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Abstract

Given a set of observations, feature acquisition is about find-
ing the subset of unobserved features which would enhance
accuracy. Such problems have been explored in a sequential
setting in prior work. Here, the model receives feedback from
every new feature acquired and chooses to explore more fea-
tures or to predict. However, sequential acquisition is not fea-
sible in some settings where time is of the essence. We con-
sider the problem of feature acquisition in batch, where the
subset of features to be queried in batch is chosen based on
the currently observed features, and then acquired as a batch,
followed by prediction. We solve this problem using several
technical innovations. First, we use a feature generator to
draw a subset of the synthetic features for some examples,
which reduces the cost of oracle queries. Second, to make the
feature acquisition problem tractable for the large heteroge-
neous observed features, we partition the data into buckets,
by borrowing tools from locality sensitive hashing and then
train a mixture of experts model. Third, we design a tractable
lower bound of the original objective. We use a greedy algo-
rithm combined with model training to solve the underlying
problem. Experiments with four datasets show that our ap-
proach outperforms these methods in terms of trade-off be-
tween accuracy and feature acquisition cost.

Introduction
Supervised learning algorithms often assume access to a
complete set of features x ∈ Rd to model the underly-
ing classifier Pr(y |x). However, in applications like health-
care, information retrieval, etc., a key goal is feature acqui-
sition (Babu and Vijayan 2016; Geng et al. 2007), where the
learner may observe only a subset of features O ⊂ {1, .., d}
and the goal is to query for a new subset U from the un-
observed set of features: U ⊂ {1, ..., d}\O. For example,
when a patient visits a doctor with a new health issue, the
doctor can observe only few symptoms. If the symptoms are
not informative enough to diagnose a disease with high con-
fidence, the doctor may ask for additional medical tests.

Prior Work and Their Limitations
Driven by these motivations, feature acquisition is widely
studied in literature. Earlier works used tools from active
learning techniques (Melville et al. 2004; Saar-Tsechansky,
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Melville, and Provost 2009; Huang et al. 2018; Gong et al.
2019; Ma et al. 2018), which optimize measures based on
variance, uncertainty or information gain. To improve their
performance, a recent line of work explicitly optimizes the
prediction accuracy (Shim, Hwang, and Yang 2018; Li and
Oliva 2020, 2021; Janisch, Pevnỳ, and Lisỳ 2019, 2020a;
Dulac-Arnold et al. 2012; Liyanage, Zois, and Chelmis
2021a,b; Hu et al. 2018; Yu et al. 2016), predominantly us-
ing reinforcement learning (RL).

The above methods are tailored for sequential feature ac-
quisition. In such scenarios, it is feasible to observe the value
of a newly acquired feature immediately after its acquisition,
allowing the use of its true value to inform the acquisition
of additional features. However, certain situations involve
a substantial delay between querying one feature and ob-
serving its value. In these cases, it may be more practical to
batch-query a subset of features instead of acquiring them
one by one in an online fashion. For instance, in healthcare,
the analysis of pathological samples can introduce signifi-
cant delays after collection. Thus, doctors may need to ob-
tain results from multiple tests at once for rapid diagnosis.

Our Contributions
Responding to the above challenge, we propose GENEX,
a novel feature acquisition method to acquire features in
batch. Specifically, we make the following contributions.
Using feature generator to reduce oracle queries Feature
generators are commonly used in feature acquisition tasks
to guide feature selection policies (Li and Oliva 2021; Ma
et al. 2018). However, these generated features typically are
not utilized for final label prediction. In our work, instead of
querying all features from an oracle, we draw a feature sub-
set from the generator and directly employ them for classi-
fication, reducing the number of oracle queries with only a
marginal loss in accuracy.
Mixture of experts on heterogeneous feature space The
observed features O can vary significantly across instances.
This leads to a diverse set of acquired features and, conse-
quently, a range of heterogeneous data domains. Generaliz-
ing across such heterogeneity using a single model is chal-
lenging. To address this, we partition the dataset into clusters
or domains using a random hyperplane-based approximate
nearest neighbor technique (Indyk and Motwani 1999). We

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10927



then build a mixture of experts model on these clusters, with
each cluster representing instances likely to share a similar
set of optimal features for acquisition. Each mixture compo-
nent specializes in generalizing on a specific data subset.

Discrete continuous training framework The original
feature acquisition problem is intractable due to the cou-
pling of a large number of set variables. To tackle this,
we design a surrogate loss guided by generator confi-
dence and seek to minimize it alongside the feature subsets.
This leads to a discrete-continuous optimization framework
which is NP-hard. To tackle this problem, we reformulate
it into a cardinality-constrained set function optimization
task. Subsequently, we introduce novel set function prop-
erties, (m,m)-partial monotonicity and (γ, γ)-weak sub-
modularity, extending recent notions of partial monotonic-
ity (Mualem and Feldman 2022) and approximate submod-
ularity (Elenberg et al. 2018; Harshaw et al. 2019; De et al.
2021). These properties allow us to design a greedy al-
gorithm GENEX, to compute near-optimal feature subsets,
with new approximation guarantee.

