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Abstract

Pretrained large models, particularly large language mod-
els, have garnered increasing attention, as they have demon-
strated remarkable abilities through contextual learning. Pre-
trained large models are increasingly recognized as funda-
mental tools for solving various tasks. However, the substan-
tial computational demands of large models have dissuaded
most product teams and individuals from running them. In
such scenarios, to leverage the exceptional performance of
large models, one must solely depend on costly APIs, fur-
ther burdening product teams and individuals. On the other
hand, despite the overall inferior performance of small mod-
els compared to large models, there are certain distributions
where small models can achieve comparable or even superior
results. For instance, during training, small models may be-
come trapped in a local optimum that is unique to certain dis-
tributions, leading to superior performance. Hence, we pro-
pose Data Shunt (DS), a general paradigm for collaboration
of small and large models. DS not only substantially reduces
the cost associated with deploying large models but also ef-
fectively enhances overall performance. Specifically, DS de-
termines the shunting direction by evaluating the confidence
level of small models. When the confidence level falls be-
low a specific threshold, the input data is forwarded to large
models. To further leverage the advantages of the small and
large models, we introduce Prompt Pruning (PP) and 2-Stage
Confidence Distillation (2CD), which facilitate mutual col-
laboration, leading to better results and less cost. The remark-
able performance across diverse modalities and tasks demon-
strates the superiority of the proposed DS over large models.
For instance, ChatGPT achieves an accuracy of 94.43% on
Amazon Product sentiment analysis, and DS achieves an ac-
curacy of 95.64%, while the cost has been reduced to only
31.18%. The code for the proposed method are provided for
research purposes https://github.com/Anfeather/Data-Shunt.

Introduction
Recent years have seen a surge of interest in pretrained large
models (Yu et al. 2023; Li et al. 2023a), which are trained on
a vast quantity of data at scale and can be adapted to a wide
range of downstream tasks (Bommasani et al. 2021). Large
language models (LLM), such as GPT (Brown et al. 2020;
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Figure 1: Commercial Applications of Large Models. up-
per: Product team 1 only use large models to support their
applications. lower: Product team 2 decreases costs with
collaboration of large and small models, enabling them to
offer more attractive prices to users.

Ouyang et al. 2022; Liu et al. 2023) have demonstrated out-
standing performance in text-related tasks (Wei et al. 2022;
Brown et al. 2020). Additionally, multimodal large mod-
els (Zhu et al. 2023) like Flamingo (Alayrac et al. 2022)
and BLIP-2 (Li et al. 2023b) have been developed to ex-
tend the capabilities of LLM to encompass vision modality.
Pretrained large models, particularly ChatGPT, have found
widespread applications in various domains, including cod-
ing (Surameery and Shakor 2023), education (Biswas 2023),
health (Biswas 2023), and beyond, revolutionizing people’s
lives.

Despite the impressive performance of pretrained large
models such as ChatGPT across various applications, their
computational demands make them impractical for deploy-
ment on numerous devices. As a result, product teams or in-
dividuals might opt to acquire the interface of the pretrained
large model to access the associated services. Nonethe-
less, frequent invocations of the interface prove to be pro-
hibitively costly for both teams and individuals. Besides, we
find that although the small model’s overall performance
is significantly lower than that of the large model, it can
still outperform or achieve highly competitive results across
certain data distributions. We first divide samples into easy
samples and hard samples. Easy samples represent data that
small models can fit well. These samples generally repre-
sent the majority of the training data and are relatively eas-
ier for small models to learn and predict accurately. In con-
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trast, hard samples refer to data that poses challenges for
small models, including samples that deviate from the main
distributions of the training data and samples located at the
boundaries between different categories. For example, for
long-tail data with few majority classes (head) and large
amount of minority classes (tail) (Ouyang et al. 2016; Zhang
et al. 2017; Oksuz et al. 2020), small model can perform
much better on head data, thus, head data is easy samples,
while tail data is hard samples. Furthermore, the small model
often succumbs to overfitting when trained on a limited
dataset. During inferencing, the small model demonstrates
good performance when the inputs resemble the training
data. However, it exhibits poor performance when the test
data significantly deviates from the training data (Horenko
2020). In such scenarios, data that conforms to the training
distribution is considered as easy samples, while data that
deviates from the training distribution is considered as hard
samples. For pretrained large models, there is no distinction
between easy and hard samples because these models have
already been exposed to massive amounts of training data.
The distribution of unknown samples is unlikely to deviate
significantly from the knowledge acquired by the large mod-
els. This is also why pretrained large models tend to perform
better in real-world applications.

