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Abstract

PANDORA’S BOX is a fundamental stochastic optimization
problem, where the decision-maker must find a good alterna-
tive, while minimizing the search cost of exploring the value
of each alternative. In the original formulation, it is assumed
that accurate distributions are given for the values of all the
alternatives, while recent work studies the online variant of
PANDORA’S BOX where the distributions are originally un-
known. In this work, we study PANDORA’S BOX in the online
setting, while incorporating context. At each round, we are
presented with a number of alternatives each having a con-
text, an exploration cost and an unknown value drawn from
an unknown distribution that may change at every round. Our
main result is a no-regret algorithm that performs compara-
bly well against the optimal algorithm which knows all prior
distributions exactly. Our algorithm works even in the ban-
dit setting where the algorithm never learns the values of the
alternatives that were not explored. The key technique that
enables our result is a novel modification of the realizability
condition in contextual bandits that connects a context to a
sufficient statistic of each alternative’s distribution (its reser-
vation value) rather than its mean.

1 Introduction
PANDORA’S BOX is a fundamental stochastic optimization
framework, which models the trade-off between exploring a
set of alternatives and exploiting the already collected infor-
mation, in environments where data acquisition comes at a
cost. In the original formulation of the problem – introduced
by Weitzman in (Weitzman 1979) – a decision-maker is pre-
sented with a set of alternatives (called “boxes”) each con-
taining an unknown value drawn independently from some
known box-specific distribution. In addition, each box is as-
sociated with a known cost, namely, the price that needs to
be paid in order to observe its realized value. At each step,
the decision-maker can either open a box of her choice, pay-
ing the associated cost and observing its value, or stop and
collect the minimum value contained in the already opened
boxes. The objective is to minimize the sum of the smallest
observed value plus the total cost incurred by opening the
boxes.

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The model captures a variety of different settings where
the decision-maker needs to balance the value of the selected
alternative and the effort devoted to find it. We include some
examples below.

• Consider an online shopping environment where a search
engine needs to present users with results on a product
they want to buy. Visiting all potential e-shops that sell
this product to find the cheapest option would be pro-
hibitive in terms of time needed to present the search re-
sults to the user. The search engine needs to explore the
different options only up to the extent that would make
the marginal improvement in the best price found worth-
while.

• Consider a path planning service provider like Google
Maps. Upon request, the provider must search its
database for a good path to recommend to the user, but
the higher the time spent searching the higher is the
server cost. The provider must trade off computation cost
with the quality of the result.

Rather surprisingly, despite the richness of the setting,
Weitzman shows that the optimal policy for any instance of
PANDORA’S BOX admits a particularly simple characteriza-
tion: for each box, one can compute a reservation value as
a function of its cost and value distribution. Then, the boxes
are inspected in increasing order of these values, until a sim-
ple termination criterion is fulfilled. This characterization is
revealing: obtaining an optimal algorithm for PANDORA’S
BOX does not require complete knowledge of the distribu-
tions or the costs, yet only access to a single statistic for
each box.

This raises the important question of how easy it is to
learn a near-optimal search strategy, especially in environ-
ments where the distributions may not remain fixed across
time but can change according to the characteristics of the
instance at hand. In the case of online shopping, depend-
ing on the type of product we are searching, the e-shops
have different product-specific distributions on the prices.
We would be interested in a searching strategy that is not tied
to a specific product, but is able to minimize the expected
cost for any product we may be interested in. Similarly, in
the case of path recommendations, the optimal search strat-
egy may depend on the time of day or the day of the year.

Motivated by the above question, we extend the PAN-
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DORA’S BOX model to a contextual online learning setting,
where the learner faces a new instance of the problem at each
round. At the beginning of each round, the learner observes a
context and must choose a search strategy for opening boxes
depending on the observation. While the context and the as-
sociated opening costs of the boxes of each round are ob-
served, the learner has no access to the value distributions,
which may be arbitrary in each round.

Realizability. In the above description, the context may be
irrelevant to the realized values. Such an adversarial setting
is impossible to solve as it is related to the problem of learn-
ing thresholds online. In fact, even in the offline version of
the problem, the task would still be computationally hard as
it corresponds to agnostic learning (see ?? for more details).
This naturally raises the following question: What are the
least possible strong assumptions, under which the problem
becomes tractable?

