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Abstract

Visual Reinforcement Learning (RL) is a promising approach
to achieve human-like intelligence. However, it currently faces
challenges in learning efficiently within noisy environments.
In contrast, humans can quickly identify task-relevant ob-
jects in distraction-filled surroundings by applying previously
acquired common knowledge. Recently, foundational mod-
els in natural language processing and computer vision have
achieved remarkable successes, and the common knowledge
within these models can significantly benefit downstream task
training. Inspired by these achievements, we aim to incorpo-
rate common knowledge from foundational models into visual
RL. We propose a novel Focus-Then-Decide (FTD) frame-
work, allowing the agent to make decisions based solely on
task-relevant objects. To achieve this, we introduce an atten-
tion mechanism to select task-relevant objects from the object
set returned by a foundational segmentation model, and only
use the task-relevant objects for the subsequent training of the
decision module. Additionally, we specifically employed two
generic self-supervised objectives to facilitate the rapid learn-
ing of this attention mechanism. Experimental results on chal-
lenging tasks based on DeepMind Control Suite and Franka
Emika Robotics demonstrate that our method can quickly and
accurately pinpoint objects of interest in noisy environments.
Consequently, it achieves a significant performance improve-
ment over current state-of-the-art algorithms.
Project Page: https://www.lamda.nju.edu.cn/chenc/FTD.html
Code: https://github.com/LAMDA-RL/FTD

Introduction
Human-like intelligence, holding the prospect of liberating
humans from repetitive labor, has long been one of the goals
pursued by the machine learning community. Reinforcement
Learning (RL), as a general decision-making framework,
has the potential to enable machines to generate human-like
decision-making behaviors (Sutton and Barto 2018; Wu and
Zhang 2023). Research has shown that visual input consti-
tutes the majority of human information intake (Goldstein
and Cacciamani 2021); therefore, visual RL methods target-
ing such input have garnered widespread attention and are
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potential methods for achieving human-like intelligence. Liv-
ing up to expectations, visual RL algorithms have consistently
made remarkable progress in areas such as gaming (Hessel
et al. 2018), robotic control (Andrychowicz et al. 2020), and
autonomous driving (Chen, Li, and Tomizuka 2022).

However, there is still a substantial gap if we want to
apply visual RL algorithms to practical scenarios. One rea-
son is that current visual RL algorithms struggle to train an
effective policy in complex and noisy real-world environ-
ments. Consider the most influential visual RL benchmarks,
such as Atari (Bellemare et al. 2012) and DeepMind Control
Suite (Tassa et al. 2018). Agents trained in these clean, struc-
tured scenarios merely need to leverage all the information
they receive to make decisions. However, when trained under
complex, unstructured real-world conditions, agents may be
overwhelmed by the massive influx of information, lacking
the ability to identify which parts are useful, thus leading to
learning failure (Stone et al. 2021; Xu et al. 2023b). Discern-
ing which concepts are task-relevant and worth focusing on,
and which are task-irrelevant and should be ignored, allowing
learning to proceed undisturbed in any scenario, is a human
internalized ability. This ability is also essential for advanced
visual intelligent agents.

Recent works have sought to address the challenge of learn-
ing in complex scenarios filled with disturbances (Zhang et al.
2021; Fu et al. 2021; Wang et al. 2022b; Xu et al. 2023a).
The main approach of previous methods involves utilizing
auxiliary representation objectives to extract task-relevant in-
formation from the original observations while disregarding
noise. These loss functions are commonly optimized over
the unstructured pixel space, necessitating sophisticated de-
sign to ensure proper functioning. We identify two potential
problems. The first pertains to the proposal of representa-
tion learning targets, which may contain erroneous inductive
biases or approximation errors due to their complexity, lead-
ing to biased information extraction. The second problem
concerns the optimization in pixel space, which is overly
fine-grained and does not align with human perception mech-
anisms. Using prior knowledge, humans perceive and make
decisions at a more coarser object level. Considering these
issues, we aim to propose a visual perception and extraction
method that is both simply designed and more human-like.

