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Abstract

Few-shot classification (FSC) entails learning novel classes
given only a few examples per class after a pre-training
(or meta-training) phase on a set of base classes. Recent
works have shown that simply fine-tuning a pre-trained Vi-
sion Transformer (ViT) on new test classes is a strong ap-
proach for FSC. Fine-tuning ViTs, however, is expensive in
time, compute and storage. This has motivated the design of
parameter efficient fine-tuning (PEFT) methods which fine-
tune only a fraction of the Transformer’s parameters. While
these methods have shown promise, inconsistencies in experi-
mental conditions make it difficult to disentangle their advan-
tage from other experimental factors including the feature ex-
tractor architecture, pre-trained initialization and fine-tuning
algorithm, amongst others. In our paper, we conduct a large-
scale, experimentally consistent, empirical analysis to study
PEFTs for few-shot image classification. Through a battery
of over 1.8k controlled experiments on large-scale few-shot
benchmarks including META-DATASET (MD) and ORBIT, we
uncover novel insights on PEFTs that cast light on their effi-
cacy in fine-tuning ViTs for few-shot classification. Through
our controlled empirical study, we have two main findings:
(i) Fine-tuning just the LayerNorm parameters (which we call
LN-TUNE) during few-shot adaptation is an extremely strong
baseline across ViTs pre-trained with both self-supervised
and supervised objectives, (ii) For self-supervised ViTs, we
find that simply learning a set of scaling parameters for each
attention matrix (which we call ATTNSCALE) along with a
domain-residual adapter (DRA) module leads to state-of-the-
art performance (while being ∼9× more parameter-efficient)
on MD. Our empirical findings set strong baselines and call
for rethinking the current design of PEFT methods for FSC.

1 Introduction
Few-shot classification (FSC) involves learning a new clas-
sification task given only a few labelled training examples
from each of the novel classes. It has a large number of main-
stream applications such as drug-discovery (Stanley et al.
2021), robotics (Ren et al. 2020) and personalized object
recognition (Massiceti et al. 2021) among others. Usually, a
given few-shot classification task consists of a few-labelled
examples from the new classes (support set) and a testing set
of unlabeled held-out examples of those classes (query set).
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Recent works (Hu et al. 2022; Li, Liu, and Bilen 2021; Xu
et al. 2022) have shown that fine-tuning a large pre-trained
Vision Transformer (ViT) on the support set of new test
tasks achieves state-of-the-art performance on large-scale
few-shot classification benchmarks such as META-DATASET
(MD). Because of their high number of parameters, however,
fine-tuning ViTs is extremely expensive in terms of storage,
compute, and time. This limits the ability to learn new down-
stream tasks in real-world applications where resources are
constrained (e.g., personalization on edge or mobile devices)
since (i) storing the task’s fine-tuned parameters on the edge
may be unfeasible, especially for a large number of down-
stream tasks and (ii) fine-tuning on each new task takes long.

As a result, much recent progress has been made in de-
signing light-weight, fast and parameter-efficient fine-tuning
(PEFT) methods (Xu et al. 2022; Jia et al. 2022). These re-
duce the computational requirements to adapt a ViT to a new
test task by fine-tuning only a fraction of the ViT’s total pa-
rameters. However, inconsistencies in experimental setups
make it difficult to disentangle the benefit of PEFT meth-
ods from other experimental factors, including pre-training
initialization, feature extractor architecture, fine-tuning al-
gorithm, downstream dataset and other hyperparameters.
Prompt-tuning (Jia et al. 2022), for example, is the state-
of-the-art PEFT method on the transfer learning benchmark
VTAB (Zhai et al. 2019), while eTT (Xu et al. 2022) per-
forms strongly on few-shot classification in MD. Both, how-
ever, use distinct feature extractors, pre-training initializa-
tions, fine-tuning algorithms, and hyperparameters, thus lim-
iting our understanding of the generalizability of these PEFT
methods across different setups.

To address this, we perform a large-scale empirical analy-
sis of top-performing PEFT methods on two large-scale few-
shot image classification benchmarks, META-DATASET (Tri-
antafillou et al. 2019) and ORBIT (Massiceti et al. 2021). Our
experimentation involves ∼ 1.8k fine-tuning experiments
which quantify the performance of PEFT methods under ex-
perimentally controlled settings including ViT architectures,
pre-training objectives, and fine-tuning algorithms. This en-
ables us to compare PEFT methods in a fair and consistent
way and also draw out novel insights on the interaction be-
tween these different components in the fine-tuning pipeline.