One of the main contributions of this paper is identifying
a minimal realizability assumption under which the problem
remains tractable. This assumption is parallel to the realiz-
ability assumption in contextual bandits (see chapter 19 of
(Lattimore and Szepesvári 2020)). We describe below how
the difficulty of problem increases as we move from the
strongest (1) to the weakest (4) assumptions possible:
1. Contexts directly related to values: in this case any

learning algorithm is able to fit the contexts and predict
exactly the realized values of the boxes. Such a setting is
trivial yet unrealistic.

2. Contexts directly related to distributions: this is the
case where there exists a learnable mapping from the
context to the distribution of values. This is a more realis-
tic setting, but it is still relatively constrained; it requires
being able to perfectly determine the distribution family,
which would need to be parametric.

3. Contexts related to sufficient statistic: in the more
general case, instead of the whole value distributions,
the contexts give us information about only a sufficient
statistic of the problem. This is one of the main contri-
bution of this work; we show that the problem remains
tractable when the contexts give us information on the
reservation values of the boxes. Observe that in this case,
the value distributions on the boxes can be arbitrarily dif-
ferent at each round, as long as they “implement” the cor-
rect reservation value based on the context. This model
naturally extends the standard realizability assumption
made in bandit settings, according to which, the mean
of the distributions is predictable from the context. In that
case, the sufficient statistic needed in order to select good
arms is, indeed, the mean reward of each arm (Lattimore
and Szepesvári 2020).

4. No assumptions: in this case, as explained before, the
problem becomes intractable (see ??).

1.1 Our Contribution
We introduce a novel contextual online learning variant of
the PANDORA’S BOX problem, namely the CONTEXTUAL
PANDORA’S BOX, that captures the problem of learning
near-optimal search strategies in a variety of settings.

Our main technical result shows that even when the se-
quence of contexts and distributions is adversarial, we can
find a search strategy with sublinear average regret (com-
pared to an optimal one) as long as no-regret algorithms
exist for a much simpler online regression problem with a
linear-quadratic loss functions.

Main Theorem (Informal). Given an oracle that achieves
expected regret r(T ) after T rounds for Linear-Quadratic
Online Regression, there is an algorithm that obtains
O(
√

Tr(T )) regret for the CONTEXTUAL PANDORA’S
BOX problem.

The main technical challenge in obtaining the result is
that the class of search strategies can be very rich. Even re-
stricting to greedy policies based on reservation values for
each box, the cost of the policies is a non-convex function
of the reservation values. We manage to overcome this issue
by considering a “proxy” function for the expected cost of
the search policy which bounds the difference from the op-
timal cost, based on a novel sensitivity analysis of the orig-
inal Weitzman’s algorithm. The proxy function has a sim-
ple linear-quadratic form and thus optimizing it reduces our
setting to an instance of linear-quadratic online regression.
This allows us to leverage existing methods for minimizing
regret in online regression problems in a black box manner.

Using the above reduction, we design algorithms with
sublinear regret guarantees for two different variants of our
problem: the full information, where the decision-maker ob-
serves the realized values of all boxes at the end of each
round, and the bandit version, where only the realized val-
ues of the opened boxes can be observed. We achieve both
results by constructing oracles based on the Follow the Reg-
ularized Leader family of algorithms.

Beyond the results shown in this paper, an important con-
ceptual contribution of our work is extending the traditional
bandit model in the context of stochastic optimization. In-
stead of trying to learn simple decision rules, in stochas-
tic optimization we are interested in learning complex algo-
rithms tailored to a distribution. Our model can be extended
to a variety of such problems beyond the PANDORA’S BOX
setting: one concrete such example is the case of designing
revenue optimal auctions for selling a single item to multiple
buyers given distributional information about their values.
Modeling these settings through an online contextual bandit
framework allows obtaining results without knowledge of
the prior distributions which may change based on the con-
text. Our novel realizability assumption allows one to focus
on predicting only the sufficient statistics required for run-
ning a specific algorithm. In the case of designing revenue
optimal auctions, contexts may refer to the attributes of the
item for sale and a sufficient statistic for the bidder value
distributions are Myerson’s reserve prices (Myerson 1981).