Similar to the human ability to rapidly leverage existing
knowledge to learn new tasks, foundation models pre-trained
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on broad datasets have demonstrated exceptional abilities in
knowledge transfer to diverse downstream tasks (Bommasani
et al. 2022), achieving great success in both natural language
processing (OpenAI 2023) and computer vision (Kirillov et al.
2023) domains. Inspired by this, our paper introduces a new
paradigm for visual RL based on foundational segmentation
models. The goal is to efficiently train RL algorithms in noisy
perceptual environments, thus narrowing the gap between
current visual RL algorithms and the demands of training in
real-world environments.

We adopt the perspective that the state-space of a Markov
Decision Process (MDP) can be represented in terms of ob-
jects (Yi et al. 2022), and propose a Focus-Then-Decide
(FTD) framework. The goal is for the agent to automati-
cally distinguish between task-relevant and task-irrelevant
objects, focusing on the former for decision-making. Initially,
the plug-and-play style foundational segmentation model
is naturally employed to effectively partition the complete
perceptual state into object-level fragments. Then, we intro-
duce a novel attention mechanism for calculating the task
relevance of each object. Finally, the decision-making agent
is trained on the visual representation that excludes task-
irrelevant objects. Additionally, we specifically select two
simple self-supervised losses to enhance the focus on task-
relevant objects.

We summarize our contributions as follows:

1. We introduce a novel perspective for visual RL problems,
viewing observations as compositions of task-relevant
and task-irrelevant objects. We then naturally incorpo-
rate a foundational segmentation model into visual RL
algorithms, enabling the partitioning of observations into
distinct sets of objects.

2. We propose a novel Focus-Then-Decide framework for
visual RL, utilizing an attention selector to assess the task
relevance of each object returned by the foundational seg-
mentation model, subsequently integrating task-relevant
perceptions into the training of decision models.

3. In complex visual noisy scenarios based on DeepMind
Control Suite and Franka Emika Robotics, the experimen-
tal results demonstrate that our method can quickly and
effectively identify the task-relevant parts in a noisy envi-
ronment, thus robustly learning in these conditions, and
achieving significant performance improvements com-
pared to state-of-the-art algorithms.

Background
In this section, we briefly describe the background of rein-
forcement learning and foundational segmentation model.

Reinforcement Learning
Traditional Reinforcement Learning (RL) considers the task
in the form of a Markov Decision Process (MDP) composed
of a 4-tuple (S,A, R, P ), where S is the state space, st de-
notes state at timestep t; A is the action space, at denotes
the action at timestep t; R(s, a) : S ×A → R is the reward
function, which maps state-action pair to a real number; and
P (s, a, s′) : S × A × S → [0, 1] is the transition function.
The aim of RL is to train an agent with policy π(a|s) that

maximizes the expected discounted cumulative reward (a.k.a.
return) Eπ[

∑
t γ

trt], where γ ∈ (0, 1] is the discount fac-
tor. In visual RL tasks, the agent cannot access the compact
low-dimensional state, instead, it receives an image-based ob-
servations ot = O (st), which are usually high-dimensional.
Here, O is the mapping function from state to observation.
Corresponding, policy should be written as π(a | o).

In this paper, we use Soft Actor-Critic (SAC) (Haarnoja
et al. 2018) as the basic RL algorithm. SAC is a widely used
off-policy actor-critic algorithm that optimizes a stochas-
tic policy. The objective of SAC is to maximize the
weighted sum of cumulative reward and policy entropy,
Est,at∼π [

∑
t rt + αH (π (· | ot))], where H (π (· | ot)) de-

notes the entropy of policy, α is a learnable factor.

Foundational Segmentation Model
Image segmentation (Szeliski 2022) has long been an essen-
tial field in computer vision, with many subfields such as
semantic segmentation (Shotton et al. 2006), instance seg-
mentation (Lin et al. 2014), etc. In this work, we primarily
focus on the instance segmentation task, where the model
takes an image as input and outputs all objects that can be
segmented from the image. Many works have contributed
to progress in this field, including Swin (Liu et al. 2021),
ViTDet (Li et al. 2022), etc.

A recent breakthrough in image segmentation is Segment
Anything Model (SAM) (Kirillov et al. 2023). It utilizes a
straightforward network architecture and trains the model
on a vast dataset containing over one billion masks. The
trained model exhibits remarkable capability in zero-shot
transfer, allowing the foundational segmentation model to
be directly applied to unseen images and adapted for down-
stream tasks. Later, FastSAM (Zhao et al. 2023) and Mobile-
SAM (Zhang et al. 2023) attempt to distill the large SAM
model into smaller ones, sacrificing a small amount of perfor-
mance for faster inference speed. In our work, MobileSAM
is used as the foundational segmentation model.

