
Where and How to Attack? A Causality-Inspired Recipe for Generating
Counterfactual Adversarial Examples

Ruichu Cai1,2, Yuxuan Zhu1, Jie Qiao1*, Zefeng Liang1, Furui Liu3, Zhifeng Hao4

1School of Computer Science, Guangdong University of Technology, Guangzhou, China
2Peng Cheng Laboratory, Shenzhen, China

3Zhejiang Lab, Hangzhou, China
3College of Science, Shantou University, Shantou, China

{cairuichu, iamyuxuanzhu, qiaojie.chn, lzfeng011021}@gmail.com, liufurui@zhejianglab.com, haozhifeng@stu.edu.cn

Abstract

Deep neural networks (DNNs) have been demonstrated to be
vulnerable to well-crafted adversarial examples, which are
generated through either well-conceived Lp-norm restricted
or unrestricted attacks. Nevertheless, the majority of those ap-
proaches assume that adversaries can modify any features as
they wish, and neglect the causal generating process of the
data, which is unreasonable and unpractical. For instance,
a modification in income would inevitably impact features
like the debt-to-income ratio within a banking system. By
considering the underappreciated causal generating process,
first, we pinpoint the source of the vulnerability of DNNs
via the lens of causality, then give theoretical results to an-
swer where to attack. Second, considering the consequences
of the attack interventions on the current state of the exam-
ples to generate more realistic adversarial examples, we pro-
pose CADE, a framework that can generate Counterfactual
ADversarial Examples to answer how to attack. The empir-
ical results demonstrate CADE’s effectiveness, as evidenced
by its competitive performance across diverse attack scenar-
ios, including white-box, transfer-based, and random inter-
vention attacks.

Introduction
Deep Neural Networks (DNNs) have achieved tremendous
success in various tasks and have been widely used in critical
domains such as facial recognition (Schroff, Kalenichenko,
and Philbin 2015), medical diagnostics (Peng et al. 2021),
and autonomous driving (Tian et al. 2018). Despite their un-
precedented achievements, DNNs remain vulnerable to the
well-crafted adversarial examples (Szegedy et al. 2014; Big-
gio et al. 2013), and there has been a recent thrust on gener-
ating adversarial examples through, e.g., Lp-norm restricted
attack (Goodfellow, Shlens, and Szegedy 2015; Kurakin,
Goodfellow, and Bengio 2017; Madry et al. 2018; Carlini
and Wagner 2017; Moosavi-Dezfooli, Fawzi, and Frossard
2016), and unrestricted attack (Brown et al. 2017; Hosseini
and Poovendran 2018; Bhattad et al. 2020; Song et al. 2018;
Qiu et al. 2020; Yuan et al. 2022).

The Lp-norm approaches reveal DNNs’ vulnerability by
searching for the perturbation in raw pixel-space within a
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Figure 1: Discriminative DNN’s vulnerability to the inter-
ventional data.

bounded norm to preserve the photo-realism, while the unre-
stricted approaches replace such bounded perturbation with,
e.g., geometric distortions (Guo et al. 2018), color/texture
changing (Hosseini and Poovendran 2018; Bhattad et al.
2020; Yuan et al. 2022), and semantic changing (Qiu et al.
2020; Song et al. 2018), etc. Nevertheless, the majority of
these methods assume that an attacker can modify any fea-
tures as they wish, which is unreasonable if we aim to gener-
ate an adversarial example in real-world, e.g., the intractabil-
ity of accessing the digital input to an image recognition
model renders those methods perturbing the raw pixel-space
fail. Moreover, we argue that only altering the alterable fea-
tures while leaving others unchanged might also be imprac-
tical as it ignores the effect caused by the altering features,
which has been underappreciated by the majority of the ex-
isting methods.

As a motivating example, consider a credit scoring model
used by a financial institution to assess the creditworthiness
of loan applicants. The model incorporates various features
such as income, debt-to-income ratio, and credit history. To
produce the adversarial example, it is unreasonable to dis-
turb the income while leaving the debt-to-income ratio un-
changed as it is induced by income and debt. This seem-
ingly trivial observation has the underappreciated aspect that
a causal generating process should also be involved to pro-
duce the adversarial example toward a practical scenario.

