
tion task. Specifically, we used BLEU Score (Papineni et al.
2002) which is a widely used metric for evaluating the qual-
ity of machine-generated text. It measures the similarity be-
tween the generated text and the reference text based on
n-grams. A higher BLEU score indicates better similarity
between the generated and reference text. We further used
Rouge-1, Rouge-2 and Rouge-L scores (Lin 2004), which
measure the overlap of unigrams, bigrams, and longest com-
mon subsequence between the generated text and the refer-
ence text, respectively. Finally, we used BERT Score (Zhang
et al. 2020), which measures the similarity between the gen-
erated text and the reference text using contextualized word
embeddings from a transformer-based model. In our exper-
iments we choose to use BioBERTLARGE-cased v1.1 (Lee
et al. 2020) to compute the BERT Score.

Results. We report the results in Table 1, for different
encoder models, including unimodal encoders like vanilla-
Transformer, ESM2-35M, and RGCN, and multimodal en-
coders like RGCN × vanilla-Transformer and RGCN +
ESM2-35. All models use a GPT-2 decoder. The unimodal
vanilla-Transformer baseline, relying solely on the amino
acid sequence of the protein, exhibits the lowest perfor-
mance across all evaluation metrics. However, we observe a
significant improvement in performance when using the uni-
modal graph encoder RGCN. The RGCN outperforms the
vanilla-Transformer by over five absolute points in terms of
BLEU score and three points in terms of BERT score. This
performance disparity highlights the importance of incorpo-
rating structural information through the RGCN encoder for
protein’s function prediction. On the other hand, leverag-
ing the pretrained protein language model ESM2-35M in-
stead of initializing the vanilla-Transformer randomly, re-
sults in a remarkable improvement in performance. The

2https://arxiv.org/abs/2307.14367
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Model # Params BLEU Score Rouge-1 Rouge-2 Rouge-L BERT Score
vanilla-Transformer 225M 15.75 27.80 19.44 26.07 75.58

ESM2-35M 225M 32.11 47.46 39.18 45.31 83.21
RGCN 220M 21.63 36.20 28.01 34.40 78.91

RGCN + ESM2-35M 255M 30.39 45.75 37.38 43.63 82.51
RGCN × vanilla-Transformer 283M 27.97 42.43 34.91 40.72 81.12

Prot2TextBASE 283M 35.11 50.59 42.71 48.49 84.30

Table 1: Test set results for different encoder models. All models share the same GPT-2 decoder. Prot2TextBASE achieves the
highest performance across all evaluation metrics, including BLEU score, Rouge scores, and BERT Score.

ESM2-35M encoder leads to a substantial increase of over
16 BLEU score points and 18 Rouge-L points compared
to the standard vanilla-Transformer configuration. This no-
table enhancement can be attributed to the pretraining of
ESM2-35M using masked protein modeling, which enables
the encoder to capture intricate relationships and patterns
within protein sequences. In the context of multimodal pro-
tein representation, the evaluation results demonstrate that
Prot2TextBASE exhibits superior performance across all as-
sessment metrics. Notably, it achieves the highest BLEU,
Rouge-1, Rouge-2, Rouge-L, and BERT scores. These out-
comes highlight the effectiveness of fusing protein structure
and amino acid information in a multimodal manner. The
incorporation of protein structure, facilitated by the Rela-
tional Graph Convolutional Network (RGCN) with the se-
quential representations of amino acids from ESM2-35, sig-
nificantly enhances the overall performance across all eval-
uation metrics. This improvement is attributed to the en-
riched understanding of proteins achieved through the syn-
ergy of these two modalities. Furthermore, the efficacy of the
multimodal fusion approach is corroborated by the results
obtained from RGCN × vanilla-Transformer. Introducing
structural information using RGCN to the randomly initial-
ized vanilla-Transformer yields a substantial improvement
of over 10 BLEU score points compared to using the vanilla-
Transformer alone, and more than 6 BLEU score points im-
provement over using RGCN in isolation. Finally, to show
the importance of the fusion block in the Prot2Text frame-
work, we compare it against RGCN + ESM2-25, which con-
catenates the protein structure representation to the amino
acids representations. In this case, the graph representation
will simply be passed to the decoder alongside the ESM out-
put. We notice that using this strategy leads to slightly worse
results than using the ESM alone. This not only provides
backing for the selection of the fusion block employed in
Prot2Text, but also suggests that indiscriminately increasing
the overall parameter count of the model could potentially
lead to a degradation in its performance.