Due to space constraints, any omitted proofs have been
moved to the Supplementary Material.

1.2 Related Work
We model our search problem using PANDORA’S BOX,
which was first introduced by Weitzman in the Economics
literature (Weitzman 1979). Since then, there has been a long
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line of research studying PANDORA’S BOX and its variants
e.g. where boxes can be selected without inspection (Doval
2018; Beyhaghi and Kleinberg 2019), there is correlation
between the boxes (Chawla et al. 2020, 2023), the boxes
have to be inspected in a specific order (Boodaghians et al.
2020) or boxes are inspected in an online manner (Esfandi-
ari et al. 2019) or over T rounds (Gergatsouli and Tzamos
2022; Gatmiry et al. 2022). Some work is also done in
the generalized setting where more information can be ob-
tained for a price (Charikar et al. 2000; Gupta and Kumar
2001; Chen et al. 2015b,a). Finally a long line of research
considers more complex combinatorial constraints like bud-
get constraints (Goel, Guha, and Munagala 2006), pack-
ing constraints (Gupta and Nagarajan 2013), matroid con-
straints (Adamczyk, Sviridenko, and Ward 2016), maximiz-
ing a submodular function (Gupta, Nagarajan, and Singla
2016, 2017), an approach via Markov chains (Gupta et al.
2019) and various packing and covering constraints for both
minimization and maximization problems (Singla 2018).

A more recent line of work, that is very closely related to
our setting, studies PANDORA’S BOX and other stochastic
optimization problems like min-sum set cover in online set-
tings (Gergatsouli and Tzamos 2022; Fotakis et al. 2020).
Similar to our work, these papers do not require specific
knowledge of distributions and provide efficient algorithms
with low regret. However, these settings are not contextual,
therefore they can only capture much simpler practical ap-
plications. Moreover, they only obtain multiplicative regret
guarantees as, there, the problems are NP-hard to solve ex-
actly.

Our problem is closely related to contextual multi-armed
bandits, where the contexts provide additional information
on the quality of the actions at each round. In particular, in
the case of stochastic linear bandits (Abe and Long 1999),
the reward of each round is given by a (noisy) a linear func-
tion of the context drawn at each round. Optimistic algo-
rithms proposed for this setting rely on maintaining a con-
fidence ellipsoid for estimating the unknown vector (Dani,
Hayes, and Kakade 2008; Rusmevichientong and Tsitsik-
lis 2010; Abbasi-yadkori, Pál, and Szepesvári 2011; Valko
et al. 2014). On the other hand, in adversarial linear ban-
dits, a context vector is adversarially selected at each round.
The loss is characterized by the inner product of the context
and the selected action of the round. Common approaches
for this setting include variants of the multiplicative-weights
algorithm (Hazan, Karnin, and Meka 2014; van der Ho-
even, van Erven, and Kotłowski 2018), as well as, tools
from online linear optimization (Blair 1985; Cesa-Bianchi
and Lugosi 2006) such as follow-the-regularised-leader and
mirror descent (see (Bubeck and Eldan 2015; Abernethy,
Hazan, and Rakhlin 2008; Shalev-Shwartz and Singer 2007;
Bubeck, Cohen, and Li 2018) and references therein).

We note that our model generalizes the contextual ban-
dits setting, since any instance of contextual bandits can be
reduced to CONTEXTUAL PANDORA’S BOX for box costs
selected to be large enough. One work from the contex-
tual bandits literature that is more closely related to ours is
the recent work of Foster and Rakhlin (Foster and Rakhlin
2020). Similarly to our work, they provide a generic reduc-

tion from contextual multi-armed bandits to online regres-
sion, by showing that any oracle for online regression can
be used to obtain a contextual bandits algorithm.