In this work, we provide a new perspective view on the
adversarial attacks by taking the causal generating process
into consideration, and propose a framework, CADE, that
can generate Counterfactual ADversarial Examples. We in-
troduce our CADE by answering two fundamental ques-
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tions: 1) where to attack: understanding the adversarial ex-
ample from the causal perspective to select valid disturbed
variables; 2) how to attack: leveraging the causal gener-
ating process to generate more realistic/reasonable adver-
sarial examples, since naively changing the cause variable
without changing the effect variables will result in unrealis-
tic examples. First, to answer where to attack, incorporated
with structural information of the data, we give theoreti-
cal characterizations of the vulnerability of discriminative
DNNs, i.e., the non-robustness to the interventional data, to
which human perception is robust thanks to the capability of
causal inference. For example, as the data-generating pro-
cess shown on the left of Figure 1, a car is always on the
ground, humans can recognize the car even if it is in space
(interventional), while the DNNs recognize it as a satellite
since it leverages the background of “space” on decision-
making. Addressing this vulnerability, we analyze the ef-
fects of interventions explicitly to offer clear guidance for
both observable and latent attacks. Second, to answer how
to attack, the key problem is to predict the consequences
when variables are intervened given the current observation,
and the examples obtained are also known as counterfactu-
als in the literature of causality. For instance, in Figure 1,
given the observation (left), when we intervene on back-
ground, the consequence is the changed image while other
characters of the current observation are preserved (color,
shape), where the preserved part is referred to the exoge-
nous representing the current state of the example. To gen-
erate counterfactuals, we resort to the generation framework
proposed in (Pearl 2009), which requires the causal generat-
ing process incorporated in. Thanks to the recent success of
causal discovery (Zheng et al. 2018; Yu et al. 2019), genera-
tive modeling (Kingma and Welling 2014; Goodfellow et al.
2014; Ho, Jain, and Abbeel 2020), and causal representation
learning (Kocaoglu et al. 2018; Yang et al. 2021; Shen et al.
2022), it is plausible to recover the generating process and
generate counterfactual examples from interventional distri-
bution practically. By knowing where and how to attack, our
CADE offers an executable recipe to generate counterfactual
examples. Empirically, our CADE achieves competitive re-
sults on white-box and transfer-based black-box attacks, and
non-trivial performance with random intervention where no
substitute model is involved.

Overall, our contributions are summarized as follows:

• We give a theoretical characterization of the discrimina-
tive DNNs’ vulnerability via the lens of causality, which
offers clear guidance to answer where to attack.

• To generate more realistic examples, we propose
CADE, a framework that can generate Counterfactual
ADversarial Examples by considering the consequences
of the interventions.

• The experimental results prove the effectiveness of our
proposed CADE, by achieving competitive results on
white-box, transfer-based, and even random attacks.

Background
To reason counterfactual, we adopt the structural causal
model (SCM) framework (Pearl 2009) which defines a

causal model as a triplet M(x, f,u) over variables x =
{x1, . . . , xd} as: (i) a collection of structural assignments
{xi := fi (Pai, ui)}di=1, where fi are deterministic func-
tions computing variable i from its causal parents Pai ⊆
{x1, . . . , xd} \xi; and (ii) a factorizing joint distribution over
the unobserved noise variables u = {u1, . . . , ud}. Together,
(i) and (ii) define a causal generative process and imply
an observational joint distribution over x1, . . . , xd which
factorizes over the causal graph G as: p (x1, . . . , xd) =∏d

i=1 p (xi | Pai).

Methodology
In this section, we first explain the existence of adversar-
ial examples from a causal perspective, and give theoreti-
cal analyses to answer where to attack. Then, we propose
CADE, a framework that can generate Counterfactual AD-
versarial Examples, to answer how to attack.

Motivating Example
We start with a motivating example of a linear model to il-
lustrate the existence of adversarial examples via the model
coefficients. We consider a linear data-generating process
shown in Eq. (1).

x1 = u1 u1 ∼ N (0, σ2
1)

y = ax1 + uy uy ∼ N (0, σ2
y)

x2 = bx3 + cy + u2 u2 ∼ N (0, σ2
2)

x3 = u3 u3 ∼ N (0, σ2
3)

, (1)

where u1, uy , u2, and u3 are the exogenous with zero mean
and finite variance. Considering regressing the target vari-
able y with variables x1, x2 and x3 in a linear fashion, that is,
ŷ = wTx, where x = [x1, x2, x3]

T and w = [w1,w2,w3]
T .