Our main finding is that the embarrassingly simple ap-
proach of fine-tuning just a ViT’s LayerNorm parameters
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Figure 1: ATTNSCALE leads to SoTA performance on MD with self-supervised ViTs and LN-TUNE leads to SoTA performance
for supervised ViTs. Pareto-Plot comparing the average MD accuracy with the model parameters updated during few-shot adap-
tation: (a) Averaged across self-supervised ViT-S/16 and ViT-B/16 (DINO); (b) Averaged across supervised ViT-S/16(DeiT),
ViT-B/16(DeiT) and ViT-B/16(ImageNet-21k). We find that the recently proposed eTT (Xu et al. 2022) does not generalize well
to supervised objectives and two simple but strong baselines LN-TUNE and ATTNSCALE outperform existing PEFT methods.

(only 0.08% of total parameters) on a new test task leads
to better performance than with full model fine-tuning and
other PEFT methods on MD and ORBIT. We call this baseline
LN-TUNE. We also find that the recently proposed eTT (Xu
et al. 2022), primarily designed for self-supervised ViTs,
lags behind some of the PEFT methods which we evalu-
ate in our empirical study. In lieu of this, we propose a new
strong baseline called ATTNSCALE which leads to improved
few-shot performance over eTT and other PEFT methods
for self-supervised ViTs. In particular, ATTNSCALE learns
only a scaling parameter for each entry in the attention ma-
trices along with a domain-residual module during few-shot
adaptation, making it ∼ 9x more parameter-efficient than
eTT. Importantly, ATTNSCALE is extremely simple to im-
plement, requires less than 6 lines of code, and can be eas-
ily integrated with any ViT architecture. These approaches
establish two new, strong PEFT baselines for few-shot clas-
sification, however our empirical study also reveals several
interesting insights: (i) None of the carefully designed ex-
isting PEFT methods show consistent performance rankings
across different pre-training methods (Sec 6.1). (ii) We find
that for different degrees of domain shifts, distinct PEFT
methods are preferred highlighting that the need for surgi-
cally designing PEFT methods for different domain shifts
(Sec 6.3). (iii) Dropping PEFT methods from earlier layers
in the ViT for large domain shifts (e.g. Omniglot, Quick-
draw, Traffic-Sign) is detrimental to few-shot performance
(Sec 6.4). In summary, our contributions are as follows:

• A large-scale, experimentally consistent, empirical anal-
ysis of a wide-range of PEFT methods for few-shot
classification on 2 challenging large-scale benchmarks,
META-DATASET and ORBIT.

• An embarrassingly simple PEFT baseline, LN-TUNE,

which fine-tunes less than 0.08% of a ViT’s parame-
ters outperforming all existing PEFT methods on MD
amongst supervised ViTs.

• An easy-to-implement method, ATTNSCALE, which sets
a new state-of-the-art on MD amongst self-supervised
ViTs while fine-tuning <1.2% of the ViT’s parameters.

Our findings highlight that there is no one-size-fits-all PEFT
method and simple parameter-efficient fine-tuning baselines
should not be overlooked.

2 Related Works
ViTs in few-shot classification. CNNs have primarily been
used as the feature extractor backbone in few-shot classi-
fication methods (Finn, Abbeel, and Levine 2017; Snell,
Swersky, and Zemel 2017; Chen et al. 2020; Hospedales
et al. 2020; Vinyals et al. 2016), however, recently ViTs
have replaced them as the state-of-the-art (Hu et al. 2022) in
challenging few-shot classification benchmarks like META-
DATASET. In these methods, the ViT is typically pre-trained
with a self-supervised (or meta-learning) objective on a large
dataset and then fine-tuned on new test tasks.

PEFT methods for few-shot classification. Parameter
efficient fine-tuning methods have been extensively stud-
ied in Transformers for NLP tasks with adapters (Houlsby
et al. 2019), LoRA (Hu et al. 2021), prefix-tuning (Li and
Liang 2021) and prompt-tuning (Lester, Al-Rfou, and Con-
stant 2021) serving as strong alternatives to fine-tuning all
the Transformer’s parameters. PEFTs have also been ex-
plored in Vision Transformers for computer vision tasks,
with methods like visual prompt tuning (Jia et al. 2022) for
transfer learning which work by tuning prefixes attached to
the input and eTT (Xu et al. 2022) which tune prefixes at-
tached to key and value matrices in the self-attention layers.
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(Xu et al. 2022) show that eTT results in performance close
to full model tuning for ViTs pre-trained using DINO using
only 9% of the total model parameters on MD.