We experiment with four real datasets and show that,
GENEX outperforms several baselines. Moreover, our exten-
sive ablation study shows that our use of a generative model
reduces the cost of querying at a minimal accuracy drop.

Problem Formulation

Notations and problem setup We use x ∈ Rn to represent
a feature vector and y ∈ Y for the associated label. I =
[n] denotes the set of feature indices. O ⊂ I represents the
indices of observed features, while U ⊆ I\O represents
indices of subset of features to be queried. Given a feature
vector x, x[O] consists of features indexed by O. We denote
a singleton feature as x[s] ∈ R for index s.

Our classifier is denoted as h ∈ H, where h(x)[y] =
Pr(y |x) and H is the hypothesis class. We also employ
a generative model for features, denoted as p(x[V ] |x[O]),
which generates new features x[V ] conditioned on observed
features x[O]. For clear disambiguation from oracle features
x[•], we use x′[•] for features drawn from the generator p.
We utilize it to draw a subset of unseen features V ⊂ U ,
rather than querying the oracle. In our work, we use the
cross-entropy loss ℓ(h(x), y).

High level objective Given an instance x, we initially ob-
serve only a subset of the features x[O] indexed by O which
varies across the instances. In general, this small subset is
not sufficient for accurate prediction. Hence, we would seek
to query new features x[U ] subject to a maximum number
of oracle queries. Thus, our key goal is to use x[O] to de-
termine the optimal choice of U among all such possible
subsets, such that x[O ∪ U ] results in high accuracy. Note
that, here, we aim to acquire the oracle features in batch and
not in sequence, i.e., we may not observe a part of the unob-
served features, before we query the rest.

Now, suppose that by some means, we have determined
such subset U , so that x[U ] obtained via querying from the
oracle would result in high accuracy. Still, it may not be al-
ways necessary to query the value of every feature x(u) for

all u ∈ U from the oracle. For some subset V ⊂ U , the pre-
dicted features x′[V ], which are drawn the feature generator
p can lead to similar accuracy as the oracle features x[V ].
Now, since cost is only involved in oracle queries, gener-
ating x′[V ] from the generator leads to a reduced cost on
U\V . Here, we aim to draw x′[V ] from the feature gener-
ator pϕ, conditioned on the observed features x[O] and the
rest of the features x[U\V ], where the latter is queried from
the oracle. Formally, we have x′[V ] ∼ p(• |x[O]).
Problem statement During training, we are given the ar-
chitectures of a classifier h and the feature generator p as
well as the training set {(xi, yi,Oi)}i∈D and a budget qmax

for maximum number of oracle queries for each instance.
The budget is per instance since test instances occur in iso-
lation. Our goal is to train h and p, as well as simultaneously
compute the optimal values of Ui and Vi for each i ∈ D and
|Ui\Vi| ≤ qmax, so that the oracle features xi[Oi ∪ Ui\Vi]
and the generated features x′

i[Vi] ∼ p(• |x[Oi]) provide
high accuracy on h. In theory, one can encode the above task
in the following training loss:
loss(h, p;Ui, Vi | Oi)

= Ex′
i[Vi]∼p(• |xi[Oi])

[
ℓ
(
h
(
xi[Oi ∪ Ui\Vi] ∪ x′

i[Vi]
)
, yi

) ]
;

(1)
and solve the following optimization problem.

minimize
h,p,{Vi⊆I,Ui⊆I}i∈D

∑
i∈D

loss(h, p;Ui, Vi | Oi) (2)

subject to, |Ui\Vi| ≤ qmax for all i ∈ D (3)
If we could solve this problem, then, for a test instance, we
can directly use the optimal U∗

i and V ∗
i from the nearest

training example.
There is no cost or budget associated with drawing fea-

tures from the generator. Therefore, in principle, Vi can be as
large as possible. However, a large Vi may not always be an
optimal choice in practice, because the generator may be in-
accurate. For example, even if the generated feature x′[V ] is
close to its gold value x[V ], a small difference |x′[V ]−x[V ]|
may manifest in large prediction error (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014).
Bottlenecks The above optimization problem involves si-
multaneous model training and selection of a large number
of subsets {Ui, Vi}. As a result, it suffers from several bot-
tlenecks as described below.
— (1) Large number of sets as optimization variables: The
observed subset Oi varies widely across i ∈ D. Moreover,
the observed feature values xi[O] for the same O also vary
across instances. Hence, the optimal choice of Ui, Vi varies
across instances, leading to O(|D|) optimization variables.
— (2) Heterogeneous feature space: The final set of features
that are fed into the classifier xi[Oi∪Ui\Vi] are very diverse,
owing to a large variety of Oi, Ui and Vi. This results in a
number of heterogeneous domains, which makes it difficult
for one single model to generalize across the entire data.
—(3) Coupling between different optimization variables:
Two types of couplings exist between optimization variables
Ui and Vi. Given one instance i ∈ D, the optimization vari-
ables Ui and Vi are coupled and so are Ui, Vi and Uj , Vj
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for different instances i ∈ D and j ∈ D. This complexity
renders the joint optimization problem (2) intractable.