Our work also fits in the recent direction of learning algo-
rithms from data and algorithm configuration, initiated by
Gupta and Roughgarden (Gupta and Roughgarden 2017),
and continued by (Balcan et al. 2017, 2018; Balcan, Dick,
and Vitercik 2018; Kleinberg, Leyton-Brown, and Lucier
2017; Weisz, Gyorgy, and Szepesvari 2018; Alabi et al.
2019). Similar work was done before in self-improving
algorithms by (Ailon et al. 2006; Clarkson, Mulzer, and
Seshadhri 2010). A related branch of work initiated by
Munoz and Vassilvitski (Medina and Vassilvitskii 2017) and
Lykouris and Vassilvitski (Lykouris and Vassilvitskii 2018)
combines Machine Learning predictions to improve algo-
rithm design studying various online algorithm questions
like ski rental (Purohit, Svitkina, and Kumar 2018; Gol-
lapudi and Panigrahi 2019; Wang, Li, and Wang 2020),
caching (Lykouris and Vassilvitskii 2018; Rohatgi 2020;
Wei 2020), scheduling (Lattanzi et al. 2020; Mitzenmacher
2020), online primal-dual method (Bamas, Maggiori, and
Svensson 2020), energy minimization (Bamas et al. 2020)
and secretary problem/matching (Antoniadis et al. 2023).
While most of these works assume that the predictions are
given a priori, recent works in the area (Diakonikolas et al.
2021; Lavastida et al. 2021) also focus on the task of learn-
ing the predictions. Our work can also be seen as learning to
predict for the reservation values of the boxes in CONTEX-
TUAL PANDORA’S BOX.

2 Problem Definition and Notation
We begin by describing the original PANDORA’S BOX for-
mulation. Then, in Section 2.2 we describe our online ex-
tension, which solves a contextual instance of PANDORA’S
BOX at each round.

2.1 Original Pandora’s Box Formulation
In PANDORA’S BOX we are given a set B of n boxes each
with cost ci and value vi ∼ Di, where the distributions Di

and the costs ci for each box are known and the distributions
are independent. The goal is to adaptively choose a box of
small cost while spending as little as possible in opening
costs. When opening box i, the algorithm pays ci and ob-
serves the value vi ∼ Di instantiated inside the box. The
formal definition follows.

Definition 1 (PANDORA’S BOX cost). Let P and ci be the
set of boxes opened and the cost of the box selected, respec-
tively. The cost of the algorithm is

EP,vi∼Di∀i∈B

[
min
i∈P

vi +
∑
i∈P

ci

]
(1)

where the expectation is taken over the distributions of the
values vi and the (potentially random) choice of P by the
algorithm.

Observe that an adaptive algorithm for this problem has
to decide on: (a) a (potentially adaptive) order according to
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Algorithm 1: Weitzman’s algorithm.
Input: n boxes, costs ci, reservation values σi for i ∈ B

1: π ← sort boxes by increasing σi

2: vmin ←∞
3: for every box πi do
4: Pay ci and open box πi and observe vi
5: vmin ← min(vmin, vi)
6: if vmin < σπi+1

then
7: Stop and collect vmin

8: end if
9: end for

which it examines the boxes and, (b) a stopping rule. Weitz-
man’s algorithm, first introduced in (Weitzman 1979), and
formally presented in Algorithm 1, gives a solution to PAN-
DORA’S BOX. The algorithm uses the order induced by the
reservation values to open the boxes.

We denote by WEITZD(σ; c) the expected cost of run-
ning Weitzman’s algorithm using reservation values σ on an
instance with distribution D and costs c. Weitzman showed
that this algorithm achieves the optimal expected cost of
Eq. (1) for the following selection of reservation values:
Theorem 2.1 (Weitzman (Weitzman 1979)). Weitz-
man’s algorithm is optimal for PANDORA’S BOX
when run with reservation values σ∗ that satisfy
Evi∼Di

[ReLU(σ∗
i − v)] = ci for every box i ∈ B,

where ReLU(x) = max{x, 0}.

2.2 Online Contextual Pandora’s Box
We now describe an online contextual extension of PAN-
DORA’S BOX. In CONTEXTUAL PANDORA’S BOX there is
a set B of n boxes with costs c = (c1, . . . , cn)

1. At each
round t ∈ [T ]:
1. An (unknown) product distribution Dt =

(Dt,1, . . . ,Dt,n) is chosen and for every box i, a
value vt,i ∼ Dt,i is independently realized.