3 Few-Shot Classification Preliminaries
In few-shot classification, the goal is to adapt a classifier to a
new task at test time using a small number of training exam-
ples of each new class. In fine-tuning-based approaches, this
adaptation process is done by fine-tuning the model on the
training examples, before then evaluating it on a held-out set
of test examples.

Formally, given a pre-trained feature extractor fθ, a few-
shot task is sampled from a test dataset D. The task is
composed of a support set S (of training examples) and a
query set Q (of held-out test examples). Generally, N unique
classes are first sampled from the underlying dataset D. For
each class j ∈ [1, N ], kjs examples are sampled for the sup-
port set S and kjq examples are sampled for the query set Q.
If kjs = k is fixed for ∀j ∈ [1, N ] classes, then the task is
known as a N -way, k-shot task. When given a new test task,
the objective is to fine-tune the underlying feature extractor
fθ or the parameter-efficient module pϕ on the task’s support
set S using a fine-tuning algorithm F . In parameter-efficient
fine-tuning approaches, fθ is frozen and only the parameters
in pϕ are fine-tuned. More specifically, we can formalize the
fine-tuning procedure as follows:

ϕ∗ = min
ϕ

ℓ(fθ, pϕ,F(S)), (1)

Inference on the query examples is done depending on the
fine-tuning algorithm F (see Sec 4) for details). We follow
the variable-way, variable way sampling protocol from (Tri-
antafillou et al. 2019) where kjs , kjq and N vary for each sam-
pled few-shot task. This setting generates class-imbalanced
few-shot tasks which make it challenging as the model needs
to handle tasks of varying sizes.

4 Large-Scale Empirical Study Design
PEFT methods have been widely used to make few-shot
adaptation more computationally efficient (Jia et al. 2022;
Xu et al. 2022; Shysheya et al. 2022), however, inconsisten-
cies in experimental setups make it difficult to disentangle
the gain from PEFT methods versus other experimental fac-
tors. To address this, we conduct a wide-scale experimen-
tally controlled study of over 1.8k experiments. We con-
trol for the pre-trained model (including pre-training objec-
tive and architecture), PEFT module type, position of the
PEFT module, fine-tuning algorithm, learning hyperparam-
eters and downstream dataset. Below we provide details of
each of these components:

Pre-trained models. For pre-training objectives we con-
sider the self-supervised objective DINO (Caron et al. 2021)
and the supervised objective DeiT (Touvron et al. 2020).
For architectures, we consider ViT-S/16 and ViT-B/16 (Tou-
vron et al. 2020). These architectures are pre-trained using
the given objectives on ImageNet-1k. In addition, we also
consider ViT-B/16, which is pre-trained on the large-scale
ImageNet-21k. These objectives and architectures were cho-
sen as they lead in downstream few-shot performance (Hu

et al. 2022) on MD. More details on pre-training are included
in the Appendix.

PEFT methods. We consider the following 7 ex-
isting methods for parameter-efficient fine-tuning:
adapters (Houlsby et al. 2019), LoRA (Hu et al. 2021),
shallow prompt-tuning and deep prompt-tuning (Jia et al.
2022), eTT (Xu et al. 2022), ladder tuning (Sung, Cho,
and Bansal 2022), and bias tuning (Zaken, Ravfogel,
and Goldberg 2021). We also compare to full model
fine-tuning (Hu et al. 2022) and our 2 strong baselines: fine-
tuning only the ViT’s LayerNorm parameters (LN-TUNE),
and learning a simple scaling factor for the elements in
the attention matrices (ATTNSCALE) (see Sec 5.2). Of the
existing methods, adapters and LoRA have been extensively
used for fine-tuning Transformers in few-shot NLP tasks.
Ladder tuning is a more recent memory-efficient as well
as parameter-efficient fine-tuning method for language
models like T5 (Raffel et al. 2019). Ladder is tuning is
memory-efficient as it avoids back-propagation through
the entire feature-extractor backbone. Shallow and deep
prompt tuning are adaptations of (Lester, Al-Rfou, and
Constant 2021) for transfer learning in vision. eTT (Xu
et al. 2022) fine-tunes only the prefixes attached to the key
and value matrices in a ViT’s self-attention layers. eTT is
also the only method to have been tested on the large-scale
META-DATASET benchmark. Note, we omit the prototype
regularization used in eTT to ensure fair comparison to
other PEFT methods where prototype regularization is not
used. We provide further information for each of these
methods in the Appendix.