Proposed Approach
In this section, we introduce GENEX, a generator-assisted
mixture of expert model addressing identified challenges.
We present a tractable alternative to optimization prob-
lem (2) in three steps: (I) data partitioning, (II) designing
mixture models, and (III) decoupling cross-instance cou-
pling of optimization variables. Finally, we offer a set func-
tion centric characterization of this alternative optimization
and a greedy algorithm for its solution.

Data Partitioning
In the first step, we reduce the number of optimization vari-
ables (bottleneck 1) and transform the heterogeneous set of
instances into homogeneous clusters (bottleneck 2).

Clustering methods like K-means and Gaussian mixture
models maximize the average intra-cluster similarity. We
observed that (Section ) this has led to highly suboptimal
partitioning, with fewer highly similar instances in one clus-
ter and others with moderately high similarity in different
clusters. To address this, we adopt a random hyperplane-
based clustering technique, mitigating bucket imbalance and
achieving more equitable cluster assignments.
Random hyperplane based clustering We partition obser-
vations {xi[Oi]}i∈D into B clusters using Random Hyper-
plane (RH) guided Approximate Nearest Neighbor (ANN)
clustering, employing locality-sensitive hashing (Indyk and
Motwani 1999). For this, we generate M independent spher-
ically distributed normal vectors W = [w1, ..,wM ] ∈
Rn×M , with wm ∼ N(0, In). Each wm defines a random
hyperplane through the origin. We hash each observation
xi[Oi] to a bucket b = sign(W⊤xi[Oi]), where xi[Oi] is
padded with zeros to match dimensionality. Each bucket is
thus identified by a vector of ±1 of length M . This implies
that B ≤ 2M . In our experiments we observe that instances
are roughly uniformly distributed among the 2M buckets,
hence each bucket will roughly have |D|/2M instances, with
B = 2M . The probability that two observed features will
share the same bucket, increases with their cosine similarity
Charikar (2002, Section 3).

In contrast to K-means of GMM, RH has two key advan-
tages. (1) It doesn’t maximize any aggregate objective thus
the assignment of one instance x doesn’t affect the cluster
assignment of another instance x′ (2) The randomized algo-
rithm encourages cluster diversity
Reducing the number of optimization variables The key
reason behind the large number of optimization variables is
fine grained choices of Ui and Vi for each instance i ∈ D.
Here, we coarsen the estimate of these sets, by assigning
the same optimization variables (Ub, Vb) for all the observed
features falling in the same bucket b. This reduces the num-
ber of optimization variables to O(B).

For a test example x[O], we seek to find Ub∗ and
Vb∗ , where the bucket b∗ was assigned to the training in-
stance i having the highest cosine similarity with x[O].

This bucket id can be immediately obtained by comput-
ing b∗ = sign(W⊤x[O]), without explicit nearest neigh-
bor search (Charikar 2002). During our experiments, we ob-
served that the above clustering method works better than
K-means or gaussian mixture clustering. Moreover, in our
method, computation of Ub∗ and Vb∗ for a test instance x[O]
admits O(logB) time complexity to compute the bucket id
b∗, holding n constant. On the other hand, K-means or gaus-
sian clustering admits O(B) complexity.

Mixture Models

Having partitioned the data, as described above, we train a
mixture of models across these clusters, where each model
is tailored specifically to generalize on each cluster. This ad-
dresses bottleneck (2) and (3).

Formulation of mixture models Given a partitioning of D
into B buckets, i.e., D = D1 ∪ D2 ∪ ... ∪ DB , we build a
mixture of B independent classifiers hθb and generators pϕb

, parameterized with θb and ϕb for a bucket b. This reduces
the joint optimization (2) problem into the following

minimize
{θb,ϕb,Ub,Vb}b∈[B]

∑
b∈[B]

∑
i∈Db

loss(hθb , pϕb
;Ub, Vb | Oi)

such that, |Ub\Vb| ≤ qmax ∀b ∈ [|B|] (4)

Decoupling cross-instance optimization variables It is
evident that the above optimization (4) can be decoupled
into B independent components. For each bucket b, we
minimize loss(hθb , pϕb

;Ub, Vb | Oi), separately from other
buckets. This reduces to the feature selection problem— the
goal of selecting one fixed set of features for multiple in-
stances (Elenberg et al. 2018). Thus, it leads us to overcome
the cross-instance coupling between the model parameters,
U and V. It also facilitates distributed implementation.