2. A vector of contexts xt = (xt,1, . . .xt,n) is given to the
learner, where xt,i ∈ Rd and ∥xt,i∥2 ≤ 1 for each box
i ∈ B.

3. The learner decides on a (potentially adaptive) algorithm
A based on past observations.

4. The learner opens the boxes according to A and chooses
the lowest value found.

5. At the end of the round, the learner observes all the real-
ized values of all boxes (full-information model), or ob-
serves only the values of boxes opened in the round (ban-
dit model).

Assumption 2.2 (Realizability). There exist vectors
w∗

1 , . . . ,w
∗
n ∈ Rd and a function h, such that for every time

t ∈ [T ] and every box i ∈ B, the optimal reservation value
σ∗
t,i for the distribution Dt,i is equal to h(w∗

i ,xt,i), i.e.

Evt,i∼Dt,i
[ReLU(h(w∗

i ,xt,i)− vt,i)] = ci.
1Every result in the paper holds even if the costs change for

each t ∈ [T ] and can be adversarially selected.

The goal is to achieve low expected regret over T rounds
compared to an optimal algorithm that has prior knowledge
of the vectors w∗

i and, thus, can compute the exact reser-
vation values of the boxes in each round and run Weitz-
man’s optimal policy. The regret of an algorithm is defined
as the difference between the cumulative PANDORA’S BOX
cost achieved by the algorithm compared to the cumulative
cost achieved by running Weitzman’s optimal policy at every
round. That is:

Definition 2 (Expected Regret). The expected regret of an
algorithmA that opens boxes Pt at round t over a time hori-
zon T is

Regret(A, T ) =

E

[
T∑

t=1

(
min
i∈Pt

vt,i +
∑
i∈Pt

ci −WEITZDt(h(w
∗,xt); c)

)]
.

(2)

The expectation is taken over the randomness of the algo-
rithm, the contexts xt, distributions Dt and realized values
vt ∼ Dt, over all rounds t ∈ [T ].

Remark. If the learner uses Weitzman’s algorithm at ev-
ery time step t, with reservation values σt,i = h(wt,i,xt,i)
for some chosen parameter wt,i ∈ Rd for every box i ∈ B,
the regret can be written as

Regret(A, T ) =

E
[ T∑

t=1

(
WEITZDt

(h(wt,xt); c)

−WEITZDt(h(w
∗,xt); c)

)]
,

where wt = (wt,1, . . . ,wt,n).

3 Reduction to Online Regression
In this section we give a reduction from CONTEXTUAL
PANDORA’S BOX problem to an instance of online regres-
sion, while maintaining the regret guarantees given by on-
line regression. We begin by formally defining the regression
problem:

Definition 3 (Linear-Quadratic Online Regression). Online
regression with loss ℓ is defined as follows: at every round t,
the learner first chooses a prediction wt, then an adversary
chooses an input-output pair (xt, yt) and the learner incurs
loss ℓ(h(wt,xt)− yt).

In the costly feedback setting, the learner may observe the
input-output pair at the end of round t, if they choose to pay
an information acquisition cost a. The full information set-
ting, corresponds to the case where a = 0, in which case the
input-output pair is always visible. The regret of the learner
after T rounds, when the learner has acquired information
k times, is equal to

T∑
t=1

ℓ(h(wt,xt)− yt)−min
w

T∑
t=1

ℓ(h(wt,xt)− yt) + ak.
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Algorithm 2: CPB: Contextual Pandora’s Box
Input: Oracle O for Linear-Quadratic Online Regression.

1: For every box i ∈ B, instantiate a copy Oi of the oracle
with linear-quadratic loss Hci

2: for each round t ∈ T do
3: #Prediction Phase
4: Call oracle Oi to get a prediction wt,i for each box i
5: Obtain context xi

t for each box i ∈ B
6: Run Weitzman’s algorithm 1 with reservation values

σt,i = h(wt,i,xt,i) for each box i ∈ B

7: #Update Phase
8: for every box i ∈ B do
9: if the oracleOi requests an input-output pair at this

round then
10: Observe value vt,i and give the input-output pair

(xt,i, vt,i)
11: end if
12: end for
13: end for

Linear-Quadratic Online Regression is the special case of
online regression where the loss function ℓ(z) is chosen to
be a linear-quadratic function of the form