Our Method
We propose a novel Focus-Then-Decide (FTD) framework
that allows the agent to make decisions based on task-relevant
objects alone, thereby enabling effective training in noisy en-
vironments. In this section, we first present a novel way of
defining the problem in noisy visual environments by per-
ceiving high-dimensional observation as the rendering of an
object collection. This makes it convenient to naturally inte-
grate a fundamental segmentation model into the visual RL
process. Then, we provide a brief overview of the overall
workflow of the FTD framework. Next, we introduce the de-
sign philosophy and implementation method of the attention
selector module, which is used to obtain perception inputs
that contain only task-relevant information. Finally, we in-
troduce two self-supervised losses that substantially enhance
the learning speed of the attention selector, and explain how
to combine them with the RL objective in the decision stage.

Problem Formulation
We adopt the perspective that the state-space of MDP can
be represented in terms of objects (Yi et al. 2022), further
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Figure 1: Illustration of the proposed Focus-Then-Decide (FTD) framework. The focus stage of FTD is enclosed in an orange
box. A noisy observation ot is first passed to the foundational segmentation model to obtain osegt . Query and Key are calculated
based on the original observation and segments respectively, with the segments also being directly used as Value. The selected
frame oselt is then determined by the attention selector. The decision stage is highlighted in a purple box. The entire network is
trained by minimizing a combination of RL loss, Dynamic loss, and Reward loss.

distinguishing objects into task-relevant objects and task-
irrelevant objects, introducing a novel perspective for visual
RL problems. We view any state s ∈ S as a collection of the
states of all objects within that state, s = ∪k

i=1s
obji , where

k is the number of objects in the state, sobji is the state of
the i-th object, and the observation corresponding to state
s is given by o = O(s), satisfying o = ∪k

i=1O(sobji). In
noisy and complex environments, observations may contain
a large number of task-irrelevant objects. We define the set
of task-relevant objects as sobj

+

, and task-irrelevant objects
as sobj

−
, satisfying s = sobj

+ ∪ sobj
−

, sobj
+ ∩ sobj

−
= ∅,

π∗(s) = π∗(sobj
+

), and the removal of any sobji ∈ sobj
+

leads to π∗(s) ̸= π∗(sobj
+ \ {sobji}), where π∗ represents

the optimal policy. Existing robust visual representations aim
to obtain task-relevant observations o+ = O(sobj

+

) from any
observation o, but high-dimensional representation learning
is a challenging issue, especially in perception environments
filled with disturbances.

The zero-shot transfer capability of foundational segmen-
tation models has been extensively validated and employed
in numerous downstream tasks. Given a foundational seg-
mentation model and an observation o, we assume that the
segmentation model can obtain a set of all object observa-
tions {oobji |i = 1, 2, . . . , k}, where each oobji corresponds
to an sobji . By employing this foundational segmentation
model, the original problem of mapping o to o+ is trans-
formed from a high-dimensional image space mapping chal-
lenge into a search problem in the object-level combinatorial
space, thereby greatly reducing the solution space.

For simplicity, we will use si and oi to represent sobji and
oobji in the following text.

Method Overview
Figure 1 shows the Focus-Then-Decide (FTD) framework.
The focus stage is bounded with an orange-colored box and
the decision stage is in a purple-colored box.

At each timestep t, the agent receives a distracted input
frame. Initially, a foundational segmentation model processes
the input to yield a batch of segments. Subsequently, an atten-
tion selector evaluates each segment, assigning an attention
score to generate a selectively focused frame. Traditional
RL algorithms are then applied to this selected frame. The
network is updated by integrating the losses derived from
both the RL process and two self-supervised objectives. In
the following sections, we will delve into the details of the
attention selector and the self-supervised objectives.

Attention Selector as Focus Stage
For the segmentation results containing both task-relevant
and task-irrelevant parts, it is a very natural idea to filter
out task-irrelevant ones, and we refer to the part with such
function as “selector”. More specifically, the selector is re-
sponsible for filtering and recombining the segments to form
a new undisturbed frame.