The model parameter w is obtained by Empirical Risk Min-
imization (ERM), which is:

w =
[

σ2
2a

σ2
2+σ2

yc
2 ,

σ2
yc

σ2
2+σ2

yc
2 , − σ2

ybc

σ2
2+σ2

yc
2

]T
, (2)

where the proof of Eq. (2) is shown in Appendix A.11. Since
u2 has finite variance, we have non-zero w2 and w3. How-
ever, according to Eq. (1), the most robust model should be
w∗ = [a, 0, 0]T , i.e., conceptualizing y only by x1. We can
observe the vulnerability of the model with non-zero w2 and
w3, indicating that we can generate adversarial examples by
changing the realization of x2 (child of y), or x3 (co-parent
of y). Nevertheless, when interventions are conducted, it is
necessary to consider the consequence of each intervention,
which the majority of the existing methods ignore. Consid-
ering the causal generating process, we analyze the interven-
tional effect of both child (x2) and co-parent (x3) as follows.

Children Intervention Given an original input example
x, when intervening on the child of y (namely, x2), i.e.,
do(x2 = x2 + η2), the generated counterfactual adversar-
ial example xadv will be xadv = [x1, x2 + η2, x3]

T , which
leads to an adversarial output:

wTxadv = wTx+w2η2,

where w is shown in Eq. (2). The intervention on the child
variable (x2) causes the shifted adversarial output by w2η2.

1Appendices are available in (Cai et al. 2023).
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Co-parents Intervention Regarding the intervention on
co-parents of y (namly, x3), that is, do(x3 = x3 + η3), the
counterfactual adversarial will be xadv = [x1, x2+bη3, x3+
η3]

T , rendering the adversarial output to be:

wTxadv = wTx+w2bη3 +w3η3 = wTx.

The intervention on the co-parent variables (x3) does not
cause any damage to the output, where the shifted term
w3η3 is canceled out by the interventional effect of x3 to
its child variable x2, which is w2bη3. Intuitively, interven-
ing co-parent variables (x3) does not change any structural
mechanism as in Eq. (1), which the linear model has already
modeled, thus causing no shift of the output.

Generating Adversarial Example: Where to
Attack?
The linear motivating example suggests an intuition of the
vulnerability of the discriminative model via the coeffi-
cients. Despite the linear model, the theoretical analysis of
this vulnerability of non-linear model (e.g., DNNs) is fur-
ther investigated from a probabilistic view in this section.
Specifically, we first give our analysis on observable vari-
ables, then extend the results to the latent variables in which
the causal variables are not observable (e.g. the objects in
the image).

Observable Variable Intervention From a probabilistic
view, a discriminative DNN aims to approximate the condi-
tional distribution pM (y|x) via ERM, where M denotes the
SCM that parameterizes the generating process of x and y.
With the great capacity, DNN can well approximate a distri-
bution pθ(y|x) ≈ pM (y|x) where θ denotes the parameter
of DNN, but exhibits limitation in generalizing to shifted
distribution (Arjovsky et al. 2019; Tan et al. 2023). Here we
analyze how y is predicted given the observable x and how
to obtain a shifted distribution by intervention to fool the
model. First, given the observable x to predict the target y,
the conditional distribution can be derived as the following
Proposition 1.
Proposition 1. Given the SCM M , the discriminative con-
ditional distribution:

pM (y|x) = pM (y|MbMy ).

where MbMy denotes the Markov blanket of y under SCM
M , including the parents, children, co-parents of y.

The proof of Proposition 1 is given in Appendix A.2.
Proposition 1 suggests that the MbMy are only variables
needed to predict y given the observable x. However, in the
literature of causal inference, the most robust way of concep-
tualizing the target variable y is to only use its parent vari-
ables. Thus, the dependencies between y and MbMy reveal
the vulnerability of discriminative DNNs, offering adver-
saries an opportunity to attack by leveraging this property.
When generating adversarial examples, intervening on y and
its parents do not correspond to the attack since it changes
the y, thus the remaining children and co-parents of y are
only valid variables we can control. To answer where to at-
tack, we theoretically analyze the effect of the intervention
on children and co-parents separately as follows.

Proposition 2. Given a SCM M({x, y}, f,u) where the un-
derlying conditional distribution is pM (y|x), if an interven-
tion is conducted on a y’s child xj resulting in a new SCM
M ′({x, y}, f ′,u) with f ′ = {fi|i ̸= j} ∪ {f ′

j}, then we
get nonequivalent interventional distribution pM ′(y|x) ̸=
pM (y|x); and if an intervention is conducted on a y’s co-
parent but not child variable xk resulting in a new SCM
M ′({x, y}, f ′,u) with f ′ = {fi : |i ̸= k} ∪ {f ′

k}, then
the interventional distribution pM ′(y|x) = pM (y|x).