Ablation Study: Scaling to Larger Models. We con-
ducted an ablation study to assess the performance of our
Prot2Text framework as we varied the number of parame-
ters. The primary objective of this experiment was to evalu-
ate the benefits of employing larger models in terms of gen-
erating more accurate and detailed textual representations of
protein’s function. To conduct the ablation study, we system-
atically varied the size of the protein language model (ESM).
Where Prot2TextSMALL, Prot2TextBASE, Prot2TextMEDIUM

and Prot2TextLARGE use ESM2-8M, ESM2-35M, ESM2-
150M and ESM2-650M respectively. We evaluated each
configuration on the same test set of proteins and used the
same evaluation metrics as described earlier. The results
of the ablation study, presented in Table 2, show a trend
of performance improvement as we scale up the model’s
architecture. Larger versions of ESM outperformed their
smaller counterparts in most evaluation metrics. The in-
crease in model size led to more accurate and relevant de-
scriptions, indicating the benefit of leveraging larger lan-
guage models in the Prot2Text framework. Yet, comple-
mentary analysis including corresponding computation time
showed an increase in the inference cost following the use
of larger models. Therefore, Prot2TextMEDIUM (398M pa-
rameters) is a good trade-off striking the balance between
performance and computational cost. Furthermore, in Fig-
ure 2 we report the performance of all Prot2text models
with respect to different similarity thresholds. Where the
similarity represents the highest alignment score between
the amino acid sequences of the test and train sets using
BLAST identity. We observe that for test proteins with low
similarity scores with the train set (between 20% and 30%)
and for proteins with no counterpart in the train set, the
Prot2TextMEDIUM is the dominant one while for higher simi-
larity scores Prot2TextLARGE performs better.

Visualization of Generated Descriptions. To gain deeper
insights into the quality of the generated proteins’ functions
by our Prot2Text framework, we provide in Figure 3 a tex-
tual comparison of the pre-defined labels and generated text
outputs for a selected set of proteins from the test set. It
illustrates a comparison between the ground truth and the
corresponding descriptions generated by Prot2TextBASE for
two different proteins using each protein’s amino acid se-
quence and 3D structural representation. The results indicate
a successful detailed reconstruction of the different proteins’
functions including richer information than the known de-
scription. Following, Figure 3 showcases the model’s ability
to generate coherent and informative free-text descriptions
that align closely with the ground truth annotations.

5 Conclusion
In conclusion, our paper introduces Prot2Text, a pioneer-
ing multimodal framework, for the accurate prediction of a
protein’s function in free text format, from graph and se-
quential input. By reformulating the task as text generation,
we address the limitations of traditional classification-based
methods, allowing for a more nuanced and in-depth under-
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Model # Params BLEU Score Rouge-1 Rouge-2 Rouge-L BERT Score Inference Time
Prot2TextSMALL 256M 30.01 45.78 38.08 43.97 82.60 1,225
Prot2TextBASE 283M 35.11 50.59 42.71 48.49 84.30 1,379

Prot2TextMEDIUM 398M 36.51 52.13 44.17 50.04 84.83 1,334
Prot2TextLARGE 898M 36.29 53.68 45.60 51.40 85.20 1,667

Table 2: Test set results for different size variations of Prot2Text. Larger models outperform their smaller counterparts
across most evaluation metrics, indicating the benefits of employing larger language models in the Prot2Text framework. The
Prot2TextMEDIUM model, strikes an optimal balance between performance and computational efficiency. The inference time is
in seconds for text generation on the whole test set. The inference time is computed during text generation using two NVIDIA
RTX 6000 with 48GB memory in parallel and batch size of four per device.