Position of PEFT methods. We consider two configu-
rations in which the PEFTs are inserted in the ViT: (i) We
insert PEFTs in each of the layers, including the final; (ii)
We insert PEFT in the final layer and in one of the layers
between the first and the final layer, leading to two layers
in total. For (ii) each fine-tuning experiment is repeated 12
times (see Sec 6.4 for analyses).

Fine-tuning algorithms . We consider 3 fine-tuning al-
gorithms given a new test task: (i) LINEAR: We attach a lin-
ear classification layer after the final layer of the ViT and
fine-tune both the PEFT’s and this layer’s parameters using
a cross-entropy loss. (ii) PROTOAUG: Following the state-
of-the-art fine-tuning approach in (Hu et al. 2022), we use
the examples from the task’s support set to initialize class
prototypes, similar to ProtoNets (Snell, Swersky, and Zemel
2017), and then use a query set to fine-tune the ViT. where
the query set is an augmented version of the support set. In
particular, we apply color-jitter and translation augmenta-
tions on the support set to generate the query set. (iii) PRO-
TONCC: Following (Li, Liu, and Bilen 2021; Xu et al.
2022), we do not apply augmentations to generate the query
set and instead treat the query set as a copy of the support
set, and fine-tune the ViT in a similar way to PROTOAUG.

Hyperparameters. We standardize the hyperparam-
eters across our entire experimental setup. Follow-
ing (Hu et al. 2022), we choose a learning rate from
{0.0001, 0.001, 0.01, 0.1} and select the rate that gives the
best performance on the validation set. The validation set is
a fixed set of 5 few-shot tasks sampled from the downstream
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Figure 2: PEFT methods (except LN-TUNE) lack consistency across different pre-training paradigms. (a) The ranks of the
7 top-performing PEFT methods on META-DATASET change across different pre-training paradigms when measured under
controlled settings; (b) The Spearman correlations between the different pre-trained models with respect to the performance
rank of all 10 PEFT methods are not consistently high. Evaluation across all domains in MD except ImageNet.

dataset to which the ViT is being adapted. For each few-shot
task, we fine-tune for 40 steps with Adam (Kingma and Ba
2014) using the selected learning rate.

Downstream datasets. We run all our experiments on
two challenging large-scale few-shot classification bench-
marks (i) META-DATASET (Triantafillou et al. 2019) and (ii)
ORBIT (Massiceti et al. 2021). META-DATASET consists of
10 different sub-datasets, and is currently the most widely
used few-shot classification benchmark. Note, we remove
the ilsvrc 2012 sub-dataset from META-DATASET as our ViT
models have been pre-trained on ImageNet. ORBIT is a few-
shot classification benchmark containing noisy, real-world
videos of everyday objects across 17 test users. In accor-
dance with (Triantafillou et al. 2019), we sample 600 few-
shot tasks per sub-dataset in META-DATASET while for OR-
BIT, we sample 50 tasks per user. In total, each experimental
analysis is performed on 6250 few-shot tasks.

5 Strong Baselines for Few-Shot Fine-tuning
Our standardised large-scale empirical study led us to dis-
cover two embarrassingly simple but strong baselines for
parameter-efficient few-shot fine-tuning: LN-TUNE and AT-
TNSCALE. Both of these methods perform better than full
model fine-tuning and all other existing PEFT methods on
MD at a fraction of the computational cost. Below we de-
scribe each of these strong baselines:

5.1 LN-TUNE
LN-TUNE works by fine-tuning only the ViT’s LayerNorm
parameters on a task’s support set. Formally, for a given
ViT with L layers, the ith layer has two LayerNorm blocks
– one before its attention block and one before its MLP
block. Given an input vector a ∈ Rd from the previous
layer or block, the operation of the first block can defined as

LayerNormi
1(a) = γi

1⊙ (a−µ)/σ+βi
1, and the operation of

the second block as LayerNormi
2(a) = γi

2⊙ (a−µ)/σ+βi
2.