In this work, we mainly focus on how to call large mod-
els as few as possible with the help of small models, while
achieve better performance. As illustrated in Figure 1, APP
1 and APP 2 have similar functions, and the upper figure
depicts APP 1 only uses large models, incurring additional
costs compared to APP 2 that involves collaboration be-
tween large and small models. By reducing costs, APP 2 can
offer more appealing prices, thereby enhancing market com-
petitiveness. We propose Data Shunt (DS), which utilizes
the confidence of small models to determine the appropriate
processing direction for the input data: either through large
models or exclusively through small models. DS represents
a collaborative paradigm of large models and small models.
We first show Prompt Pruning (PP), a method that leverages
small models to assist large models in refining their predic-
tion space through prompt design. Specifically, in a classi-
fication task, as a sample transitions from the small model
to the large model, the probability of it belonging to distri-
butions in which the small model demonstrates proficiency
diminishes. Thus, this probability can be integrated into the
prompt to enhance the large model’s discrimination against
alternative distributions. On the other hand, large models,
equipped with extensive general knowledge, can distill un-
familiar knowledge to improve small models and further re-
duce the reliance on large models. However, the distillation
process often leads to catastrophic forgetting since small
models are initially proficient only in a limited number of
distributions. To address this issue, we introduce 2-Stage
Confidence Distillation (2CD), a method where small mod-
els learn iteratively from high-confidence samples provided
by large models and their original version.

The effectiveness of the proposed method is validated
across various modalities and tasks. Specifically, in the sen-
timent analysis task, DS enhances the overall accuracy of
ChatGPT by 1.21%, while reducing the cost of the large

model to 31.18% of its original expense. In the image clas-
sification task, DS improves the overall accuracy by 5.07%,
and the cost of the large model decreases to 66.10%. Ad-
ditionally, for the image caption task, DS elevates the aver-
age BLEU score by 0.42, with the cost of the large model
amounting to 65.36%.

The main contributions of this paper can be summarized
as follows:

• We introduce a collaborative paradigm of large and small
models to enhance performance while minimizing costs,
which is simple yet effective.

• Building upon the strengths of both small and large mod-
els, we introduce two novel methods, Prompt Pruning
(PP) and 2-Stage Confidence Distillation (2CD), which
further enhance performance while mitigating costs.

• We demonstrate the efficacy of the proposed method
across diverse multimodalities and tasks.

Related Work
Large Model and Small Model
Deploying large models with remarkable few-shot capabil-
ities (Smith et al. 2022; Zhang et al. 2022; Hoffmann et al.
2022; Li et al. 2023c) poses a challenge in real-world ap-
plications primarily due to their enormous size. For exam-
ple, running a 175 billion LLM requires at least 350GB
GPU memory (Zheng et al. 2022), which are far beyond af-
fordable for most product teams, let alone more large mod-
els over 500B parameters (Chowdhery et al. 2022). More-
over, the costly interface also poses challenges in addressing
real-world issues using large models, as its expensive cost
exceeding the affordability of most product teams. Conse-
quently, we propose to mitigate the aforementioned issues
by employing smaller, specialized models. In addition, there
are also studies focus on large and small models.

Reducing Cost and Improving Performance
Prior works discuss three main strategies for cost reduction:
prompt adaptation, LLM approximation, and LLM cascade
(Chen, Zaharia, and Zou 2023). The prompt adaptation try
to make the prompt shorter. LLM approximation explores
how to create simpler and cheaper LLMs on specific tasks.
LLM cascade aims to adaptively choose different APIs for
different queries. Different from prior works that only focus
on language modality, we explores a generalized paradigm
that can be applied to various modalities and tasks. Besides,
we reduce large model cost by combining task-specific small
models, which is simple yet effective.