As a selector, the most important thing is to integrate global
information, rather than just process each segment separately.
Take the finger-spin environment in Figure 1 as an example,
to rotate the spiner with the finger, the selector should simul-
taneously pay attention to the finger and the spiner, missing
either of these two will lead to deficient policy. Another thing
that needs to be noticed is that the selector should be compat-
ible with different numbers of segments, since the number of
segments varies depending on the complexity of observation.

To realize a selector that can integrate global information
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and is tolerant to the change in the number of segments, a
natural way is to use the attention mechanism. We propose
a novel attention mechanism to handle segmentation results,
and refer to this selector as the attention selector.

At each timestep t, observation ot ∈ RC×H×W (C, H , W
are respectively channels, height, and width) is passed to seg-
mentation models and get k segments

{
oit|i = 1, 2, . . . , k

}
.

Here we concatenate the segments along the channel level
and denote the concatenated result as osegt ∈ RkC×H×W .
Then ot and osegt are passed through feature extractor ϕ and
get their embeddings ϕ(ot) ∈ R1×D and ϕ(osegt ) ∈ Rk×D,
where D denotes the dimension of embedding.

After getting the embeddings of ot and osegt , n linear pro-
jections will be applied to them respectively, where n denotes
the number of attention heads. And we denote the projection
as W q

i and W k
i , i ∈ {1, 2, · · · , n}. Thus we can get the

“query” vector Q (red vector in Figure 1) and the “key” vector
K (yellow vector in Figure 1):

Qi = W q
i (ϕ(ot)) ∈ R1×D, i ∈ {1, 2, · · · , n}, (1)

Ki = W k
i (ϕ(o

seg
t )) ∈ Rk×D, i ∈ {1, 2, · · · , n}. (2)

Like the traditional implementation of attention, Q and K
are multiplied and then go through the Softmax function. The
attention score A (green vector in Figure 1) is obtained by
averaging the Softmax result of all attention heads:

A =
1

n

∑n

i=1
Softmax(QiK

T
i ) ∈ R1×k. (3)

As for the “value” vector V , instead of using the embed-
ding of segments, we directly use the segments themselves
(segments marked in blue in Figure 1). We make such changes
because the i-th value of A exactly means the attention paid
to the i-th segment. Therefore, multiplying the attention value
to its corresponding segment is equivalent to changing the
saliency of the segment. The higher the attention value, the
more pronounced the segment will be, and consequently, the
more important the segment becomes.

Finally, we can directly get the selected frame oselt by
summing up the multiplied result of each segment:

oselt =
∑k

i=1
Aio

i
t, (4)

where Ai denotes the i-th value of A.
An additional benefit is that this attention mechanism can

lead to better interpretability. In previous works, interpretabil-
ity can only be acquired as a pixel-level mask, where the
highlighted pixels represent the area of interest (Bertoin et al.
2022; Wu, Khetarpal, and Precup 2021; Mott et al. 2019).
However, such mask is often not clear and needs humans to
further judge the exact object the agent is focusing on. On
the contrary, the selected frame produced by the attention
selector can accurately locate the object of interest.

Self-supervised Objectives of the Attention Selector
We find that solely depending on RL loss to update the at-
tention selector is sample-inefficient, some self-supervised
objectives help accelerate the learning. Compared with pre-
vious works that introduce complex self-supervised objec-
tives (Zhang et al. 2021; Wang et al. 2022b), FTD approaches
the RL problem from an objective perspective, allowing sim-
ple self-supervised objectives to perform well.

Reward prediction As a main component of MDP, reward
is used in many works to assist agent learning (Fu et al. 2021;
Tomar et al. 2021). In our method, reward is also a useful
signal. If the selector can correctly identify task-relevant parts
and recombine them into frames without distraction, then oselt
can more easily predict reward rt. As an auxiliary task of
the selector, we introduce a reward predictor R̂, which needs
to predict rt given the selected frame oselt and at. The loss
function of the reward predictor can be written as:

Lreward =
(
rt − R̂

(
oselt , at

))2

. (5)

Inverse dynamic prediction Transition-related prediction
is used in many works (Wang et al. 2022b; Tomar et al. 2021).
Considering that forward dynamic prediction is hard to learn
and may cause representation collapse, we use inverse dy-
namic prediction (Pathak et al. 2017) to learn transition in-
formation. Given two adjacent selected frames oselt and oselt+1,
inverse dynamic predictor P̂ is designed to predict the action
at. Its loss function can be written as:

Ldynamic =
(
at − P̂

(
oselt , oselt+1

))2

. (6)

Integration of Learning Objectives in Decision Stage
The selected frame oselt given by the attention selector is then
passed to the decision stage, which is designed as a sequential
combination of feature extractor and decision layers.