The proof of Proposition 2 is given in Appendix A.3.
Proposition 2 states the nonequivalence in distributions be-
tween pM ′(y|x) and pM (y|x) when children are intervened,
and the equivalence between pM ′(y|x) and pM (y|x) when
co-parents but not children are intervened. Intuitively, the
underlying rationale for the inequality lies in the disruption
caused to the internal structure of MbMy . Since the distribu-
tion pθ(y|x) learned by DNN is to approximate pM (y|x) un-
der the SCM M , it exhibits limitations in generalizing to the
shifted interventional distribution pM ′(y|x). This incapabil-
ity of generalization offers a clear answer to where to attack,
i.e., crafting adversarial examples drawn from a shifted in-
terventional distribution with y preserved. This can be done
by, such as children intervention, or both children and co-
parents interventions that can damage the inner mechanisms
within MbMy , suggested by Proposition 2.

Latent Variable Intervention When facing images, most
of the existing methods modify them in the raw pixel space,
which is, however, impractical and highly-cost in the real-
world. To mitigate this issue and keep the realism of the gen-
erated examples, it is plausible to attack the latent variables
z with semantics that determines x, where each variable of
z can be causal-related, and the target y is included in z that
determines x (Zhang et al. 2013). Since the image x is a
child of z, each variable of z except y becomes co-parent
of y, indicating that when an image x is given to predict
y, y is correlated with every other variable of z. To answer
where to attack, we investigate the connection between z and
the conditional distribution pM (y|x) through the following
proposition.
Proposition 3. Given a SCM M({x, z}, {f, g}, {ux,uz})
where zi = fi(Pa

M
i , ui), x = g(z,ux), and target y is

included in z, when interventions are conducted on the la-
tent z to obtain a new SCM M ′({x, z}, {f ′, g}, {ux,uz}),
if the conditional distribution pM ′(y|x) ̸= pM (y|x), then
pf ′(z) ̸= pf (z).

Though pf ′(z) ̸= pf (z) is a necessary condition for
pM ′(y|x) ̸= pM (y|x) according to Proposition 3, we
analyze that at most cases, pf ′(z) ̸= pf (z) can yield
pM ′(y|x) ̸= pM (y|x), and the detailed proof and analysis
of Proposition 3 is given in Appendix A.4. Since the DNN
only fits the pM (y|x), we can generate the adversarial ex-
ample drawn from a shifted pf ′(z). Since the joint can be
factorized as pf (z) =

∏n
i=1 p (zi | Pai), a new mechanism

f ′ obtained by interventions that cause the structural change
of z can result in a shifted pf ′(z). To preserve y, interven-
tions on y and its parents do not correspond to the attack we
consider, and some possible choices can be variables that
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changed the structure of z except for those two, such as the
children of y.

Generating Adversarial Example: How to Attack?
Knowing where to attack, the next step is to generate the ad-
versarial example by considering the consequence of each
intervention on the current state, since intervening on one
variable will inevitably cause its descendants to change. The
generated example, also called counterfactual, is the conse-
quences under a hypothetical scenario where interventions
are conducted, given the original example. To generate it, we
resort to the framework proposed in (Pearl 2009; Pearl and
Mackenzie 2018), which requires three fundamental steps:
1) abduction, 2) action, and 3) prediction. Here, we intro-
duce the process for observable x, and adapt it for latent z in
a similar fashion. First, to properly parameterize the causal
generating process of an SCM M and compute the interven-
tional effect efficiently, we can adopt the general non-linear
generating process proposed in (Yu et al. 2019), which is:

f(x) = AT f(x) + u, (3)

where f denotes an invertible non-linear function, and A
denotes the weighted adjacency matrix of the causal DAG.

Abduction The abduction step aims to maintain the char-
acters of the current state of the given observation, by recov-
ering the exogenous u. From Eq. (3), the exogenous u can
be recovered by:

u = (I−AT )f(x). (4)

Action (Intervention) and Prediction Formally, these
two processes are as follows. First, intervene on the desired
variables xS to obtain x′, where xS is obtained from the
variable selection process depicted in Figure 2 and x′ de-
notes the full input vector with xS changed. Then, predict
the consequence of each intervention to obtain the corre-
sponding adversarial example xadv . One way to incorpo-
rate these two processes is through the inversion version of
Eq. (3), i.e., xadv = f−1((I − AT )−1u′), where xadv is
obtained by u′ with uS intervened. However, the matrix in-
version process of (I−AT )−1 will introduce extra error and
computational cost. To remedy this issue, we directly inter-
vene on xS to obtain xadv with the help of the mask m:

xadv =f−1(AT f(x′)⊙ (1−m)

+ f(x′)⊙m+ u⊙ (1−m)),
(5)

where m is a binary mask with mS = 1 indicating variable
xS is intervened. Intuitively, the first term in the first bracket
of r.h.s. of Eq. (5) aims to update the effect of each interven-
tion and set the realization of the intervened variables to 0.
The second term aims to add the realization of the intervened
variables back. The third term aims to set the exogenous of
the intervened variables to 0.