Methodology
The proposed Data Shunt (DS) is a collaborative paradigm
of large and small models. In the subsequent sections,
we will explore how small models contribute to the im-
provement of large models, how large models benefit small
models, as well as provide an overview of the entire DS
paradigm.
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Figure 2: The training process of the proposed method. Hard samples refer to data that poses challenges for small models,
including samples that deviate from the main distributions of the training data and samples located at the boundaries between
different categories. In contrast, easy samples represent data that small models can fit well. These samples generally represent
the majority of the training data and are relatively easier for small models to learn and predict accurately.

Small Models for Large Models, Prompt Pruning
In this section, we focus on how small models help large
models. Small models can exhibit superior performance
when dealing with specific data distributions, attributed to
the training data distribution and their own architectural
characteristics. To improve the performance of large mod-
els with advantages of small models, we propose Prompt
Pruning (PP) for classification task. PP refines the predic-
tion space of large models using the prompts crafted with
predictions of small models.

As demonstrated in Equation 1, we obtain the prediction
confidence Cs by subjecting the output of a trained small
model Fsmall to a softmax operation for a given input x. A
higher value in a specific dimension ofCs indicates a greater
level of confidence from the small model regarding the cor-
responding judgment.

Cs =
ezi∑
ezd

, zi ∈ Fs(x) (1)

Intuitively, small models excel at discriminating specific
distributions and determining whether an input aligns with
those distributions. For instance, a small model may excel in
distinguishing cats from other animals. Although it cannot
recognize dogs, tigers, and other such animals, it can confi-
dently determine that they are not cats (i.e., the correspond-
ing confidence is lower). Therefore, incorporating these pre-
dictions into the prompts for large models allows us to refine
the prediction space and enhance the performance. For ex-
ample, a prompt of PP for image classification task:

”This is a photo of a label with probability Cs.”
Compared to traditional prompt, PP introduces the confi-

dence of small models as prior knowledge. When the input
data do not follow distributions that small models excel in,
Cs of these distributions (or called classes) will be lower. If
there are numerous candidate classes, we only add proba-
bility to classes small models excel in. Thus, large models

can ignore these classes and improve accuracy. We call such
prompt that with small model confidence as soft prompt. On
the other hand, we can directly remove classes small models
excel in. Thus, the prediction space is smaller, and the pos-
sibility for large models to predict the correct class will be
higher. We call such prompt that directly remove the candi-
dates as hard prompt.

We further perform theoretical analysis from an entropy
perspective to show that PP with soft and hard prompt can
effectively improve the performance of large models.

Let X and Y be the variable of input data and small
model prediction, respectively. We use entropy to quantify
the lower bound of model capability, where higher entropy
indicates that the model struggles to produce effective re-
sults. H(X) is the entropy of the input data and H(Y ) is the
entropy of the prediction. We first show the effectiveness of
soft prompt. We use H(X | Y ) to represent the entropy of
the input data with soft prompt X̂ = X | Y . Now we show
that with Y , H(X̂) is lower than H(X):

H(X)−H(X̂) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)

≥

∑
x∈X

∑
y∈Y

p(x, y)

 log2

∑
x∈X

∑
y∈Y p(x, y)∑

x∈X
∑

y∈Y p(x)p(y)
= 0

(2)
Note that the above inequality takes the equal sign iff X and
Y are independent, i.e., p(x, y) = p(x)p(y). However, small
models often exhibit a strong correlation between their out-
puts and inputs. Thus, we get H(X) > H(X̂), which vali-
dates that the input data with soft prompt gets lower entropy.