As shown in Figure 1, we let the reward predictor R̂, in-
verse dynamic predictor P̂ , and decision layers share the
same attention selector and feature extractor. By simulta-
neously optimizing the above two unsupervised objectives
and the RL objective, the selector can not only acquire task
information brought by the RL objective but also learn the
straightforward information of reward and transition to accel-
erate the learning.

Since the gradient is conductive throughout the entire net-
work, the whole method can be trained in an end-to-end way
by minimizing the total loss function Ltotal:

Ltotal = η1LRL + η2Lreward + η3Ldynamic, (7)

where all ηi are hyper-parameters and set to 1 by default.

Experiments
In this section, we begin by conducting experiments on eight
tasks within the widely-recognized DeepMind Control Suite
benchmark (Tassa et al. 2018). These experiments aim to
demonstrate the superior performance of our method in noisy
environments and to showcase the accuracy and visualization
effects of the attention selector in identifying task-relevant
objects. Subsequently, we carry out additional experiments
in the more complex Franka Emika Robotics simulation en-
vironment (Yuan et al. 2023), highlighting the potential for
its application in real-world training scenarios. Finally, we
undertake a comprehensive ablation study to validate the
effectiveness of each individual module. For details in the
experiment, please refer to the appendix1.

1https://www.lamda.nju.edu.cn/chenc/AAAI24-Appendix.pdf
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Task setting Our task setting aims at simulating the real
condition that agent is trained in a natural scene with varies
task-irrelevant distractions, and we realize it by playing
video as the background of observation. Previous works use
grayscale image as the backgrounds (Fu et al. 2021; Wang
et al. 2022b) or repeat a single video (Zhang et al. 2021),
which may differ from real situation. In order to make the
environment more realistic, a larger video dataset is played
as background in RGB mode (Hansen, Su, and Wang 2021).
Specifically, 80 color video clips will loop on the background
during training, and 20 clips for testing. The played videos
include a variety of types, ranging from indoor to outdoor.

Baseline methods We compare FTD with several baselines.
DrQ-v2 (Yarats et al. 2021) is a widely used data augmen-
tation method, which shows some effect in previous work.
For visual distraction tasks, it is a mainstream idea to use
the behavioral metric (Le Lan, Bellemare, and Castro 2021;
Zhang et al. 2021) based on reward information to shape
the representation space. According to different behavioral
metrics defined, there are three methods worth considering:
DBC (Zhang et al. 2021), MICo (Castro et al. 2021), and Q2-
learning (Liao, Zhang, and Yu 2023). Denoised-MDP (Wang
et al. 2022b) is a representative model-based method specifi-
cally proposed for tasks involving noisy visual observation.
According to the policy optimization mechanism, there are
two kinds of Denoised-MDP implementations in the exper-
iments: one backpropagating via dynamics (Denoised (D))
and the other using SAC on a learned MDP (Denoised (S)).

DeepMind Control
We choose DeepMind Control (DMC) Suite, a widely used
benchmark, as our first environment. It is a comprehensive
set of physical simulation environments that contains many
control tasks, ranging from single object to multiple objects.

Tasks We select eight tasks from six DMC environments,
respectively pendulum-swingup (ps), cartpole-swingup (cs),
finger-spin (fs), hopper-stand (hs), hopper-hop (hh), cheetah-
run (cr), walker-walk (ww), and walker-run (wr). The upper
part of Figure 2 are examples of the distracted input.

Experiment results Table 1 shows the performance of FTD
and baselines, and FTD ranks the first in five of eight tasks.
It can be seen that when facing tasks with complex objects
(walker, cheetah), the advantage of FTD is more obvious,
while in tasks of simple-shaped objectives and sparse rewards,
FTD may perform inferior to MICo and Q2-learning.