Here {γi
1, β

i
1, γ

i
2, β

i
2} ∈ Rd are the only learnable param-

eters for the ith layer. For a given task, these parameters
across all L layers are fine-tuned using the task’s support set
S . As a result, LN-TUNE is extremely light-weight when
compared to the other PEFT methods. For e.g., a ViT-S/16
has only ∼18.6k LayerNorm parameters, while a ViT-B/16
has only ∼ 37k. Since ViT-S/16 and ViT-B/16 have ∼ 22M
and ∼ 76M parameters, respectively, this accounts for less
than 0.08% of the total parameters.

5.2 ATTNSCALE
As a second strong baseline, we introduce ATTNSCALE, a
modification to the recently proposed eTT (Xu et al. 2022).
Here, we replace the attentive prefix tuning part in eTT with
a learnable scaling parameter on each element in the atten-
tion matrices, which we tune along with eTT’s DRA mod-
ule, reducing the number of learnable parameters by ∼ 9x.
Given a ViT with L layers, nh attention heads and n tokens,
the weight matrices in the ith layer’s attention block for the
jth head are defined as W ij

q ∈ Rd×de , W ij
k ∈ Rd×de and

W ij
v ∈ Rd×de . Here d is the dimension of the token embed-

dings and de is the dimension of the tokens after the weight
matrix projection. Qij ∈ Rn×d,Kij ∈ Rn×d, V ij ∈ Rn×d

are defined as the query, key and value tokens, respectively.
The attention matrix in the ith layer for the jth head can be
defined as:

Aij = softmax((QijW ij
q )(KijW ij

k )T /
√
(de)), (2)

where Aij ∈ Rn×n. ATTNSCALE applies a point-wise scal-
ing factor to each element in the attention matrix before the
softmax operation. These scaling factors are learned dur-
ing fine-tuning on the task’s support set S . In particular,
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Figure 3: Different attention heads encode similar atten-
tion maps in self-supervised ViTs – (a) ViT-S/16(DINO);
(b) ViT-S/16(DeiT). We compute the Pearson correlation
between the attention scores of different heads: h i, ∀i ∈
[1, nh]. Self-supervised ViTs encode attention across differ-
ent heads more similarly than supervised ViTs. Correlation
is averaged across examples from 100 tasks in MD.

we define a learnable scaling tensor Aα ∈ Rn×n×L×nh .
Aα can be reshaped as {Ai

α}Li=1 where Ai
α ∈ Rn×n×nh is

the scaling tensor for each ith layer. For each attention head
j ∈ [1, nh], the scaling matrix is defined as Aij

α ∈ Rn×n.

Aij = softmax(Aij
α ⊙ (QijW ij

q )(KijW ij
k )T /

√
(de)),

(3)

During few-shot adaptation, only Aij
α is learned along

with the parameters in the DRA module from eTT. Note,
{W ij

q ,W ij
k ,W ij

v } are kept frozen for each ith layer and jth

attention head. In principle, the scaling factor Aα replaces
the attentive-prefix tuning (APT) module in eTT. This APT
module uses ∼9% model parameters, whereas ATTNSCALE
uses only ∼1.2% but still gives improved MD performance.

We also propose a light-weight extension of ATTNSCALE,
called ATTNSCALELITE, which learns the same scaling pa-
rameters across all nh attention heads in a given layer, rather
than different ones for each head. This is motivated by an
observation that all nh attention heads in a layer have sim-
ilar attention maps. We show this in Fig 3 where we plot
the pairwise Pearson correlation (Benesty et al. 2009) be-
tween the attention values of different heads. Here, for self-
supervised ViTs, we see strong correlation values between
different heads in a given layer indicating that different
heads encode similar kinds of attention maps. This is sim-
ilar for supervised ViTs, however, the correlation values are
slightly lower. Formally, for ATTNSCALELITE, we define
the scaling parameter for the ith layer as Ai

α ∈ Rn×n and
Aij

α = Ai
α, ∀j ∈ [1, nh]. ATTNSCALELITE requires only

0.25% of the total parameters for ViT-S/16 and only 0.09%
for ViT-B/16 which makes it an extremely light-weight mod-
ule. In Sec 6, we provide fine-grained results on the efficacy
of both ATTNSCALE and ATTNSCALELITE for downstream
few-shot adaptation. We provide a PyTorch-like implemen-
tation in the Appendix.