Decoupling Optimization Tasks over Ub and Vb

Overview loss(hθb , pϕb
;Ub, Vb | Oi)— the objective in a

bucket b— still involves a coupling between Ub, Vb. To over-
come this, we build two optimization problems. We first
compute the optimal Ub and then compute Vb based on the
optimal value of Ub obtained. This addresses bottleneck (3).

Optimization over Ub For the first optimization, we de-
sign a new loss function F (θb, ϕb;Ub | Ob) whose optimal
value with respect to Ub for a given θb and ϕb is an upper
bound of the corresponding model training loss of the op-
timization (4). This loss is a combination of the prediction
losses from the oracle and generated features, weighted by
a prior uncertainty measure. This uncertainty is computed
by pre-training the classifier and the generator on the ob-
served data {(xi, yi,Oi)}i∈D. Having computed the pre-
trained classifier h0 and the pre-trained generator p0, we de-
fine ∆i(Ub) as the uncertainty of the classifier when h0 uses
the generated features x′

i[Ub] ∼ p0(• |Oi) for the whole set
Ub, i.e., ∆i(Ub) = Ex′

i∼p0(• |x[Oi])[1 − maxy h0(xi[Oi] ∪
x′
i[Ub])[y]]. Thus, ∆i(Ub) ∈ [0, 1− 1

|C| ]. We rescale ∆i(Ub)

by dividing it with 1− 1
|C| , so that it lies in [0, 1].
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Algorithm 1: Training

Require: Training data {(xi, yi,Oi)}i∈D , Number of buckets
B = 2M , the classifier h, generator p.

1: {Db}b∈[B] ← PARTITION(D,B)
2: for bucket b ∈ B do
3: U∗

b , θ
∗
b , ϕ

∗
b ←GREEDYFORU(qmax, b, F,GF )

4: V ∗
b ,←GREEDYFORV(λ, b,Gloss)

1: function GREEDYFORV(λ, b, F,Gloss)
2: Require: trained models θ∗b , ϕ

∗
b and the optimal subset U∗

b

3: Vb ← ∅
4: for q ∈ [λ] do
5: e∗ ← argmine̸∈Vb∪Oi

Gloss(e |Vb)

6: if Gloss(e
∗ |Vb) < 0 then

7: Vb ← Vb ∪ e∗

8: break
9: Return Vb

Then, we define the new loss F as follows.
F (hθb , pϕb

;Ub | Oi) = ∆i(Ub) · ℓ(hθb(xi[Oi ∪ Ub]), y)

+ (1−∆i(Ub)) · Ex′[U]ℓ
(
hθb

(
xi[Oi] ∪ x′

i[Ub]
)
, yi

)
(5)

Proposition 0.1 Let F and loss are defined in Eqs. 5
and (1), respectively. Then, we have:
min{Ui,Vi}:|Ui\Vi|≤qmax

∑
i∈Di

loss(h, p;Ui, Vi | Oi)

≤ minUb:|Ub|≤qmax

∑
i∈Db

F (h, p;Ub | Oi) (6)

The set-optimal value of the above objective is an upper
bound of loss() in Eq. (1), as stated formally here 1. Hence,
we instead of minimizing loss, we seek to solve the follow-
ing optimization problem for each bucket b.

min
θb,ϕb,Ub

∑
i∈Db

F (hθb , pϕb
;Ub | Oi), s.t., |Ub| ≤ qmax (7)

The objective loss(·) (1) queries two different sets of fea-
tures from the oracle and the generator, i.e., Ub\Vb and Vb.
In contrast, F queries the same set of features Ub from both
oracle and the generator. Here, it assigns more weights to the
loss from the generated features (oracle features) if the pre-
trained classifier is less (more) uncertain from the generated
features. In the absence of the generator, F only contains
the loss for the oracle features, i.e., F (hθb , pϕb

;Ub | Oi) =
ℓ(hθb(xi[Oi ∪ Ub]), y) and the task reduces to the well-
known feature selection problem in (Elenberg et al. 2018).
Optimization over Vb The above optimization involves
only Ub as the optimization variables, and is independent of
Vb. Once we compute θ∗b , ϕ

∗
b , U

∗
b , i.e., the solution of the op-

timization (7), we use them to compute the set Vb by solving
the following optimization problem:

min
Vb:|Vb|≤λ

∑
i∈Db

(1−∆i(Vb)) · loss(hθ∗
b
, pϕ∗

b
;U∗

b , Vb | Oi) (8)

where λ is a hyperparameter.
Objectives in (7), (8) as set functions Here, we
represent the objectives in the optimizations (7), (8) as
set functions, which would be later used in our train-
ing and inference methods and approximation guaran-
tees. Given U , the optimal solution of the objective

1 Proofs of all technical results are in (Asgaonkar, Jain, and De 2023)

1: function GREEDYFORU(qmax, b, h, p)
2: Ub ← ∅,
3: θb ← TRAIN(h,Db, {Oi}) #pretraining
4: ϕb← TRAIN(p,Db, {Oi}) #pretraining
5: for iter ∈ [qmax] do
6: # Use hθb, pϕb to compute GF , F
7: e∗ ← argmine̸∈Ub∪Oi

GF (e |Ub)

8: if GF (e
∗ |Ub) < 0 then

9: Ub ← Ub ∪ e∗

10: θb, ϕb ← TRAIN(F,Ub, b)
11: else
12: break
13: Return Ub, θb, ϕb

Algorithm 2: Inference

Require: Observed test feature, x[O], threshold τ , trained mod-
els hθ∗

b
, pϕ∗

b
, {U∗

b , V
∗
b }.