As a representative of data augmentation methods, DrQ-
v2 hardly acquires any improvement during training. This
indicates that when facing environments distracted by task-
irrelevant objects, the priors brought by the data augmenta-
tion method (e.g., random clip implies that the margin of
observation is not important for decision making) are not
sufficient to assist the agent in completing the task (Tomar
et al. 2021). Consistent with the experiments conducted in
previous work (Wang et al. 2022b), DBC fails in all eight en-
vironments. This indicates that the latent dynamic prediction
and bi-simulation metric learning of DBC are challenging
in noisy environments. By improving metric learning, MICo
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Figure 2: (Upper) Distracted observations of six DMC envi-
ronments. (Middle) Selected frames of the attention selector.
(Lower) Reconstruction frames of Denoised (D).

and Q2-learning show effectiveness in tasks with simple-
shaped objects like pendulum-swingup and cartpole-swingup
but fail in more complex tasks like cheetah-run and walker-
walk. This implies that learning such metrics in complex
environments remains difficult.

The two implementations of Denoised-MDP roughly per-
form the same, they both show some effect in the walker-
walk and cheetah-run environments, but fail in other envi-
ronments. Considering that Denoised-MDP is a model-based
method, which may have advantage in sample-efficiency, it
still performs worse than the model-free method FTD. Both
Denoised-MDP and FTD require the agent to distinguish
between task-relevant and task-irrelevant objects. Denoised-
MDP operates in latent space, while FTD directly conducts
on segmented observations, leading to differences in perfor-
mance, especially when multiple task-relevant objects exist.

Further discussion of attention selector To visually
demonstrate the performance of the attention selector, we plot
the selection result oselt in Figure 2. When facing distracted
observations, the attention selector can correctly choose seg-
ments, thus producing clear images with only task-relevant
segments highlighted. For comparison, We also plot the re-
construction frames of Denoised (D). It can be observed that
these frames are full of noise and often miss important parts
of the object (e.g., the finger in the finger environment and the
pole in the cartpole environment). The objects reconstructed
are also not accurate (e.g., the direction of the rotational body
in the finger environment and the motion of legs in the chee-
tah environment), demonstrating that Denoised-MDP has not
learned to separate task-relevant parts effectively.

To better illustrate the performance of the attention selector,
we calculated the success rate of SAM, the success rate of
selector, and the overall success rate across different tasks
in Table 2. SAM’s success rate is defined as the percentage
of frames in which the task-relevant objects are within the
segments produced by SAM. The selector’s success rate is
calculated based on the ratio of frames in which the task-
relevant objects are given the highest value to the frames in
which the task-relevant objects are correctly segmented. For
example, in the walker environment, the attention selector is
judged as correct if, and only if, the attention values of the
walker is the highest. The overall success rate is calculated as
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Task DrQ-v2 DBC MICo Q2-learning Denoised (D) Denoised (S) FTD (Ours)

ps 284.7± 387.8 145.4± 180.5 176.3± 214.2 546.4 ± 366.8 0.0± 0.0 0.1± 0.2 498.8 ± 282.8
cs 137.9± 103.9 200.0± 85.5 289.0 ± 47.5 283.8± 39.4 180.6± 28.0 169.2± 36.8 207.3± 26.1

fs 1.1± 1.4 2.3± 2.9 494.9± 219.9 276.0± 212.2 19.2± 9.5 1.5± 1.2 591.5± 146.0
hs 2.7± 3.2 7.6± 7.6 203.4± 53.9 249.7 ± 51.5 39.8± 14.6 33.2± 13.8 112.0± 41.6

hh 0.0± 0.0 1.1± 1.4 0.7± 1.0 43.9± 15.8 4.3± 2.0 3.1± 3.5 65.0 ± 26.6
cr 1.3± 1.3 13.4± 4.0 16.5± 12.9 60.6± 29.0 40.4± 28.0 60.5± 33.0 228.9± 43.1

ww 30.6± 14.8 31.4± 8.3 142.5± 45.8 126.8± 65.4 109.5± 72.0 145.9± 24.9 395.7± 48.9
wr 24.4± 9.6 22.6± 4.4 81.8± 46.2 48.3± 25.0 42.9± 25.3 25.3± 15.2 185.8 ± 12.3

Table 1: Performance comparison of FTD and baselines on DeepMind Control (mean ± std). ps=pendulum_swingup,
cs=cartpole_swingup, fs=finger_spin, hs=hopper_stand, hh=hopper_hop, cr=cheetah_run, ww=walker_walk, wr=walker_run.