White-Box Attack Under a white-box setting, we can
leverage the gradient information of the target model to
guide the interventions. Attacking a discriminative DNN,
from the probabilistic perspective, our goal is to generate
an adversarial example xadv that can shift the conditional

x! x"#x$# x%
Action

x! x"x$ x%

Variable Selection

u! u"u$ u%
Abduction

u! u"u$ u%
Prediction

x! x"#x$# x%

SCM

yx! x"

x$ x%

Effect propogation 𝐱&'(𝐱

Guiding the “Action” via ∇)!ℒ and ∇)"ℒRandom 
Intervention

Figure 2: Framework of CADE.

probability p(y|xadv), which can be accomplished by maxi-
mizing the prediction loss:

max
xadv∈X ′

Lpred(fθ(x
adv), y), (6)

where X ′ denotes the sample space under a specific inter-
ventional distribution, and fθ(.) denotes the output of DNN.
To search on X ′ to obtain xadv , we only update the selected
variables xS by freezing the gradients of others except for
xS in the action step, then update the consequence of each
intervention according to (5) in the prediction step, as de-
picted in Figure 2. The algorithm is given in Appendix B.3.

Black-Box Attack The obtained white-box adversarial
examples then can be transferred to other victim models
thanks to the transferability property (Szegedy et al. 2014).
Further, our CADE can be applied to a more strict scenario
where the substitute model is absent. Benefit from the causal
information, it is plausible to generate query-free adversar-
ial examples without any white-box gradient information, by
addressing the variables that can shift the conditional proba-
bility p(y|x), according to Propositions 2, and 3. To achieve
this, one way is to add random noises to those effective vari-
ables or reassign random realizations to them.

Latent Attack for Image For image data, we assume
the images are generated according to a two-level ”latent
variable-image” model and we attack on the latent variables.
When attacking, we first recover the causally related latent
variables z = Encoder(x) from the images using an en-
coder step. Then, following (4) and (5), we obtain the adver-
sarial latent code zadv by replacing the observable x with the
latent z. We finally obtain the adversarial example through
xadv = Decoder(zadv). The detailed implementation and
algorithm are given in Appendix B.2 and B.3.

Experiment
Experimental Setup
Dataset We evaluate our approach on three datasets, Pen-
dulum (Yang et al. 2021), CelebA (Liu et al. 2015), and
a synthetic measurement dataset, denoted as SynMeasure-
ment. Pendulum, a synthetic image dataset generated by
four causally related continuous variables, which follow the
physical mechanism depicted in Figure 3 (a). CelebA, a real-
world human face dataset with 40 labeled binary attributes
has been well investigated in generative modeling (Choi
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Figure 3: The causal graphs for each dataset: (a) Pendulum,
(b) CelebA(Attractive), and (c) SynMeasurement.

et al. 2018, 2020), including causal generative modeling
(Kocaoglu et al. 2018; Yang et al. 2021; Shen et al. 2022). In
our experiments, we deploy our CADE using a causal graph
proposed in (Shen et al. 2022), which is depicted in Fig-
ure 3 (b). To further validate our theoretical characterization
of CADE, we introduce a synthetic measurement dataset,
SynMeasurement, whose corresponding causal graph is de-
picted in Figure 3 (c). More details about the generating pro-
cess of those are given in Appendix B.1.

Setup for Pendulum and CelebA We select Res-50 (He
et al. 2016), VGG-16 (Simonyan and Zisserman 2015), and
their respective defense variants (adversarial trained with
PGD (Madry et al. 2018), shortly denoted as Res-50(D) and
VGG-16(D)) as our classification model. For Pendulum, our
task is to predict the pendulum angle where the discrete cat-
egorical target labels are converted from the continuous pen-
dulum angle based on to which angle intervals an image
belongs. To make the dataset more realistic, we introduce
random noises on pendulum angle on 15 % of data when
generating images, representing the measurement error. For
CelebA, our task is to predict if a person is young or not.
To recover the causal latent representations depicted in Fig-
ure 3 (a), (b), we leverage a state-of-the-art causal generative
model (Shen et al. 2022), and interventions on such repre-
sentation are performed to generate counterfactual adversar-
ial examples.