1: b← FINDBUCKET(x∗[O])
2: Query x[U∗

b \V ∗
b ] from oracle

3: x′[V ∗
b ] ∼ pϕ∗

b
(• |x∗[O ∪ U∗

b \V ∗
b ])

4: xall = x[O ∪ U∗
b \V ∗

b ] ∪ x′[V ∗
b ]

5: if maxy hθ∗
b
(xall)[y] < τ then

6: Query x[V ∗
b ] from oracle, xall = x[O ∪ U∗

b ]
7: y∗ ← argmaxy hθ∗

b
(xall)[y]

8: Return y∗

θ∗b (U), ϕ
∗
b(U) minimizes

∑
i∈Db

F (hθb , pϕb
;U | Oi). Thus,

minθb,ϕb

∑
i∈Db

F (hθb , pϕb
;U | Oi) becomes a set function

in terms of U. On the other hand,
∑

i∈Db
(1 − ∆i(V)) ·

loss(h, p;U∗
b , V | Oi) is also a set function in terms of V. To

this end, we define GF and Gloss as follows given any set U
we describe the optimal value of this training problem as the
following set function:

GF (U) =
∑
i∈Db

F (hθ∗
b (U), pϕ∗

b (U);U | Oi), (9)

Gloss(V) =
∑
i∈Db

(1−∆i(V))loss(hθ∗
b
, pϕ∗

b
;U∗

b , V | Oi) (10)

Training and Inference Algorithms
Training Our training algorithm uses greedy heuristics
combined with model training to solve the optimization
problems (7) and (8) for computing θ∗b , ϕ

∗
b , U

∗
b , V

∗
b . Given

the dataset D and the number of buckets B, we first parti-
tion the dataset into B buckets (PARTITION(·)) and perform
pre-training of hθb and pϕb

on Db based on the observed
features {Oi}. For the generator, we use a β−VAE (Hig-
gins et al. 2017) to optimize regularized ELBO. Then, for
each bucket b, we leverage two greedy algorithms for non-
monotone functions (Mualem and Feldman 2022; Harshaw
et al. 2019), one for computing Ub (GREEDYFORU) and the
other for Vb (GREEDYFORV). At each iteration, GREEDY-
FORU keeps adding a new feature e = e∗ to Ub which min-
imizes GF (e |Ub) as long as it admits a negative marginal
gain, i.e., GF (e

∗ |Ub) < 0 and |Ub| ≤ qmax. Similarly, we
use the greedy algorithm on Gloss to get Vb. GREEDYFORU
needs to train the model for every candidate for each new
element. To tackle this, in practice we adopt three strategies.
(1) We directly use the model parameters θb, ϕb obtained in
the previous step to compute GF during search of the po-
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tential new candidates e (line 5), without any new training.
After we select e∗, we perform two iterations of training.
Since we consider adding only one element, such a small
amount of training is enough, beyond which we did not see
any observable improvement. (2) We tensorize the operation
argmine G•(e |Ub) instead of enumerating G• for all can-
didates e. Note that we utilize all the features available in the
training set during training. However, this does not amount
to cheating, as in the inference algorithm, only the required
features are queried. Such a protocol is widely followed in
works including (Li and Oliva 2020) and (Ma et al. 2018),
helping them to generalize to the set of all features.
Inference Given a test instance with a subset of observed
features x[O], we first find the bucket b. It then queries the
oracle for x[Ub\Vb]. Taking x[O∪Ub\Vb] as input, the gen-
erator produces x′[Vb]. If the confidence of the classifier
with these features is lower than a threshold τ , then GENEX
does not use the generated features for the final prediction
and, further query x[Vb] from the oracle and predict y using
x[O∪Ub]. However, otherwise if the confidence of the clas-
sifier with the features is higher than τ , we use the generated
features and compute y using x[O ∪ Ub\Vb] ∪ x′[Vb].