Task SAM Selector Overall

ps 0.98± 0.00 0.90± 0.01 0.88± 0.01

cs 0.50± 0.00 0.88± 0.00 0.44± 0.00

fs 0.99± 0.00 0.99± 0.00 0.99± 0.00

hs 0.96± 0.00 0.95± 0.00 0.90± 0.00

hh 0.96± 0.00 0.95± 0.00 0.92± 0.00

cr 0.96± 0.00 0.98± 0.00 0.94± 0.00

ww 0.99± 0.00 0.97± 0.00 0.95± 0.00

wr 0.98± 0.00 0.97± 0.00 0.96± 0.00

Table 2: Success rates for SAM, Selector, and Overall.

the product of SAM’s success rate and the selector’s success
rate. The results are averaged over 20 episodes of interaction
with the environment, covering all 20 video clips used for
testing. The success rate of the attention selector exceeds
90% in seven out of eight tasks, demonstrating FTD’s ability
in capturing task-relevant objects. There exists a positive
correlation between SAM’s and selector’s success rate, with
a Pearson correlation coefficient of 0.72. This indicates that
the performance of the foundation model used is critical
to the learning of the attention selector. When we combine
Table 1 and Table 2, we can also observe a positive correlation
between the performance of FTD and the overall success rate.
We find that the overall success rates are high in most tasks,
leading to the best performance of FTD. However, for tasks
such as pendulum-swingup, cartpole-swingup, and hopper-
stand, their overall success rates are lower due to the low
SAM’s and/or selector’s success rates, which is also directly
reflected in the final performance of FTD.

Franka Emika Robotics
To evaluate FTD on more practical and realistic environments,
we choose Franka Emika Robotics (Yuan et al. 2023) as our
second experiment environment, and the task is called franka-
reach. As shown in the left part of Figure 3, franka-reach
is a task of manipulating a robotic arm to reach a certain
area marked with a red ball. Compared with DMC tasks,
franka-reach is a three-dimensional task, which places higher
demands for the attention selector, requiring it to correctly
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Figure 3: (Left) Franka-reach environment. (Right) Perfor-
mance comparison of FTD and baselines on Franka-reach.

classify task-relevant objects from different angles. In addi-
tion, franka-reach has significantly more joints than that of
DMC tasks, and as such foundational segmentation model
are more likely to segment the object of interest into multiple
parts, which will cause greater difficulties to the selector.

The right part of Figure 3 shows the results of FTD and
the baselines in this environment. We can see that all six
baselines can hardly gain any reward. While in contrast, FTD
successfully acquires the ability to catch the ball. This is
consistent with the our previous claim that the advantage of
FTD is more obvious in tasks with complex objects, and we
believe that the performance of FTD on franka-reach further
demonstrates its ability to learn in near-real situations.

Ablation Study
To identify the contribution of the key components of FTD,
we conduct ablation study on FTD and its three variants:
• FTD w/o SEL is FTD without attention selector, and

segments will be directly used as the input of SAC. Self-
supervised objectives are retained.

• FTD w/o SSO is FTD without self-supervised objectives,
but attention selector is retained.

• FTD w/o SEL & SSO is FTD without attention selector
and self-supervised objectives. It is equivalent to substi-
tute the original input frame of SAC with segmentation
results stacked on channel dimension.

Experiment is conducted on the finger-spin environment.
Figure 4 is the performance of FTD and its ablation vari-
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Figure 4: Ablation result on the finger-spin environment.

ants. From it we can see that FTD significantly outperforms
other methods. The large performance gap between FTD and
FTD w/o SEL shows that the proposed attention selector has
obvious advantages than traditional CNN in tackling seg-
mentation results. From the comparison between FTD and
FTD w/o SSO, we can observe that simply introducing two
common self-supervised losses can greatly aid the learning
of attention selector, which shows the generality of FTD.
Lastly, FTD w/o SEL & SSO can hardly acquire any reward,
which means simply substituting input with segmentation is
not enough, and our method better realizes the potential of
foundational segmentation model in RL.