As for the hard prompt, let entropy of the prediction of
large models be H(Cl) = −

∑N
i=1 ci log ci, where N is the

number of candidates,
∑N

i=1 ci − 1 = 0 and ci ∈ Cl. With
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Lagrange multiplier method, we get:

G (c1, c2...cN , λ) = −
N∑
i=1

ci log ci + λ

(
N∑
i=1

ci − 1

)
(3)

then partially differentiating G in Equation 3 with respect to
ci and λ,

∂G

∂ci
= − log ci − 1 + λ,

∂G

∂λ
=

N∑
i=1

ci − 1 (4)

Let Equation 4 be 0, we can get c1 = c2 = . . . = cN =
1
N ,H(Cl) = logN , which is the maximum value ofH(Cl).
If we perform PP with hard prompt, the number of candi-
dates will be M , and M < N . Thus, the maximum value
of H(Cl) will be logM . As logM < logN , the maximum
value ofH(Cl) will be smaller, and the lower bound of large
models will be higher.

Large Models for Small Models, Confidence
Distillation
In addition to small models assisting large models, we can
also employ large models to support small models, enabling
the distillation of knowledge that small models lack. As
the knowledge of small models expands, they can handle
a greater number of samples, thereby further reducing the
need to invoke large models. However, we observed that
small models tend to forget the original well-fitting distribu-
tions after knowledge distillation (French 1999; Gou et al.
2021). Besides, large models may severely degrade small
models if the performance of large models is not well (i.e.,
distill incorrect knowledge). In order to address this issue,
we propose 2-Stage Confidence Distillation (2CD), which
performs knowledge distillation based on the confidence
levels of both small and large models. Specifically, to pre-
serve the advantages of small models, we maintain a version
of the original small models that do not receive knowledge
from large models (referred to as specific small models). Be-
sides, we duplicate the small models to enhance knowledge
acquisition (referred to as learnable small models). In or-
der to mitigate the negative impact of incorrect knowledge
on the small models, we enable learnable small models to
learn from both specific small models and large models si-
multaneously, based on their respective confidences. For a
input sample, when the confidence of specific small mod-
els is low and the confidence of large models is high, learn-
able small models will acquire predictions from the large
models to introduce additional knowledge and promote cost
reduction. Such process enables learnable small models to
handle increasingly diverse samples. Conversely, learnable
small models will continue to learn high confidence sam-
ples from specific small models to mitigate the impact of
distorted knowledge from large models.

For an input data x, if Cs1 (computed by Equation 1) is
lower than shunt threshold, δ, we compute the prediction of
large models by

Cl =
ezi∑
ezd

, zi ∈ Fl(x) (5)

where Fl is the function of large models and Cl is the pre-
dicted confidence.

If Cl > δ, we perform knowledge distillation with Kull-
back Leibler divergence (Hershey and Olsen 2007) by

Lls = KL(Fs2(x), Cl) (6)

To alleviate the impact of distorted knowledge from large
models, we also select samples that Cs1 > δ to perform
knowledge distillation, where

Ls1s2 = KL(Fs2(x), Cs1) (7)
During 2CD, we perform Equation 6 and 7 iteratively.

Data Shunt
We propose a collaborative paradigm, DS, which aims to
mitigate the substantial cost associated with large models
while simultaneously enhancing performance. For training
process, as illustrated in Figure 2, DS tries to achieve a
coordinated state between small and large models. On one
hand, it performs knowledge distillation for the learnable
small models, transforming more data into easy samples that
the learnable small models can handle. On the other hand,
DS determines the shunt threshold δ by evaluating the spe-
cific small models’ confidence with training set, thus allow-
ing more easy samples to be processed by the small mod-
els. During inference, an input will be processed by specific
small models and learnable small models at first. If the con-
fidence of small models is lower than δ, this sample and
the corresponding confidence will be sent to large models,
where the prompt will be re-designed with the confidence
of small models. On the other hand, if the confidence of the
input sample is high, this sample will only be processed by
small models.

Experiments
In our experiments, we aim to (1) validate that DS can
enhance the overall performance, while reducing the cost
across various modalities and tasks, (2) validate the effec-
tiveness of PP and 2CD, respectively, (3) analyze the im-
portant hyperparameter, shunt threshold, In our experiments,
large models and small models are relative. For example,
model A is small compared to model B, but large compared
to C. Moreover, the overall performance of large models is
always better than that of small models. To save on experi-
mental costs, we utilize the paid large model, ChatGPT, in
the first experiment, while using relatively smaller free pre-
trained models as substitutes in the remaining experiments.
Therefore, we use the query proportion of large models as
an evaluation metric instead of cost. All experiments run on
a 2080 Ti.