Hc(z) =
1

2
ReLU(z)2 − cz (3)

for some parameter c > 0.
The reduction presented in Algorithm 2 shows how we

can use an oracle for linear-quadratic online regression, to
obtain an algorithm for CONTEXTUAL PANDORA’S BOX

problem. We show that our algorithm achieves O(
√

Tr(T ))
regret when the given oracle has a regret guarantee of r(T ).
Theorem 3.1. Given an oracle that achieves expected re-
gret r(T ) for Linear-Quadratic Online Regression, Algo-
rithm 2 achieves 2n

√
Tr(T ) regret for the CONTEXTUAL

PANDORA’S BOX problem. In particular, if the regret r(T )
is sublinear in T , Algorithm 2 achieves sublinear regret.

Our algorithm works by maintaining a regression or-
acle for each box, and using it at each round to obtain a
prediction on wt,i. Specifically, in the prediction phase of
the round the algorithm obtains a prediction and then uses
the context xi,t to calculate an estimated reservation value
for each box. Then, based on the estimated reservation
values, it uses Weitzman’s algorithm 1 to decide which
boxes to open. Finally, it accumulates the PANDORA’S
BOX cost acquired by Weitzman’s play at this round
and the cost of any extra boxes opened by the oracle
in the update phase (in the bandit setting). The update
step is used to model the full-information setting (where
the value of each box is always revealed at the end of
the round) vs the costly feedback setting (where the value
inside each box is only revealed if we paid the opening cost).

In the rest of this section we outline the proof of Theo-
rem 3.1. The proof is based on obtaining robustness guar-

antees for Weitzman’s algorithm when it is run with esti-
mates instead of the true reservation values. In this case, we
show that the cost incurred by Weitzman’s algorithm is pro-
portional to the error of the approximate costs of the boxes
(Definition 4). This analysis is found on Section 3.1. Then,
in Section 3.2 we exploit the form of the Linear-Quadratic
loss functions to connect the robustness result with the re-
gret of the Linear-Quadratic Online Regression problem and
conclude our main Theorem 3.1 of this section.

An empirical evaluation of Algorithm 2 can be found in
??.

3.1 Weitzman’s Robustness
We provide guarantees on Weitzman’s algorithm 1 perfor-
mance when instead of the optimal reservation values σ∗ of
the boxes, the algorithm uses estimates σ ̸= σ∗. We first
define the following:
Definition 4 (Approximate Cost). Given a distribution D
such that v ∼ D and a value σ, the approximate cost with
respect to σ and D is defined as:

cD(σ) = Ev∼D [ReLU(σ − v)] . (4)

Moreover, given n boxes with estimated reservation values
σ and distributions D we denote the vector of approximate
costs as cD(σ) = (cD1

(σ1), . . . , cDn
(σn)).

Remark. Observe that, in the PANDORA’S BOX setting,
if box i has value distribution Di opening cost ci and op-
timal reservation value σ∗

i , then, by definition, the quantity
cDi

(σ∗
i ) corresponds to the true cost, ci, of the box. This also

holds for the vector of approximate costs, i.e. cD(σ∗) = c.
We now state our robustness guarantee for Weitzman’s al-

gorithm. In particular, we show that the extra cost incurred
due to the absence of initial knowledge of vectors w∗

i is pro-
portional to the error of the approximate costs the boxes, as
follows:
Proposition 3.2. For a PANDORA’S BOX instance with n
boxes with distributions D, costs c and corresponding opti-
mal reservation values σ∗ so that c = cD(σ∗), Weitzman’s
Algorithm 1, run with reservation values σ incurs cost at
most

WEITZD(σ; c) ≤WEITZD(σ∗; c) + ∥cD(σ)− c∥1.
Before showing Proposition 3.2, we prove the following

lemma, that connects the optimal PANDORA’S BOX cost of
an instance with optimal reservation values σ∗ to the opti-
mal cost of the instance with optimal reservation values σ.

