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Abstract
Neural network compression techniques, such as knowledge
distillation (KD) and network pruning, have received in-
creasing attention. Recent work ‘Prune, then Distill’ reveals
that a pruned student-friendly teacher network can benefit
the performance of KD. However, the conventional teacher-
student pipeline, which entails cumbersome pre-training of
the teacher and complicated compression steps, makes prun-
ing with KD less efficient. In addition to compressing models,
recent compression techniques also emphasize the aspect of
efficiency. Early pruning demands significantly less compu-
tational cost in comparison to the conventional pruning meth-
ods as it does not require a large pre-trained model. Likewise,
a special case of KD, known as self-distillation (SD), is more
efficient since it requires no pre-training or student-teacher
pair selection. This inspires us to collaborate early prun-
ing with SD for efficient model compression. In this work,
we propose the framework named Early Pruning with Self-
Distillation (EPSD), which identifies and preserves distillable
weights in early pruning for a given SD task. EPSD efficiently
combines early pruning and self-distillation in a two-step pro-
cess, maintaining the pruned network’s trainability for com-
pression. Instead of a simple combination of pruning and SD,
EPSD enables the pruned network to favor SD by keeping
more distillable weights before training to ensure better dis-
tillation of the pruned network. We demonstrated that EPSD
improves the training of pruned networks, supported by vi-
sual and quantitative analyses. Our evaluation covered diverse
benchmarks (CIFAR-10/100, Tiny-ImageNet, full ImageNet,
CUB-200-2011, and Pascal VOC), with EPSD outperforming
advanced pruning and SD techniques.

Introduction
Resource-limited edge devices struggle to handle the com-
putational demands of large deep neural networks (DNNs).
Therefore, compressing deep models is crucial to eliminate
redundancy, facilitating the effective deployment of DNNs
on edge devices (Gong et al. 2019; Liu et al. 2020; Guo, Xu,
and Ouyang 2023). Various compression methods have been
well studied, including network pruning (Han et al. 2015;
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Figure 1: Comparison of different model compression
schemes. (a) PKD (Park and No 2022) follows four steps
to combine pruning and KD. (b) Our Early Pruning with SD
(EPSD) needs only two steps for compression.

Guo, Ouyang, and Xu 2020; Huang et al. 2023), knowl-
edge distillation (KD) (Hinton et al. 2014), parameter quan-
tization (Hubara et al. 2017; Wei et al. 2022) and low-rank
decomposition (Zhang et al. 2015). Among them, KD and
pruning have received increasing attention.

The concept behind KD is to train a smaller student
network to approximate a larger, pre-trained teacher net-
work with higher accuracy (Hinton et al. 2014). The cost
of pre-training and the capacity gap issue between teach-
ers and students inevitably limit the usage of KD (Mirzadeh
et al. 2020; Xu and Liu 2019). To overcome these limita-
tions, self-distillation (SD) is proposed to enable students
to distill knowledge from themselves (Shen et al. 2022;
Yang et al. 2019; Zhang, Bao, and Ma 2021; Zhang et al.
2019). Namely, SD allows the student network to learn from
its predictions (Mobahi, Farajtabar, and Bartlett 2020), en-
abling a more streamlined training procedure that requires
much fewer computational resources. However, the poten-
tial risk in SD is that the student could result in overfitting
if the training process is not properly regularized (Kim et al.
2021). Therefore, regularizing the student model becomes
crucial to ensure effective knowledge transfer.

Network pruning removes the redundancy inside the orig-
inal network and generates a sub-network with compara-
ble accuracy performance (LeCun, Denker, and Solla 1989;
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Liu et al. 2021a). In addition to reducing the computa-
tional requirements, pruning also helps prevent overfitting of
DNNs (Han, Mao, and Dally 2016). Current pruning works
focus on pruning in the early stage (Frankle and Carbin
2019; de Jorge et al. 2021; Alizadeh et al. 2022). Prun-
ing takes place either during initialization or shortly after
a few training steps. Early pruning methods efficiently oper-
ate without the need for a pre-trained model. Recent work
‘Prune, then Distill’ (Park and No 2022) (we refer to it
as PKD) explores the regularization effect of pruning on
KD. They analyze the distillation process regularized by the
pruned teacher and combine pruning and KD in four steps
as shown in Fig. 1(a): 1) Pre-train a teacher network ft, 2)
prune ft and obtain a pruned teacher fpt, 3) construct a stu-
dent network fs according to fpt, and 4) distill knowledge
from fpt to fs. Though PKD reveals that pruning student-
friendly teacher can boost the performance of KD, the re-
quired cumbersome pre-training of the teacher and the com-
plicated steps make it suffer from heavy training efforts.

To mitigate the complicated compression process, we at-
tempt to collaborate early pruning with SD for efficient
model compression. An intuitive approach is to prune the
network and then finetune the pruned network with SD.
However, different from PKD, in the context of the SD,
pruning the teacher network also affects the student and
leads to inadequate regularization if the pruned student
presents weak trainability. Empirically, applying a simple
combination of pruning and SD results in severe perfor-
mance degradation especially under the large sparsity ratios
(as shown in Fig. 2). Therefore, the key question is: How to
effectively prune DNNs with SD to yield performance gains?