Data Shunt for Language Modality
ChatGPT is one of the most influential large language mod-
els today. Running ChatGPT requires at least 350GB GPU
memory with specialized infrastructure (Zheng et al. 2022),
which is far beyond affordable for most product teams. Con-
sequently, product teams must invoke the ChatGPT interface
to accomplish their desired functionalities. Unfortunately,
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Category Small 1 Large DS Category Small 1 Large DS
Games 84.34% 96.22% 96.13%|88.88% Clothing 85.34% 96.89% 94.28%|84.61%
Kindle 89.05% 95.65% 95.83%|75.88% Beauty 85.37% 97.20% 94.33%|86.99%
Baby 88.63% 96.41% 95.93%|88.99% Video 85.37% 92.54% 94.32%|87.28%

Movies 85.37% 93.42% 94.23%|87.68% Lawn 85.36% 89.36% 94.32%|94.47%
Electronics 85.24% 95.41% 94.67%|88.44% Home 85.39% 96.28% 94.39%|88.10%

Office 85.23% 95.45% 94.68%|92.12% Toys 85.41% 96.74% 94.40%|87.80%
CDs 84.68% 95.87% 94.86%|91.99% Grocery 85.43% 96.73% 94.42%|89.80%

Books 85.26% 93.66% 94.20%|81.88% Automotive 85.42% 94.69% 94.42%|90.34%
Sports 85.26% 95.06% 94.21%|89.00% Tools 85.41% 94.49% 94.43%|90.58%
Health 85.24% 95.04% 94.23%|89.49% Pet Supplies 85.40% 94.03% 94.42%|90.84%
Overall Small 1: 85.40%, Large: 94.43%, DS: 94.42% Query Small 1: 0%, Large: 100%, DS: 84.97%

Category Small 2 Large DS Category Small 2 Large DS
Games 85.29% 96.22% 96.13%|84.01% Clothing 86.13% 96.89% 94.31%|74.78%
Kindle 89.74% 95.65% 95.85%|71.73% Beauty 86.17% 97.20% 94.36%|81.93%
Baby 89.33% 96.41% 95.95%|82.56% Video 86.18% 92.54% 94.35%|78.15%

Movies 86.27% 93.42% 94.25%|80.82% Lawn 86.17% 89.36% 94.35%|90.64%
Electronics 86.28% 95.41% 94.69%|83.57% Home 86.21% 96.28% 94.41%|81.93%

Office 86.26% 95.45% 94.69%|89.14% Toys 86.22% 96.74% 94.43%|81.05%
CDs 85.70% 95.87% 94.88%|87.78% Grocery 86.24% 96.73% 94.45%|84.16%

Books 86.05% 93.66% 94.23%|77.59% Automotive 86.24% 94.69% 94.45%|87.44%
Sports 86.05% 95.06% 94.24%|82.66% Tools 86.23% 94.49% 94.45%|86.58%
Health 86.03% 95.04% 94.26%|85.12% Pet Supplies 86.21% 94.03% 94.45%|86.26%
Overall Smal 2: 86.21%, Large: 94.43%, DS: 94.44% Query Small 2: 0%, Large: 100%, DS: 80.00%

Category Small 3 Large DS Category Small 3 Large DS
Games 90.39% 96.22% 96.15%|36.25% Clothing 95.63% 96.89% 97.45%|31.10%
Kindle 95.89% 95.65% 97.38%|20.67% Beauty 92.90% 97.20% 97.24%|30.39%
Baby 92.81% 96.41% 96.26%|32.90% Video 92.67% 92.54% 96.27%|25.32%

Movies 90.57% 93.42% 94.86%|31.76% Lawn 84.26% 89.36% 90.63%|48.93%
Electronics 91.76% 95.41% 96.11%|39.56% Home 93.12% 96.28% 96.73%|33.89%