We evaluate the effectiveness of the attacks by report-
ing the attack success rates (ASR) of white-box, transfer-
based, and random black-box attacks. For comparison, we
select various state-of-the-art attack methods including PGD
(Madry et al. 2018), C&W (Carlini and Wagner 2017),
SAE (Hosseini and Poovendran 2018), ACE (Zhao, Liu,
and Larson 2020), APGD(Linf ) (Croce and Hein 2020),
and APGD(L1) (Croce and Hein 2021) as our baselines.
For Pendulum, we compare the results of our CADE inter-
vening on different variables, i.e., CADE(1) on light angle
(co-parent of target), CADE(2) on shadow length (child of
target), CADE(3) on shadow position (child of target), and
CADE(Mb) (Markov blanket of target). For CelebA, we im-
plement our CADE by intervening on z1:5 depicted in Fig-
ure 3 (b). Details of such implementation are shown in Ap-
pendix B.

Setup for SynMeasurement We select Linear, MLP, and
their respective adversarial trained (PGD) defense variants,
denoted as Linear(D) and MLP(D) as our regression model
to predict y. We test our CADE in a finer-grained setting
where the CP (co-parent), C1 (child 1), and C1+C2 (child

1+2) interventions are conducted separately. Further, we in-
vestigate our CADE w/ and w/o the prediction process in
counterfactual generation. Specifically, we use the term “in-
tervention” (denoted as (i) shortly) to refer to the attacks w/
the prediction process, and “perturbation” (denoted as (p))
to refer to the attacks w/o the prediction process.

Attacks on Pendulum
Quantitative Analysis We compare our proposed CADE
with various state-of-the-art baselines, where the results of
attack success rate are reported in Table 1.

Regarding the results compared with the baselines, we
can observe that the adversarial examples obtained by
CADE(Mb) achieve the highest transfer-based ASR among
all competitors. Specifically, our CADE(Mb), CADE(2),
CADE(3) not only achieve high ASR on the standard trained
model but also achieve consistently high scores on the adver-
sarial trained defense model, which indicates the effective-
ness of our resulting adversarial examples to reveal the vul-
nerability of both standard and adversarial trained models.
Besides, our CADE(Mb) also achieves competitive ASR on
the white-box scenario, which is 99.4 and 99.7 under Res-50
and VGG-16, respectively. Further, our CADE with random
intervention and no substitute model achieves competitive
results compared to baselines, and even becomes the first or
second winner on the transfer-based results.

Regarding the results of our CADE intervening on dif-
ferent variables, i.e., CADE(1), CADE(2), CADE(3), and
CADE(Mb), first, we observe that the ASR of CADE(1)
which intervenes on co-parent of y is lower than those of
CADE(2) and CADE(3) which intervenes on the child of y.
The lowest result of CADE(1) can be suggested by Proposi-
tion 3 with no structural change in z. However, the vulnera-
bility of models to the CADE(1) can be due to, the white-box
gradient exploiting the weakness of the model, and the mod-
els that overfit to the perfectly generated data tend to make
mistakes when the imperfect legitimate examples are gen-
erated from the generative model with noises, which is also
suggested in (Song et al. 2018). Further, we provide the re-
sult of the attack using Pendulum simulator in Appendix C.2.

Qualitative Analysis The adversarial examples obtained
by different approaches are shown in Figure 4. Regarding
the examples obtained by our CADE, we make the following
observations. First, the example obtained by CADE(2) with
shadow length shorter, the example obtained by CADE(3)
with shadow position shifted, and the example obtained by
CADE(Mb) with light angle, shadow length, shadow posi-
tion changed can successfully fool the DNNs. Second, the
example obtained by CADE(1) with light angle intervened,
has caused the shadow changed based on the generative
mechanism, rendering it fail to fool the DNNs.

Attacks on CelebA
Quantitative Analysis We compare our CADE with sev-
eral baselines where the ASR are reported in Table 2. First,
we observe that our CADE guided by the causal graph in
Figure 3 (b) outperforms the baselines under the transfer-
based black-box setting on both standard and defense mod-
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Original PGD C&W SAE ACE CADE(2) CADE(3) CADE(Mb) CADE(1)

success success success success success success success fail

Difference

success

APGD(ℒ!)APGD(ℒ"#$)

success

Figure 4: Visualization of adversarial examples against Res-50 on Pendulum obtained by different approaches. The black dash-
line highlights the original projection trajectory, while the red dash-line highlights the intervened projection trajectory.