Characterization of Our Optimization Tasks
Here, we present a set function based characterization of our
objectives (7) and (8) (or, equivalently, (9) and (10)), begin-
ning with a discussion on hardness analysis. Then, we use
those characterizations to prove the approximation guaran-
tee of our algorithms.
Hardness At the outset, our goal is to first compute the
optimal U = U∗ by minimizing GF (U) and then use this
U∗ to compute the optimal V by minimizing Gloss(V). The
optimization of GF (U) —– or, equivalently the optimiza-
tion (7)— is a discrete continuous optimization problem,
since it involves model training in conjunction with subset
selection. Given U , one can find the optimal solution of the
objective θ∗b (U), ϕ

∗
b(U) in polynomial time when the ob-

jective is convex with respect to both θ and ϕ. However,
the simultaneous computation of the optimal set U∗ and
the model parameters θ∗b and ϕ∗

b is NP-Hard even in simple
cases, e.g., sparse feature selection (Elenberg et al. 2018).
Set function centric characterizations We first extend
the notions of partial monotonicity (Mualem and Feldman
2022) and γ-weak submodularity (Elenberg et al. 2018; Har-
shaw et al. 2019).

Definition 0.2 Given a set function G : 2[n] → R, two sets
S and T with S, T ⊆ [n] and the marginal gain G(S |T ) :=
G(S ∪ T )−G(T ). Then we define the following properties.
(1) (m,m)-Partial monotonicity: The set function G is
(m,m)-partially monotone (m ≥ 0) if G(T )

G(S) ∈ [m,m]

for all S, T with S ⊆ T ⊆ [n]. (2) (γ, γ)-Weak submod-
ularity: The set function G is (γ, γ)-weakly submodular if∑

u∈S G(u |T )

|G(S |T )| ∈ [γ, γ] for all S, T with S ∩ T = ∅.

Similar to Mualem and Feldman (2022), we define that
G(T )/G(S) = 1 if G(S) = 0. Note that, a (m,m) par-
tially monotone function G is monotone increasing (de-

creasing) if m = 1 (m = 1). Moreover, m−partial mono-
tonicity introduced in (Mualem and Feldman 2022) im-
plies (m,∞)-partial monotonicity. A γ−weakly submodu-
lar function (Elenberg et al. 2018; Harshaw et al. 2019) is
(γ,∞)-weakly submodular. Next, we assume boundedness
of few quantities, allowing us to characterize GF and Gloss.

Assumption 0.3 (1) Bounded difference between uncer-
tainties across two feature subsets: Given a bucket b ∈ [B],
|∆i(U) − ∆i(V)| ≤ β∆. (2) Bounds on uncertainty and
loss: 0 < ∆min ≤ |∆i(U)| ≤ ∆max. 0 < ℓmin ≤
|ℓ(hθ(xi), yi)| ≤ ℓmax. (3) Lipschitzness: The loss function
ℓ(hθ(x), y) is Lipschitz with respect to x. (4) Boundedness
of features: ||xi||, ||x′

i|| ≤ βx, for all i. In extended ver-
sion, we discuss the validity of these assumptions as well as
present the values of β• across different datasets.

Theorem 0.4 ((m,m)-Partial monotonicity) (1) The set
function GF is (mF ,mF )-partially monotone where mF =

1+KFβxβ∆ and mF = (1 +K1βx +K2β∆ +K3)
−1. (2)

The set function Gloss is (mloss,mloss)-partially monotone
where mloss = 1 +Klossβx and mloss = (1 +Klossβx)

−1.
Here K• depend on the Lipschitz constant of the loss with
respect to x and the bounds on loss ℓ and the uncertainty ∆.

Partial monotonicity of GF suggests that if the variation of
uncertainty across different feature sets goes small (β∆ →
0) or the generator is extremely accurate (βx → 0), then
we have: m → 1, meaning that GF is monotone decreas-
ing. If we put ∆i(Ub) = 1 for all i ∈ Db in the expression
of F in Eq. (5), then the optimization (7) becomes oblivious
to the generative model pϕb

. In such a case, GF is mono-
tone decreasing since, β∆ = 0. This result coincides with
the existing characterizations of the traditional feature se-
lection problem (Elenberg et al. 2018). In the context of the
optimization for V , note that if the generator is very ac-
curate (βx → 0), then Partial monotonicity of Gloss im-
plies that Gloss(V ) is almost constant for all V . In such a
case, one can use the feature generator to generate the en-
tire set Vb = U∗

b and save the entire budget qmax. Since,
we have Gloss(S |T ) = 0 in a simple cases where βx or
β∆ = 0, (γ, γ)-weak submodularity does not hold for Gloss

in most cases. Thus, we present the (γ, γ)-weak submodu-
larity property of only GF under additional assumptions.