Office 90.72% 95.45% 95.10%|44.31% Toys 92.22% 96.74% 96.38%|31.34%
CDs 88.57% 95.87% 95.50%|36.92% Grocery 92.50% 96.73% 96.66%|32.28%

Books 91.98% 93.66% 95.37%|27.91% Automotive 91.30% 94.69% 94.69%|33.33%
Sports 93.11% 95.06% 96.02%|34.83% Tools 91.62% 94.49% 95.38%|37.87%
Health 91.73% 95.04% 95.71%|34.35% Pet Supplies 91.02% 94.03% 95.02%|38.96%
Overall Small 3: 91.79%, Large: 94.43%, DS: 95.64% Query Small 3: 0%, Large: 100%, DS: 31.18%

Table 1: Different small models for DS on sentiment analysis. Small model 1 represents TextCNN, small model 2 represents
LSTM, and small model 3 represents fine-tuned BERT. The large mode is ChatGPT. For DS we present the accuracy and query
proportion (i.e., sample proportion processed by ChatGPT) in the same unit.

the exorbitant costs associated with the interface substan-
tially diminish the revenue generated by product teams.

In this section, we show that the proposed method can
significantly reduce the cost of calling large model while
achieving better overall performance. We conduct sentiment
analysis on Amazon Product Data (He and McAuley 2016;
McAuley et al. 2015), where there are 20 categories of prod-
uct comments along with corresponding positive or negative
sentiment labels. In addition, we maintain a balance between
positive and negative samples, and divide the dataset into
training set, validation set, and testing set, with 2,504,958,
277,508, and 309,186 samples respectively.

Related results are presented in Table 1. For DS, the right
value of “|” is the sample proportion processed by Chat-
GPT, while the left value of “|” is the accuracy of DS.
In this experiment, we use TextCNN (Kim 2014), LSTM

(Wang et al. 2016) and fine-tuned BERT (Devlin et al. 2018)
as the small model respectively, while ChatGPT serves as
the large model. It can be seen that the overall accuracy
of TextCNN, LSTM, fine-tuned BERT and ChatGPT is
85.40%, 86.21%, 91.79% and 94.43%. The pretrained large
model, ChatGPT, significantly outperforms specific small
models, TextCNN, LSTM, and fine-tuned BERT. Its exten-
sive pretraining equips it with a wealth of knowledge, en-
abling it to handle a broader range of scenarios. On the other
hand, TextCNN, LSTM and fine-tuned BERT see much data
that belongs to the 20 classes, thus, small models may fit
some data better. For instance, in the Kindle, certain e-books
share similar highlights, such as well-developed character-
ization and compelling storylines. Thus, during inference,
if there is a comment that is similar to one of the train-
ing dataset, small models will give a more accurate predic-
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Small Large DS
Head 70.25% 60.00% 71.99%
Med 46.61% 57.28% 59.91%
Tail 29.28% 57.19% 57.61%

Overall Accuracy 48.84% 58.18% 63.25%
Query Proportion 0% 100% 66.10%

Table 2: DS for image classification on CIFAR-100-LT.

tion. Based on this idea, we have observed that the combi-
nation of small and large models can yield competitive or
even superior performance. As shown in DS of Table 1, we
present results of DS combined with three small models. To
achieve competitive results to ChatGPT, DS with TextCNN
needs to send 84.97% of the data to ChatGPT, while DS with
LSTM needs to send 80.00%, and DS with fine-tuned BERT
needs to send 31.18%. It is evident that as the performance
of the small model improves, the required query proportion
to attain competitive performance decreases. Furthermore,
DS with fine-tuned BERT exhibits remarkable results, ben-
efiting from its exposure to lots of diverse data as well as
task-specific data. Fine-tuned BERT even slightly performs
better on two fine-grained classes, Kindle and Video, where
the query proportion of DS is lower than 26%. It demon-
strates that DS with small foundation models can achieve
much better performance. Compared to ChatGPT, DS dis-
plays a 1.21% increase in accuracy while only 31.18% of
the data is calculated by the large model.