Attacks R50 R50(D) V16 V16(D)

R
es

-5
0

PGD 100.0* 0.3 0.8 0.2
C&W 100.0* 0.3 0.0 0.0
SAE 100.0* 37.2 83.5 46.0
ACE 100.0* 0.3 22.1 1.0

APGD(Linf ) 100.0* 0.3 0.3 0.2
APGD(L1) 100.0* 57.2 55.8 47.3
CADE(1) 75.3* 72.8 76.8 75.6
CADE(2) 98.6* 96.3 98.9 98.9
CADE(3) 95.0* 93.9 94.7 92.6

CADE(Mb) 99.4* 98.6 98.9 99.2

V
G

G
-1

6

PGD 5.8 0.5 100.0* 0.0
C&W 2.9 0.3 99.8* 0.0
SAE 24.4 1.8 100.0* 10.4
ACE 26.4 2.1 100.0* 1.3

APGD(Linf ) 5.4 0.5 100.0* 0.0
APGD(L1) 78.7 27.9 100.0* 63.9
CADE(1) 70.7 74.2 75.5* 72.6
CADE(2) 97.4 97.4 97.9* 98.2
CADE(3) 93.1 95.2 95.2* 92.0

CADE(Mb) 98.9 99.7 99.7* 99.4

×

CADE(1) 57.7 59.0 58.2 58.9
CADE(2) 84.2 83.2 81.9 82.4
CADE(3) 72.2 74.6 72.1 70.2

CADE(Mb) 87.6 87.3 86.8 86.6

Table 1: ASR (%) on Pendulum. * denotes white-box results,
× denotes results without substitute models. R50 and V16
refer to Res-50 and VGG-16, respectively.

els. Second, we observe our CADE does not achieve the best
on white-box, this can be due to, the causal graph provided
in Figure 3 (b) is incomplete, and examples drawn from
distribution obtained from intervening on such incomplete
SCM have limited capacity to flip the prediction. Further, the
random interventions with no substitute achieve the highest
results on the defense model compared with baselines.

Qualitative Analysis Figure 5 shows the generated adver-
sarial examples against Res-50 of different methods. We ob-
serve that compared with baselines, the examples generated
by our CADE have reasonably-looking appearances with la-
tent semantics intervened instead of naively adding noises
in the pixel-space. Also, we can get some intuitions of why
the attack success from the visualizations, e.g., on the left of
Figure 5, examples generated by CADE look more feminist
(gender) but still bald (receding hairline), suggesting that it
could be drawn from an interventional distribution (that fe-
males can be bald) to which the DNNs cannot generalize.

Attacks R50 R50(D) V16 V16(D)

R
es

-5
0

PGD 100.0* 0.5 51.2 0.2
C&W 100.0* 0.5 0.8 0.2
SAE 77.0* 24.1 16.9 19.5
ACE 99.8* 21.7 15.3 18.3

APGD(Linf ) 100.0* 0.6 49.7 0.2
APGD(L1) 92.5* 0.5 14.4 0.2

CADE 75.8* 47.0 52.7 47.2

V
G

G
-1

6

PGD 41.1 0.6 97.3* 0.2
C&W 0.9 0.5 100.0* 0.2
SAE 23.4 23.7 90.2* 23.6
ACE 18.8 16.7 100.0* 14.4

APGD(Linf ) 33.9 0.5 100.0* 0.2
APGD(L1) 3.0 0.5 99.8* 0.2

CADE 47.0 41.6 80.6* 44.7
× CADE 25.9 25.8 26.3 25.0

Table 2: ASR (%) on CelebA. * denotes white-box results,
× denotes results without substitute models. R50 and V16
refer to Res-50 and VGG-16, respectively.

Further, we showcase additional case study in Appendix C.

Attacks on SynMeasurement
We evaluate our CADE in a finer-grained setting where the
CP (co-parent), C1 (child 1), and C1+C2 (child 1+2) inter-
ventions are conducted separately, and further compare the
results of both intervention (w/ prediction process) and per-
turbation (w/o prediction process), where the perturbation
can be seen as a degradation to the majority of the existing
methods, i.e, naively adding noises, and the RMSE results
are reported in Figure 6.

Child and Co-parent Interventions Regarding the inter-
vention, CP(i), C1(i), C1+C2(i), from Figure 6 we can make
the following observations. First, the intervention on co-
parent, CP(i), makes no effect on attacking the threat models
under both black-box and white-box scenarios, which can
be well suggested by Proposition 2. Second, both child in-
terventions, C1(i) and C1+C2(i), achieve remarkable results
with high RMSE scores. More specifically, intervention on
one child C1(i) achieves a competitive result with the in-
tervention on two children, C1+C2(i) on both standardly
trained and adversarially trained models, which suggests a
way of efficient attacks with lesser costs.