Figure 4: With PEFT methods, we find PROTOAUG to have
the best performance on META-DATASET, while LINEAR
performs the worst.MD accuracy averaged over all 10 PEFT
methods with different fine-tuning algorithms.

6 Empirical Results on META-DATASET
We use our wide-scale empirical study to derive novel in-
sights on PEFT methods for few-shot classification. In par-
ticular, we use our results on MD to answer the following
key questions: 1 Do PEFT methods rank similarly across
different pre-training architectures and learning objectives?
2 How does the fine-tuning algorithm influence the perfor-

mance of a PEFT method? 3 Is the optimal PEFT method
different for different data domains? 4 Can PEFT mod-
ules be dropped from certain positions in the feature extrac-
tor? This can lead to significant memory and storage sav-
ings during few-shot deployment. These are critical factors
when deploying a few-shot classifier in the wild. We also
show that our two simple but strong baselines, LN-TUNE
and ATTNSCALE, perform better than full fine-tuning and
all top-performing PEFT methods.

6.1 Consistency Across Pre-Training Models
We analyse the influence of pre-training model by rank-
ing the performance of different PEFT methods across the
different pre-training objectives and architectures described
in Sec 4. To isolate the role of the pre-trained model, for each
run, we keep all other variables constant including the fine-
tuning algorithm, position of the modules, and hyperparam-
eters. We report the results using the PROTOAUG fine-tuning
algorithm in Fig 2, and include results for PROTONCC and
LINEAR in the Appendix.

Existing PEFT methods. In Fig 2-(a), we find that PEFT
methods rank inconsistently, with no single best approach,
across the different pre-trained models. In Fig 2-(b), we plot
the Spearman correlation of the PEFT method’s ranking be-
tween different pre-trained models. We observe that the cor-
relation values across all pairs of pre-trained models are not
consistently high, suggesting that existing PEFT methods
do not generalize similarly for different pre-trained archi-
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PEFT MSCOCO Traffic-Sign Omniglot Aircraft DTD VGG-Flower Quickdraw Cu-birds Fungi Overall

Full 61.5 87.3 78.7 75.4 86.9 94.2 73.6 85.4 54.7 77.5

Adapter 55.8 52.2 54.7 60.0 83.8 94.6 60.5 84.8 55.9 66.8
Bias 63.4 90.4 80.4 77.5 84.7 95.1 74.3 85.6 58.9 78.8

LoRA 62.1 88.1 80.8 80.8 86.8 94.8 72.7 85.8 59.8 78.9
Ladder 55.7 52.2 54.7 60.01 83.8 94.6 60.5 84.8 55.9 67.0

Prompt-Shallow 52.7 58.9 61.8 62.9 83.0 94.2 66.0 83.4 55.5 68.7
Prompt-Deep 62.8 85.6 77.0 73.3 85.3 96.2 73.2 86.1 58.2 77.5

eTT 61.5 89.1 78.9 75.8 85.1 95.1 73.5 86.1 58.2 78.1

LN-TUNE 64.2 91.2 77.9 75.3 84.4 96.9 74.7 87.5 59.9 79.1
ATTNSCALE 61.9 91.4 80.9 78.8 85.8 95.9 74.4 86.7 59.01 79.4

ATTNSCALELITE 61.6 91.0 80.2 77.9 85.8 96.0 73.9 86.7 59.0 79.1

Table 1: Our strong baselines, LN-TUNE and ATTNSCALE, rank in the top 2 of all PEFT methods on the few-shot classification
benchmark, META-DATASET. Results shown for a ViT-S/16 (DINO), and exclude the ImageNet split.

tectures and objectives. We also find that adapters, ladder-
tuning and shallow prompt-tuning all have sub-par perfor-
mances on MD (∼ 10% drop) when compared to LoRA,
bias-tuning, eTT and deep prompt-tuning. We also highlight
that shallow prompt-tuning struggles with few-shot classi-
fication on MD despite performing competitively on trans-
fer learning natural tasks in VTAB (Jia et al. 2022). Deep
prompt-tuning, which is the state-of-the-art PEFT module
on VTAB, performs competitively on MD across all pre-
trained models, but falls short of methods like eTT, LoRA,
bias-tuning and full model-tuning (see Fig 2). This result
highlights that strongly performing PEFT methods for trans-
fer learning do not generalize well to the challenging few-
shot setting of MD. eTT (Xu et al. 2022) for ViT-S/16(DINO)
outperforms full model-tuning, but also lags behind LoRA
and bias-tuning. Overall, we find bias-tuning (Zaken, Rav-
fogel, and Goldberg 2021) to consistently rank amongst the
top 4 across all the pre-training models, outperforming many
of the more complex PEFT methods.