Data Shunt for Vision Modality
In this section, to better present the application of DS, we
conduct experiments for long-tailed image classification.
Long-tailed image classification is a common challenge in
practical computer vision applications (Zhou, Hu, and Wang
2018). We follow (Li et al. 2022) to separate CIFAR-100
into the head, medium and tail regions based on different
numbers of samples.

Due to budget constraints and the limited availability
of vision pretrained models, in this experiment, we regard
ResNet-32 (He et al. 2016) as the small model, CLIP as the
large model. The results on CIFAR-100-LT are show in Ta-
ble ??. Different from the experiment of language modality
in the previous section, the performance of the small model
is greatly affected by the number of training samples. The
small model achieving 70.25%, 46.61% and 29.28% accu-
racy in the head, medium, and tail regions, respectively. The
accuracy of the small model for the head data even signif-
icantly surpasses that of the large models, 60%, which fur-
ther highlights that small models and large models can have
their respective advantages. In contrast, small models yield
similar results across most classes in the language modality.
These outcomes might stem from a higher degree of simi-
larity between comments, in contrast to images of different
classes. Compared to established baselines that solely rely
on either the small model or the large model, our approach
yields significant performance improvements in all cases, es-
pecially, the overall accuracy has been improved by 5.07%
compared to the large model, while saving approximately

Small Large DS
BLEU-1 72.92 73.27 74.95
BLEU-2 55.73 60.04 60.43
BLEU-3 41.20 46.99 46.85
BLEU-4 30.28 36.11 35.82

Mean 50.03 54.10 54.52
Query Proportion 0% 100% 65.36%

Table 3: DS for image caption on Microsoft COCO.

one-third of the costs.

Data Shunt for Multimodality
In this section, we validate the effectiveness of the proposed
DS on the image caption task, which is a generative task, dif-
ferent from the classification tasks in the previous sections.

We follow (Xu et al. 2015) to design the small model,
where the encoder is a ResNet-101, and the decoder is an
LSTM. To get the confidence of the small model for the in-
put sample, we calculate the mean of probabilities that pre-
dict next words.

The confidence of the small model for an input image is:

it = σ (WiEyt−1 + Uiht−1 + Ziẑt + bi) ,

ft = σ (WfEyt−1 + Ufht−1 + Zf ẑt + bf ) ,

ct = ftct−1 + it tanh (WcEyt−1 + Ucht−1 + Zcẑt + bc) ,

ot = σ (WoEyt−1 + Uoht−1 + Zoẑt + bo) ,

ht = ot � tanh (ct) ,

Ct =
ezi∑
ezd

, zi ∈ FMLP (ht).

(8)
where it, ft, ct, ot, ht are the input, forget, memory, output
and hidden state of the LSTM, respectively. ẑ is the context
vector, capturing the visual information, as explained below.
E is an embedding matrix. FMLP is a full connected net-
work. σ and� is the logistic sigmoid activation and element-
wise multiplication, respectively.

The image caption experiments are conducted on Mi-
crosoft COCO (Lin et al. 2014), which comprises 82,783 im-
ages with captions. We follow (Xu et al. 2015) to devide the
training, validation, and testing set. As for the large model,
we employ BLIP-2 (1.1B) (Li et al. 2023b). In this experi-
ment, when the confidence computed by 8 is lager than 0.55,
the input data will be processed by the small model, oth-
erwise it is processed by the large model. Related results
about BLEU (Papineni et al. 2002) are reported in Table ??.
It can be observed that the small model is inferior to the
large model in terms of every metric. Additionally, the small
model has much poorer ability to generate fluent sentences
compared to the large model, as the difference between the
small and large models becomes more significant with the
n-gram (BLEU-n) increasing. As for DS, it can leverage the
strengths of both the small model and the large model, re-
sulting in improved performance on BLEU-1 and BLEU-2.
However, when it comes to BLEU-3 and BLEU-4, which in-
volve longer word combinations, DS falls short of surpass-
ing the performance of the large model. BLEU-1 is closely
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DS DS-2CD DS-PP-2CD
Head 71.99% 71.21% 71.54%
Med 59.91% 58.69% 59.76%
Tail 57.61% 56.17% 53.31%