Generated TextLabeled TextProtein 

Probable peripherally associated component of the endosomal sorting
required for transport complex III (ESCRT-III) which is involved in
multivesicular bodies (MVBs) formation and sorting of endosome-
derived cargo proteins into MVBs. MVBs contain intraluminal vesicles
(ILVs) that are generated by invagination and scission from the limiting
membrane of the cell and mostly are delivered to lysosomes enabling
degradation of membrane proteins, such as stimulated growth factor
receptors, lysogenic enzymes and lipids. The MVB pathway appears to
require the sequential function of ESCRT-O, -I,-II and -III complexes.
ESCRT proteins mostly dissociate from the invaginating membrane
before the ILV is released. The ESCRT machinery also functions in
topologically equivalent membrane fission events, such the terminal
stages of cytokinesis and the budding of enveloped viruses (HIV-1 and
other lentiviruses). ESCRT I, -II and III proteins mostly mediate the
sorting of proteins into lysosphingolipids, primarily cytoplasmic
membrane vesicle-derived proteins. ESCR-III proteins are believed to
mediate a specialized role in the final stages

Required for the sorting and concentration of proteins
resulting in the entry of these proteins into the
invaginating vesicles of the multivesicular body
(MVB). Acts a component of the ESCRT-III complex,
which appears to be critical for late steps in MVB
sorting, such as membrane invagination and final
cargo sorting and recruitment of late-acting
components of the sorting machinery. The MVB
pathway requires the sequential function of ESCRT-
O, -I,-II and -III complex assemblies. Can directly
stimulate VPS4 ATPase activity. The DID4/VPS2-
VPS24 subcomplex is required for the VPS4-
dependent dissociation of ESCRT-III.

 P36108

Q8NG08

DNA-dependent ATPase and 5'-3' DNA helicase required for the
maintenance of genome stability. Involved in various processes such as
transcription-coupled nucleotide excision repair, mitotic spindle
assembly, DNA damage response and DNA repair. During DNA double-
strand break (DSB) repair, involved in limiting the number of single-
stranded DSBs through DNA end resection by promoting the recruitment
of RAD51 to sites of DNA damage. In addition to DNA end reannealing,
also promotes the resumption of DNA synthesis from the new 3'-tail end
of the existing DNA ends. Acts as a regulator of telomerase by inhibiting
telomeric silencing: binds to telomeromyosin, and is required for
telomeronucleolytic silencing of endogenous small interfering RNAs
(endo-siRNAs) and their targeting to the telomere. Involves also DNA
damage signaling via the 5'-5' helicase and DNA helicases activities,
preventing disintegration of the DNA duplex and subsequent resection of
the damaged DNA strand. In vitro able to unwind 5'-overhanging flap
DNA and catalyzes ATP-dependent unwinding of 5'-DNA ends. 

5'-3' DNA helicase involved in DNA damage
response by acting as an inhibitor of DNA end
resection. Recruitment to single-stranded DNA
(ssDNA) following DNA damage leads to inhibit the
nucleases catalyzing resection, such as EXO1, BLM
and DNA2, possibly via the 5'-3' ssDNA translocase
activity of HELB. As cells approach S phase, DNA
end resection is promoted by the nuclear export of
HELB following phosphorylation. Acts independently
of TP53BP1. Unwinds duplex DNA with 5'-3' polarity.
Has single-strand DNA-dependent ATPase and DNA
helicase activities. Prefers ATP and dATP as
substrates. During S phase, may facilitate cellular
recovery from replication stress.

Figure 3: Ground-truth labeled text vs predicted text: A textual comparison of the labeled descriptions and generated text
outputs for three different proteins from the test set.

standing of a protein’s functionality. Leveraging the power
of GNNs and LLMs, we integrate structural and textual pro-
tein information, resulting in highly detailed and coherent
generated protein descriptions. The release of a comprehen-
sive multimodal protein dataset further empowers the scien-
tific community to benchmark and advance the field of pro-
tein function prediction in free text format. This innovative
approach opens new horizons for research and applications
in drug discovery, protein engineering, and various biolog-
ical sciences, with the potential to revolutionize our under-
standing of proteins’ functions.

6 Limitation and Future Work

One limitation of our proposed Prot2Text model is that the
RGCN encoder is not pretrained. Unlike the ESM which
benefits from pretraining on a large corpus, the RGCN en-
coder lacks this initial knowledge. As a result, the RGCN
encoder might struggle to capture complex patterns, poten-
tially leading to suboptimal performance. To address this
limitation, we aim to explore pretraining techniques specifi-
cally tailored for graph neural networks. This could involve
pretraining the RGCN encoder on auxiliary graph-related
tasks, leveraging graph-level or node-level information to
build a foundational understanding of protein structures.
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