Related Work
Visual RL with distracted input Although visual RL has
achieved great success in many simulation environments,
when applied to environments with distracted visual input
(e.g., play video on background), traditional visual RL al-
gorithms face huge performance decline (Stone et al. 2021).
Many works try to close this gap. DBC (Zhang et al. 2021)
is the first method trying to solve this task. By fitting the
bi-simulation metric where the distance between two states
is only dependent on the probabilistic sequence of rewards,
it is promising to learn a representation that is robust to dis-
tractions. However, DBC relies on precise latent dynamic
prediction which can be inherently hard to learn. And the
learning of the metric itself is not robust to the online policy
learning process (Kemertas and Aumentado-Armstrong 2021;
Liao, Zhang, and Yu 2023), which can result in less informa-
tive representation space. MICo resolves the first dilemma
via sampling next states instead of predicting them and Q2-
learning decouples the process of metric learning and policy
learning to make the metric robust and provides informative
supervised signal to representation learning. Another way to
handle distracted input is to explicitly distinguish between
task-relevant parts and task-irrelevant parts. TIA (Fu et al.
2021) reformulates the MDP to explicitly separates states
into reward-relevant parts and reward-irrelevant parts. Simi-
lar to the RSSM used in Dreamer (Hafner et al. 2020), TIA
learns a world model based on the above two parts. Denoised
MDP (Wang et al. 2022b) further extends the decomposi-
tion of the state into four parts based on both controllability
and correlation with rewards. Similarly, Iso-Dream (Pan et al.
2022) and Iso-Dream++ (Pan et al. 2023) decouples state into
controllable, uncontrollable, and time-invariant part. How-

ever, the reconstruction process in these methods are hard
and time-consuming.

Some data augmentation methods that are proposed to
improve generalization performance and data efficiency,
like RAD (Yarats, Kostrikov, and Fergus 2021) and DrQ-
v2 (Yarats et al. 2021), also demonstrate certain effectiveness
when facing distracted input (Tomar et al. 2021), which may
give credit to the priors implied in augmentations. As for
more complex visual inputs, their abilities are limited.

Foundation models for visual RL Foundational models
pretrained on diverse data at scale have demonstrated excep-
tional abilities in knowledge transfer to various downstream
tasks (Bommasani et al. 2022). Researchers posit that RL can
leverage common knowledge from foundational models to
solve tasks faster and generalize better (Yang et al. 2023).
Numerous ongoing efforts aim to replicate this success for
visual RL. Currently, two primary approaches stand out: one
involves directly using the foundational model as a pretrained
feature extractor, such as VRL3 (Wang et al. 2022a), which
leverages pretrained representations to increase the sample
efficiency in the offline-to-online fine-tuning process, and
PIE-G (Yuan et al. 2022), which employs fixed pretrained
representations to exhibit good generalization performance.
The other approach is to rely on multimodal foundation mod-
els to assist in planning or reward definition, like PaLM-
E (Driess et al. 2023), which utilizes multimodal models for
high-level planning, hoping that language-based descriptions
of actions will generalize better than low-level motor con-
trols, and MineDojo (Fan et al. 2022), which defines reward
information by aligning image and language modalities in
the agent’s observation and goal space. However, none of
them have specifically considered the problem of noise inter-
ference in the environment, which is an unavoidable situation
when training in real-world conditions.

Conclusion and Future Work
In this work, we propose a novel Focus-Then-Decide (FTD)
framework to tackle the challenge of learning in noisy envi-
ronments by integrating a foundational segmentation model
into visual RL. A novel attention selector is employed to
focus on task-relevant objects, which are then utilized for the
training of the decision-making module. Experimental results
on the DeepMind Control Suite and Franka Emika Robotics
indicate that our method can efficiently identify task-relevant
objects, thereby achieving strong performance. We hope our
work will inspire the community to further investigate the use
of foundational models to address complex visual RL tasks.

For future work, we will explore more self-supervised ob-
jectives, especially those targeted at the attention selector,
to further enhance the FTD’s performance. Concerning the
permutation invariance and the variable quantity of segments,
we will try to process them using some network structures
specifically designed for this kind of set-input. Additionally,
since the performance of FTD is contingent on the segmenta-
tion accuracy of the foundational segmentation model, and
considering that segmentation speed and accuracy may not
be compatible, it is also warranted to research more suitable
foundational segmentation models for RL downstream tasks.
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