Overall Accuracy 63.25% 62.11% 61.63%
Query Proportion 66.10% 67.48% 67.48%

Table 4: Ablation experiments of DS on CIFAR-100-LT.

related to the previous classification task, in which it pre-
dicts the likelihood of specific words appearing based on
images. It can be found that the proposed DS yields better
performance in prediction tasks. This might be attributed to
DS directing data flow based on the confidence of the pre-
dictions. Nonetheless, this experiment still validates the ef-
fectiveness of the proposed DS for image caption task, as
DS successfully improve in the average BLEU score, while
solely 65.36% of the data is computed by the large model.

Ablation for PP and 2CD
In this section, we conduct ablation experiments to show the
effectiveness of PP and 2CD on CIFAR-100-LT. Related re-
sulrs are shown in Table ??.

It can be seen that both PP and 2CD have a positive impact
on the proposed method. Besides, according to the Query
Proportion of DS, 66.10%, and DS-2CD, 67.48%, 2CD can
further reduce the number of times calling the large model,
as small models have learned more data distributions. More-
over, from the comparison between DS-2CD and DS-2CD-
PP, we find that PP primarily works on the tail data, as the
accuracy improved by 2.86%. It is in line with our previ-
ous idea in section Small Models for Large Models, Prompt
Pruning, with the prior knowledge of the small model, PP
can reduce the candidate classes and improve the accuracy
of the tail data.

Hyperparameter Analysis
This section primarily focuses on the important hyperparam-
eter, shunt threshold, δ, which governs the data flow. Specif-
ically, when the confidence of a sample is larger than δ, this
sample will solely be processed by small models, otherwise,
this sample will be processed by large models. To better
present the influence of δ, we conduct related experiments
on sentiment analysis based on the prior section.

As illustrated in Figure 3, DS with three different small
models all can surpass the large model. When DS surpasses
the large model, the requirement for the hyperparameter δ
becomes lower for better-performing small models (i.e., δ
can have a wider range). For example, DS with TextCNN or
LSTM requires δ > 0.97, while DS with fine-tuned BERT
requires δ > 0.85. Besides, when δ > 0.97, the overall
performance of DS shows only a slight improvement, while
the proportion of samples processed by the large model in-
creases significantly. For instance, when δ = 0.97 and 0.99,
the accuracy of DS with LSTM is 94.20% and 94.45%, re-
spectively. As the parameter δ increases, the change in ac-
curacy is minimal, while the query proporyion has signif-
icantly increased from 54.66% to 80.00%. Although such
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Figure 3: Hyperparameter analysis for shunt threshold on
sentiment analysis. The solid line represents the accuracy of
DS with different small models. The dotted line represents
the proportion of samples computed by the large model. The
bold dot represents DS achieves better performance than that
of the large model.

phenomenon is not as prominent for DS with TextCNN (i.e.,
the vertical distance between the two points on the right side
of the red dashed line) and DS with BERT (i.e., the vertical
distance between the two points on the right side of the green
dashed line), it is important to select a δ between [0.97, 0.99]
on the validation dataset.

Conclusion
With the advancements in pretrained large models, an in-
creasing number of related applications are gradually be-
coming integrated into people’s daily lives. The enormous
computational resources required by pretrained large mod-
els have deterred the majority of product teams and indi-
viduals. Utilizing pretrained large models through interface
can incur significant costs. Therefore, we introduce a col-
laborative paradigm that combines large and small models.
Specifically, the input data is first processed by small mod-
els and then handed over to large models based on the confi-
dence levels. To further leverage the advantages between the
small and large models, we proposed Prompt Pruning (PP)
and 2-Stage Confidence Distillation (2CD), which respec-
tively uses small models to help large models refine the pre-
diction space and uses large models to assist small models
in learning unfamiliar distributions. We validate the effec-
tiveness of the proposed method across diverse multimodal-
ities and tasks, and the proposed method can significantly
improve the performance while effectively reducing the fre-
quency of querying large models.
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