Our strong baselines. From Fig 2, we find that our
strong baselines, LN-TUNE and ATTNSCALE, perform
strongly across all the pre-trained models on MD. In particu-
lar, LN-TUNE performs the best for supervised ViTs (pre-
trained on ImageNet-1k and ImageNet-21k) consistently.
We also highlight that for supervised ViTs, none of the
PEFT methods except LN-TUNE reaches performance close
to full fine-tuning. ATTNSCALE, which is around 9x more
parameter-efficient than eTT, has the best few-shot perfor-
mance for self-supervised ViTs. For self-supervised ViTs,
LN-TUNE performs closely to ATTNSCALE and ranks in
the top 2 methods.

6.2 Effect of Fine-tuning Algorithm
We quantify the impact of 3 different algorithms for fine-
tuning the parameters in PEFTs: LINEAR, PROTOAUG and
PROTONCC. We find that PROTOAUG outperforms PRO-
TONCC and strongly outperforms LINEAR across all pre-
training objectives and PEFT methods including full model
tuning (Fig 4). In some cases, PROTOAUG and PROTONCC
outperform LINEAR by as much as 20%. We also find that
for self-supervised pre-training objectives like DINO (Caron
et al. 2021), the gap between PROTOAUG and PROTONCC

is ∼2.2%, whereas for supervised objectives like DeiT (Tou-
vron et al. 2020) this gap is higher at ∼4.7% (for both
ImageNet-1k and ImageNet-21k initializations). Since the
only difference between PROTOAUG and PROTONCC is
that the query set is an augmented version of the support set,
this suggests that applying augmentations during few-shot
(meta) fine-tuning is more effective with supervised than
self-supervised objectives. We also note that when using full
model fine-tuning, PROTOAUG outperforms PROTONCC by
∼5% for DINO and by ∼6.7% for DeiT objectives. This gap
is higher than when used with other PEFT methods (see Ta-
ble 3). This suggests that PROTOAUG’s efficacy decreases
when used in conjunction with PEFT methods.

6.3 Comparing Performance Across Domains
We leverage the distinct sub-datasets in MD to compare the
performance of PEFT methods across domains. Since each
sub-datasets has a different degree of domains shifts from
the pre-training dataset (ImageNet), we also evaluate the ro-
bustness of different PEFT methods to these shifts. In Ta-
ble 1, we show these results with a ViT-S/16 pre-trained with
DINO, and observe that none of the PEFT methods are con-
sistently the best across domains. We show similar results
for other pre-trained ViTs in the Appendix.

Existing PEFT methods. We observe that deep prompt-
tuning is the best PEFT method for domains with smaller
degrees of shift from ImageNet such as Cu-Birds and VGG-
Flower. It is second best on MS-COCO, which is also similar
to ImageNet. We find, however, that for larger domain shifts
such as Omniglot, Quickdraw and Traffic-Sign it struggles,
with LoRA and bias-tuning showing stronger performance.
This is similarly the case for adapters, LoRA, and ladder-
tuning which also perform poorly on larger domain shifts
and have the lowest average performance on MD generally.

Our strong baselines. We find that LN-TUNE in Table 1
outperforms all existing PEFT methods in 5 out of the 9 do-
mains, with ATTNSCALE lagging behind it only slightly in
these 5 domains. However, for domains with a larger shift
(e.g., Omniglot, Traffic-Sign), ATTNSCALE performs bet-
ter than LN-TUNE. Even for Quickdraw, where there is a
significant shift, ATTNSCALE and LN-TUNE perform al-
most similarly. Overall on MD, ATTNSCALE ranks the best
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Model Full Adapter Bias LoRA Ladder Prompt-D Prompt-S eTT LN-TUNE ATTNSCALE ATTNSCALELITE

ViT-S(DINO) 63.1 62.6 67.1 66.4 62.7 65.7 51.8 65.6 67.8 67.2 66.9
ViT-S(DeiT) 66.6 66.8 66.4 67.6 66.9 66.7 63.4 68.4 68.8 67.1 66.2

Table 2: LN-TUNE results in the best performance on ORBIT while ATTNSCALE is extremely competitive. Prompt-D: Prompt-
Deep; Prompt-S: Prompt-Shallow.