Theorem 0.5 ((γ, γ)-weak submodularity) Assume that
the loss ℓ(hθ(x), y) be convex in θ with ∇θℓ(hθ(x), y) ≤
∇max and Eigenvalues{∇2

θℓ(hθ(x[S]), y)} ∈ [ζmin, ζmax]
for all S; Then, the set function GF is (γ

F
, γF )-weakly

submodular with

γF ≤ max

−∇2
max

2ζmax
+Kγ,1Lϕ +Kγ,2β∆βx

∇2
max

2ζmin
+Kγ,3Lϕ +Kγ,4β∆βx

,

−∇2
max

2ζmax
+Kγ,1Lϕ +Kγ,2β∆βx

∇2
max

2ζmax
−Kγ,5Lϕ −Kγ,6β∆βx

 ;

γ
F
≥
−∇2

max

2ζmin
−Kγ,1Lϕ −Kγ,2β∆βx

∇2
max

2ζmax
−Kγ,3Lϕ −Kγ,4β∆βx

(11)
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where Kγ,• and Kγ,• are constants that depend on the Lips-
chitz constant of the loss w.r.t. x; Lϕ is the Lipschitz constant
of F w.r.t. ϕ.

In the absence of the generator, β∆, βx, Lϕ are zero. Then,
−GF is γ-weakly submodular with γ > ζmin/ζmax which
coincides with the results of (Elenberg et al. 2018). Next,
we present the approximation guarantee of our greedy algo-
rithm for solving the optimization problem (7) presented via
GREEDYFORU, when ℓ(hθ(x), y) is convex in θ.
Theorem 0.6 Assume that, given a bucket b, GF

is (mF ,mF )-partially monotone, (γ
F
, γF )-weakly

submodular set function. Suppose U∗
b is the out-

put of GREEDYFORU in Algorithm 1. Then, if
OPT = argminUb:|Ub|≤qmax

GF (Ub), we have
GF (U

∗
b ) ≤ mFGF (OPT )

−
(
1− γF

qmax

)qmax (
mFGF (OPT )−GF (∅)

)
where mF = max (mF , 2mF /mF ) and γF =
max(γF ,−γ

F
).

We discuss the quality of the approximation guarantees for
different datasets in our experiments in extended version.

Experiments
Datasets We experiment with four datasets for the classifi-
cation task; DP (disease prediction), MNIST, CIFAR100 and
TinyImagenet (TI). For DP, the number of features n = 132
and the number of classes |Y| = 42. Here, different features
indicate different symptoms and the classes indicate differ-
ent diseases. For the image datasets, we take the pixels or
groups of pixels as the features, following previous work (Li
and Oliva 2020, 2021). Further details about the datasets are
provided in the extended version. For each dataset, the aver-
age number of observed features E[|Oi|] ≈ n/10.
Baselines We compare GENEX with six state-of-the art
baselines: JAFA (Shim, Hwang, and Yang 2018), EDDI (Ma
et al. 2018), ACFlow (Li and Oliva 2020), GSM (Li and
Oliva 2021), CwCF (Janisch, Pevnỳ, and Lisỳ 2020b) and
DiFA (Ghosh and Lan 2023) each with two variants (batch
and sequential). In the first variant, we deploy these methods
to perform in the batch setting. Specifically, we use top-qmax

features provided by the feature selector in batch, instead of
querying the oracle features one by one. This feature selector
is a policy network in RL methods (Li and Oliva 2021; Shim,
Hwang, and Yang 2018; Janisch, Pevnỳ, and Lisỳ 2020b;
Ghosh and Lan 2023), greedy algorithms for maximizing
rewards in (Ma et al. 2018; Li and Oliva 2020). Note that
our approach uses mixture models on the partitioned space,
which enhances the expressivity of the overall system. To
give the baselines a fair platform for comparison, we deploy
a mixture of classifiers on the same partitioned space, where
the models are trained using the observed features and the
corresponding queried features of the baselines. This is done
in the cases where, off-the-shelf use of their methods led to
poor performance, especially in the larger datasets. In the
sequential variant, we make the baselines to acquire features
sequentially. Since our goal is to acquire features in batch,

the first setting gives a fairer platform for comparison across
all methods. Here, we present the results of the batch setting
and, defer the results of the sequential setting in the extended
version.
Classifier h and the generator p For DP and MNIST,
the classifier h consists of linear, ReLU and linear networks,
cascaded with each other, with hidden dimension 32. For
CIFAR100, h is WideResnet (Zagoruyko and Komodakis
2016) for TinyImagenet, h is EfficientNet (Tan and Le
2021). We use the same classifier h across all baselines
too. The generator p is a variational autoencoder. It con-
tains an encoder and a decoder that are pre-trained on the
observed instances as a β-VAE (Higgins et al. 2017). De-
tails are provided in the extended version (Asgaonkar, Jain,
and De 2023). We set the number of buckets B = 8, 8, 4, 4
for DP, MNIST, CIFAR100 and TinyImagenet using cross
validation.
Evaluation protocol We split the entire dataset in 70%
training, 10% validation and 20% test set. We use the val-
idation set to cross validate λ and the number of buckets
B. Having observed a feature x[O] during test, we use the
learned method to compute the set of new features to be ac-
quired U and V for a given budget qmax. We use x′[V] by
drawing from the generator, whereas we query x[U\V ] from
the oracle. Finally, we feed all the gathered feature into the
classifier and compute the predicted label ŷ. We cross vali-
date our results 20 times to obtain the p-values. 2