Intervention and Perturbation Comparing the interven-
tion and perturbation results shown in Figure 6, we ob-
serve an interesting result where the interventions, C1(i) and
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Figure 5: Visualization of adversarial examples against Res-50 on CelebA obtained by different approaches.
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Figure 6: RMSE w.r.t. budget ϵ of various interventions/perturbations.

C1+C2(i), achieve higher RMSE than their respective per-
turbations, C1(p), and C1+C2(p), suggesting that it is pos-
sible to achieve better attacks with lesser costs. This can
be due to, the unchanged consequences of the perturbation,
which contribute negative effects to the attacks.

Related Work
Adversarial Robustness Here we briefly summarize the
existing adversarial attack and defense approaches. For ad-
versarial attack, one line of research lies on adding imper-
ceptible noises within a bounded norm, for example, (Good-
fellow, Shlens, and Szegedy 2015) searches for the pertur-
bation direction by one-step gradient, (Moosavi-Dezfooli,
Fawzi, and Frossard 2016) produces closer adversarial ex-
ample by L2 minimum perturbation, and (Madry et al. 2018)
aims to find “most-adversarial” example by search for the
local maximum loss value. Another line of works goes be-
yond the bounded perturbation, replacing it with, such as,
(Sharif et al. 2016) fools a face-recognition model by wear-
ing well-crafted eyeglasses frames, (Zhao, Dua, and Singh
2018) search for examples in the vicinity of latent space,
and similarly (Song et al. 2018) generate class-conditioned
examples in latent space. As for adversarial defense, one line
of works focuses on defense at the training stage, includ-
ing data augmentation, and adversarial training (Madry et al.
2018; Tramèr et al. 2018; Xie et al. 2019; Ilyas et al. 2019).
Also, another line of works relies on input pre-processing,
including JPEG compression, cropping, rescaling, etc (Guo
et al. 2018; Dziugaite, Ghahramani, and Roy 2016; Xu,
Evans, and Qi 2018). Further, a new line of research focuses
on causality-inspired defense, e.g., (Zhang, Zhang, and Li
2020) improve the robustness of DNNs by test-time fine-
tuning on unseen perturbation, which is explicitly modeled
from a causal view, and (Zhang et al. 2022) improve the ro-
bustness by penalizing the DNNs incorporated with the re-
stricted attack, where such perturbation is modeled from a
causal perspective. However, they do not propose a proper
way to generate adversarial examples, which is one of the
main differences between ours and those methods.

Causal Learning Causal inference has a long history in
statistics (Pearl 2009), and there is now increasing interest

in solving crucial problems of machine learning that ben-
efit from causality (Schölkopf et al. 2021). For instance,
causal discovery methods (Zheng et al. 2018; Yu et al. 2019;
Cai et al. 2018; Qiao et al. 2023) identify the underly-
ing causal structure from observations, causal representation
learning (Kocaoglu et al. 2018; Yang et al. 2021; Shen et al.
2022) connect causal factors to high-dimensional observa-
tions, and several works show the benefits of causality in var-
ious applications, including domain adaptation (Zhang et al.
2013; Zhao et al. 2019; Cai et al. 2019), adversarial robust-
ness, and reinforcement learning (Bareinboim, Forney, and
Pearl 2015; Buesing et al. 2019), etc.

Conclusion and Discussion
In this work, we propose CADE, a causality-inspired
framework that can generate Counterfactual ADversarial
Examples, by considering the underappreciated causal gen-
erating process. First, we reveal the vulnerability of discrim-
inative DNNs to examples drawn from a nonequivalent in-
terventional distribution with the equivalent target y, then
we provide an explicit recipe to answer where to attack: in-
tervening on variables that renders distribution shift while
preserving the consistent target y. Second, to generate more
realistic examples, we consider the consequence of each in-
tervention on the current state, then propose CADE to gen-
erate counterfactual adversarial examples, answering how
to attack. Our experiments demonstrate the effectiveness of
CADE, by achieving competitive results on white-box and
transfer-based attacks, even non-trivial results on random in-
tervention where the substitute model is not required.

Our CADE is effective, however, obtaining the required
causal generating process remains an open challenge. Our
framework should be adapted to more realistic settings
where the full generating process can not be obtained. In fu-
ture work, we will explore such settings with limited causal
knowledge, in which only partial causal knowledge can be
obtained from causal discovery algorithms or expert knowl-
edge. Further, we will verify our framework beyond the dig-
ital simulation, and adapt it to the physical world. Overall,
we believe this work would open up new research oppor-
tunities and challenges in the field of adversarial learning,
potentially inspiring new designs of defense mechanisms.
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