Lemma 3.3. Let WEITZD(σ∗; c) and
WEITZD(σ; cD(σ)) be the optimal PANDORA’S BOX
costs corresponding to instances with optimal reservation
values σ∗ and σ respectively. Then

WEITZD(σ∗; c) ≥

WEITZD(σ; cD(σ))−
∑
i∈B

ReLU(cDi
(σi)− ci).

The proof of the above Lemma, together with that of
Proposition 3.2, are deferred to ??.
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3.2 Proof of Theorem 3.1
Moving on to show our main theorem, we connect the ro-
bustness Proposition 3.2 with the performance guarantee of
the Linear-Quadratic Online Regression problem. The ro-
bustness guarantee of Weitzman’s algorithm is expressed in
terms of the error of the approximate costs of the boxes,
while the regret of the Online Regression problem is mea-
sured in terms of the cumulative difference of the linear-
quadratic loss functions Hc(·). Thus, we begin with the fol-
lowing lemma:

Lemma 3.4. For any distribution D with cD(σ
∗) = c, it

holds that

Ev∼D [Hc(σ − v)−Hc(σ
∗ − v)] ≥ 1

2
(cD(σ)− cD(σ

∗))2

The proof of the lemma is deferred to the Appendix.

Proof of Theorem 3.1. Recall that at every step t ∈ [T ], Al-
gorithm 2 runs Weitzman’s algorithm as a subroutine, us-
ing an estimate σt for the optimal reservation values of the
round, σ∗

t . From the robustness analysis of Weitzman’s al-
gorithm we obtain that the regret of Algorithm 2 can be
bounded as follows:

Regret(CPB, T )

= E

∑
t∈[T ]

WEITZDt(σt; ct)−WEITZDt(σ
∗
t ; ct)


≤

∑
t∈[T ],i∈B

|cDt,i(σt,i)− cDt,i(σ
∗
t,i)|

≤
√
nT

√ ∑
t∈[T ],i∈B

(cDt,i(σt,i)− cDt,i(σ
∗
t,i))

2,

where the first inequality follows by Proposition 3.2 and for
the last inequality we used that for any k-dimensional vector
z we have that ∥z∥1 ≤

√
k∥z∥2 and the fact that the above

sum over T,B is equivalent to ℓ1 norm on nT dimensions.
Moreover, we have that∑
t∈[T ],i∈B

(cDt,i(σt,i)− cDt,i(σ
∗
t,i))

2

≤ 2 E

 ∑
t∈[T ],i∈B

(
Hct,i(σt,i − vt,i)−Hct,i(σ

∗
t,i − vt,i)

)
≤ 2 · n · r(T ),

where for the first inequality we used Lemma 3.4, and then
the guarantee of the oracle. Thus, we conclude that the total
expected regret is at most 2n

√
Tr(T ).

4 Linear Contextual Pandora’s Box
Using the reduction we developed in Section 3, we design ef-
ficient no-regret algorithms for CONTEXTUAL PANDORA’S
BOX in the case where the mapping from contexts to reser-
vation values is linear. That is, we assume that h(w,x) =
wTx.

4.1 Full Information Setting
In this section we study the full-information version of the
CONTEXTUAL PANDORA’S BOX problem, where the algo-
rithm observes the realized values of all boxes at the end of
each round, irrespectively of which boxes were opened. Ini-
tially we show that there exists an online regression oracle,
that achieves sublinear regret for the full information version
of the Linear-Quadratic Online Regression problem. Then,
in Theorem 4.2 we combine our reduction of Theorem 3.1
with the online regression oracle guarantee, to conclude that
Algorithm 2 using this oracle is no-regret for CONTEXTUAL
PANDORA’S BOX. The lemma and the theorem follow.
Lemma 4.1. When h(w,x) = wTx, ||w||2 ≤ M and
||x||2 ≤ 1, there exists an oracle for Online Regression
with Linear-Quadratic loss Hc under full information that
achieves regret at most max{M, c}

√
2MT .

To show Lemma 4.1, we view Linear-Quadratic Online
Regression as an instance of Online Convex Optimization
and apply the Follow The Regularized Leader (FTRL) fam-
ily of algorithms to obtain the regret guarantees.
Theorem 4.2. In the full information setting, using the or-
acle of Lemma 4.1, Algorithm 2 for CONTEXTUAL PAN-
DORA’S BOX achieves a regret of

Regret(CPB, T ) ≤ 3n
√
max{M, cmax}M1/4T

3
4 ,

assuming that for all times t and boxes i ∈ B, ∥w∗
t,i∥2 ≤M

and cmax = maxi∈B ci.