Results
Comparison with baselines First, we compare the pre-
diction accuracy of GENEX against the baseline models for
different value of the maximum permissible number of ora-
cle queries qmax per instance. The horizontal axis indicates
E[|V |/|U |], the average number of oracle queries per in-
stance. Figure 1 summarizes the results. We observe: (1)
GENEX outperforms all these baselines by a significant mar-
gin. The competitive advantage provided by GENEX is sta-
tistically significant (Welch’s t-test, p-value < 10−2). (2)
JAFA performs closest to ours in large datasets. (3) The
baselines are not designed to scale to a large number of fea-
tures, as asserted in the classification experiments in (Li and
Oliva 2021), and hence their accuracy stagnates after acquir-
ing a few features (Li and Oliva 2021, Fig. 6, 7) and (Shim,
Hwang, and Yang 2018, Fig. 3).
Ablation study on the generator To evaluate the magni-
tude of cost saving that our generator provides, we compare
GENEX against its two variants. (I) GENEX (V = ∅): Here,
all the features U of all the test instances are queried from
the oracle. (II) GENEX (V = U ): Here, whenever an in-
stance is qualified to have the features from the generator
(the classifier confidence on the generated feature is high),
all the features U are drawn from the generator. Figure 2
shows the results in terms of accuracy vs. the budget of the
oracle queries. Figure 3 shows the results in terms of the
average fraction of the saved budget E[|V |/|U |]. Note that,
even in GENEX (V = U ), not all instances result in high

2 Our code is in https://github.com/VedangAsgaonkar/genex
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Figure 1: Comparison of GENEX against batch variants of baselines, i.e., JAFA, EDDI, ACFlow, GSM, CwCF and DiFA in
terms of the classification accuracy varying over the mean number of oracle queries E|U\V|, for all datasets.
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Figure 3: Ablation study: Saved cost vs. accuracy.

confidence on the generated features. In case of low confi-
dence, we query the features from the oracle. We make the
following observations: (1) GENEX outperforms the other
variants in most of the cases in terms of accuracy for a fixed
budget (Fig. 2). At the places where we perform better, the
gain is significant (p < 0.05 for E[U\V ] ≤ 20% for DP;
p < 0.01 for others). (2) GENEX is able to save 3–5x cost
at the same accuracy as compared to the GENEX (V = U)
variant. (3) The fractional cost saved goes down as accuracy
increases, since U increases, but λ is fixed.

RH vs. other clustering methods Here, we compare ran-
dom hyperplane (RH) guided clustering method with K-
means and Gaussian mixture based clustering methods. The
results are summarized in Figure 4 for DP and CIFAR100
datasets. We observe that RH performs better for a wide
range of oracle queries E[|U\V |]. We note that the amount
of bucket-skew, i.e., the ratio of the minimum and maxi-
mum size of buckets, is better for RH than K-means and
GMM. Specifically, for DP dataset, this ratio is 0.21, 0.014
and 0.003 for RH, K-means and GMM, respectively. Thus,
RH has a better bucket balance. To further probe why the RH
achieves a better bucket balance, we instrument the conic-
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Figure 4: RH vs. other clustering methods

ity of the features which is a measure of how the feature
vectors are concentrated in a narrow cone centered at the
origin (Sharma, Talukdar et al. 2018). This is defined as:
conicity(D) = 1

|D|
∑

i∈D cos
(
xi,

∑
j∈D xj/|D|

)
. We ob-

serve a low conicity of < 0.2, indicating a high spread of
feature vectors. Since, on an average, the random hyper-
planes cut the space uniformly across the origin, the ob-
served feature vectors get equally distributed between dif-
ferent hyperplanes, leading to good bucket balance. Con-
versely, K-means and GMM maximize the ”mean” of simi-
larity, an aggregate objective, promoting a few highly simi-
lar points in one cluster and leaving moderately similar in-
stances dispersed among different clusters.

Conclusion
We proposed GENEX, a model for acquiring subsets of fea-
tures in a batch setting to maximize classification accuracy
under a budget constraint. GENEX relies on a mixture of
experts model with random hyperplane guided data parti-
tioning and uses a generator to produce subsets of features
at no additional query cost. We employ a greedy algorithm
that takes the generated features into account and provides
feature subsets for each data partition. We also introduce
the notions of (m,m)-partial monotonicity and (γ, γ)-weak
submodularity, and provide a theoretical foundation for our
method. GENEX is superior to the baselines, outperforming
them in accuracy at a fixed budget. We recognize that a lim-
itation of our work is that the guarantee of the greedy algo-
rithm holds under certain assumptions, which are an artifact
of the complexity of the problem. Work can be done incor-
porating exploration-exploitation on the greedy strategy.
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