Method PROTOAUG PROTONCC Performance Gap

Full Tuning (DINO) 77.2 72.2 ∆ 5.0%
All PEFTs (DINO) 75.4 73.2 ∆ 2.2%

Full Tuning (DeiT) 78.1 71.38 ∆ 6.7%
All PEFTs (DeiT) 73.1 68.4 ∆4.7%

Table 3: The performance gap between PROTOAUG and
PROTONCC is more with full fine-tuning than when used
with PEFT methods.

in terms of few-shot performance. These results suggest that
our two strong baselines can be used complementarily: when
the domain shift from the pre-training dataset is high, AT-
TNSCALE is better suited, whereas when the domain shift is
low, LN-TUNE is the stronger approach. Our results high-
light that current PEFT methods are not robust to varying
degree of domain shifts and requires rethinking the current
designs to be uniformly robust to all domain shifts.

Performance of ATTNSCALELITE. We observe
from Table 1 that ATTNSCALELITE performs similarly to
LN-TUNE but slightly worse than ATTNSCALE (by around
0.5− 0.7%) on larger domain shifts for self-supervised ViT-
S/16(DINO). For smaller domain shifts, ATTNSCALELITE
matches the performance of ATTNSCALE. For supervised
ViTs, we find that ATTNSCALELITE lags behind AT-
TNSCALE by a larger margin of 1.2 − 1.8% for large do-
main shifts (see Appendix for results). The decrease in the
effectiveness of ATTNSCALELITE for supervised ViTs can
be attributed to the fact, that different heads encode atten-
tion maps less similarly than self-supervised ViTs. There-
fore, learning a separate set of scaling parameters for differ-
ent heads is more beneficial for few-shot adaptation.

6.4 Can We Drop PEFTs from ViT Layers?
In Secs. 6.3 and 6.2, the PEFT modules are inserted in each
of the 12 layers of the ViT. In this section, we use our strong
baselines to examine if dropping PEFT modules from the
majority of layers impacts performance. Specifically, we in-
sert a PEFT module in the final layer of the ViT and another
in 1 other layer (between 1-11). We vary the position of the
second PEFT and observe its impact on performance (Fig 5).

Results. From Fig 5, we find that inserting the PEFT into
the later layers improves the performance more than insert-
ing it in the earlier layers for domains with a small de-
gree of shift from ImageNet (e.g., MSCOCO, DTD, VGG-
Flower, Cu birds). However, for large domain shifts such as
in Traffic-Sign, Quickdraw and Omniglot, we find that in-
serting LN-TUNE in the earlier layers is crucial. In particu-
lar for these domains, we find that inserting LN-TUNE only
in the later layers results in ∼10% drop in accuracy.

Figure 5: Dropping LN-TUNE from earlier layers in the
ViT for large domain shifts (e.g., Traffic-Sign, Quickdraw,
Omniglot) leads to a large drop in accuracy.

7 Results on Tasks from ORBIT
From Table 2, we find that bias-tuning and eTT have the
best performances amongst the existing PEFT methods for
ViT-S/16 (DINO) and ViT-S/16 (DeiT), respectively. These
results reinforce our previous finding that different PEFT
methods may be suited to different pre-training objectives.
Overall, we find that LN-TUNE results in the best few-shot
performance for both self-supervised and supervised objec-
tives across all PEFT methods. ATTNSCALE ranks in the
top 2 for DINO, however, for DeiT we find its performance
slightly drops but still ranks within the top 4 PEFT methods.

8 Conclusion
In this paper, we perform a large-scale empirical study
of a range of top-performing PEFT methods across large-
scale benchmarks such as MD and ORBIT. Our main find-
ing is that two embarrassingly simple approaches – LN-
TUNE and ATTNSCALE – beat all PEFTs we evaluated and
set new state-of-the-art results on MD, while being easy-
to-implement, significantly less complex and parameter-
intensive. The scale of our empirical study also uncov-
ers several novel empirical insights, including that there
is no one-size-fits-all PEFT method across different pre-
training architectures, objectives, and downstream domains.
Together, our experimentally consistent suite of experiments
and strong baselines supports the future study of PEFT ap-
proaches for few-shot classification, but calls for rethinking
current practices in light of simple but effective baselines.
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