The process of using FTRL as an oracle is described in
detail in ??, alongside the proofs of Lemma 4.1 and Theo-
rem 4.2.

4.2 Bandit Setting
We move on to extend the results of the previous section to
the bandit setting, and show how to obtain a no-regret algo-
rithm for this setting by designing a regression oracle with
costly feedback. In this case, the oracle Oi of Algorithm 2
of each box i ∈ B does not necessarily receive information
on the value of the box after each round. However, in each
round it chooses whether to obtain the information for the
box by paying the opening cost c.

We initially show that we can use any regression oracle
given for the full-information setting, in the costly feedback
setting without losing much in terms of regret guarantees.
This is formalized in the following theorem.
Lemma 4.3. Given an oracle that achieves expected re-
gret r(T ) for Online Regression with Linear-Quadratic loss
Hc under full information, Algorithm 3 is an oracle for
Linear-Quadratic Online regression with costly feedback,
that achieves regret at most kr(T/k) + cT/k.

Algorithm 3 obtains an oracle with costly feedback from
a full information oracle. It achieves this by splitting the
time interval [T ] in intervals of size k, and choosing a
uniformly random time per interval to acquire the costly
information about the input-output pair. The proof of
Lemma 4.3 is included in the Appendix.
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Algorithm 3: Costly Feedback oracle from Full Information
Input: Parameter k, full information oracle O

1: Split the times [T ] into T/k intervals I1 . . . , IT/k

2: for Every interval Iτ do
3: Pick a tp uniformly at random from Iτ

#Prediction Phase
4: Call O to get a vector wτ .
5: For each t ∈ Iτ predict wτ

#Update Phase
6: Obtain feedback for time tp ∈ Iτ and give input-

output pair (xtp , ytp) to O.
7: end for

Given that we can convert an oracle for full-information
to one with costly feedback using Algorithm 3, we can now
present the main theorem of this section (see ?? for the
proof):

Theorem 4.4. In the bandit setting, using the oracle of
Lemma 4.3 together with the oracle of Lemma 4.1, Algo-
rithm 2 for CONTEXTUAL PANDORA’S BOX achieves a re-
gret of

Regret(CPB, T ) ≤ 2n(2cmaxM max{M, cmax}2)1/6T 5/6,

assuming that for all times t and boxes i ∈ B, ∥w∗
t,i∥2 ≤M

and cmax = maxi∈B ci.

Conclusion and Further Directions
We introduce and study an extension of the PANDORA’S
BOX model to an online contextual regime, in which the
decision-maker faces a different instance of the problem
at each round. We identify the minimally restrictive as-
sumptions that need to be imposed for the problem to
become tractable, both computationally and information-
theoretically. In particular, we formulate a natural realizabil-
ity assumption – parallel to the one used widely in contex-
tual bandits – which enables leveraging contextual informa-
tion to recover a sufficient statistic for the instance of each
round. Via a reduction to Linear-Quadratic Online Regres-
sion, we are able to provide a no-regret algorithm for the
problem assuming either full or bandit feedback on the re-
alized values. We believe that the framework we develop in
this work could be extended to other stochastic optimization
problems beyond PANDORA’S BOX. As a example, an inter-
esting future direction would be its application to the case
of revenue optimal online auctions; there Myerson’s reserve
prices can serve as a natural sufficient statistic (similarly to
reservation prices) for obtaining optimality. In addition to
applying our framework to different stochastic optimization
problems, an interesting future direction would be the em-
pirical evaluation of our methods on real data. Finally, we
leave as an open question the derivation of non-trivial regret
lower bounds for the considered problem. We discuss lower
bounds guarantees for related settings and their implications
to our problem in the Appendix.
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Bamas, É.; Maggiori, A.; Rohwedder, L.; and Svensson, O.
2020. Learning Augmented Energy Minimization via Speed
Scaling. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Bal-
can, M.; and Lin, H., eds., NeurIPS 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.
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