A promising solution is to make the pruned network fa-
vorable to SD, i.e., to preserve more distillable weights
to ensure the efficacy of the SD process. To this end, we
propose a novel framework named EPSD that collaborates
Early Pruning and Self-Distillation for efficient model com-
pression. Specifically, EPSD has two main steps as shown in
Fig. 1 (b): 1) Early Pruning: Prune an initialized network
finit to obtain a pruned sub-network fsub with distillable
weights. 2) Self-Distillation: Train the pruned network fsub
by SD. Namely, given a desired sparsity level, EPSD glob-
ally ranks the weights in finit according to their influence
(quantified by the absolute gradients) on the SD loss and
removes weights with less influence. By doing so, the train-
ability of the student network can be enhanced since the sub-
network maintains objective consistency with SD loss and
preserves more distillable weights. Next, EPSD applies SD
to recover the accuracy of the student network with distill-
able weights. Our contributions are summarized as follows:
• We present EPSD, which collaborates early pruning with

SD, to compress models efficiently in only two steps.
Meanwhile, EPSD preserves the trainability of the pruned
network to improve performance.

• EPSD identifies distillable weights that ensure objec-
tive consistency between early pruning and SD, and we
present quantitative and visualized analysis to demon-
strate the efficacy of EPSD.

• Extensive results with three advanced SD methods on

multiple benchmarks show that EPSD outperforms ad-
vanced pruning and SD methods while showcasing its
scalability on two downstream tasks.

Related Works
Knowledge Distillation. Knowledge Distillation (KD)
transfers various ‘knowledge’ in networks (Romero et al.
2015; Hinton et al. 2014), acting as a potent regulariza-
tion method to enhance generalization by utilizing learned
softened targets (Shen et al. 2022). However, the capac-
ity gap prevents well-performing teachers from making stu-
dents better (Mirzadeh et al. 2020).
Self-Distillation. To improve the efficiency of knowledge
transfer, Self-Distillation (SD) leverages knowledge from
the student network without involving additional teach-
ers (Wang and Yoon 2021; Yun et al. 2020). The key to SD
is creating soft targets, where the student network generates
its valuable knowledge to guide its training (Lee, Hwang,
and Shin 2020; Zhang, Bao, and Ma 2021; Yang et al.
2019; Shen et al. 2022). SD’s efficiency arises from avoiding
teacher network pre-training and addressing teacher-student
capacity gaps. Yet, the student network might be over-fitting
due to insufficient training regularization (Kim et al. 2021).
Recently, PKD (Park and No 2022) revealed the positive reg-
ularizing impact of pruning teacher networks on KD, which
inspires us to regularize the SD process by pruning.
Network Pruning. Network pruning aims to identify and re-
move unnecessary weights, reducing complexity while pre-
serving training performance (Reed 1993; Lee et al. 2020).
Traditional approaches (Han et al. 2015; Molchanov et al.
2017) typically follow pre-training, pruning, and re-training
to prune, which requires much training effort. Another
paradigm named Dynamic Sparse Training (DST) (Mocanu
et al. 2018; Bellec et al. 2018; Evci et al. 2020; Liu et al.
2021b) starts from a (random) sparse neural network and
allows the sparse connectivity to evolve dynamically dur-
ing training. DST can significantly improve the trainability
of sparse DNNs without increasing the training FLOPs. Re-
cently, early pruning (Lee, Ajanthan, and Torr 2019; Wang,
Zhang, and Grosse 2020; de Jorge et al. 2021; Alizadeh et al.
2022) has been widely studied as it identifies sparse sub-
networks before training without cumbersome pre-training.
Many early pruning works evaluate the importance of indi-
vidual weights regarding the impact on loss, i.e., the gradi-
ents of a network. Though early pruning is efficient, it is con-
sidered under-performance (Wang et al. 2022): pruning neu-
ral networks breaks the dynamical isometry (Saxe, McClel-
land, and Ganguli 2014) and results in the trainability degra-
dation (Lee et al. 2020). In this work, we empirically show
that SD greatly enhances the performance of early pruned
networks and improves their trainability by ensuring align-
ment between pruning and SD objectives.

Early Pruning with Self-Distillation
We first introduce a simple combination of early pruning
and SD and show that it suffers performance degradation.
To address this issue, we introduce the concept of distillable
weights, along with quantitative and visualized analysis. Fi-
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Figure 2: Performance comparison among the ‘Simple Com-
bination’, pre-trained network (‘Unpruned Baseline’), the
network only performs pruning without fine-tuning with SD
(‘Pruning Only’), and the network only performs SD without
any sparsity (‘SD Only’) on CIFAR-100 of ResNet-18. The
‘Simple Combination’ suffered severe performance degra-
dation, especially under the high sparsity ratio 95%.

nally, we present the overall framework of EPSD, demon-
strating the efficiency by comparing the required training ef-
forts with other compression techniques.

The ‘Simple Combination’
A straightforward way to combine pruning and SD requires
two steps. Step-1: Network pruning without pre-training and
step-2: Distill knowledge to itself. Specifically, step-1 is to
identify a sub-network from the randomly initialized net-
work by pruning. Step-2 is to fine-tune the sub-network via
SD. Since our goal is to efficiently compress the model, the
early pruning method ProsPr (Alizadeh et al. 2022) is uti-
lized as the representative method in step-1.
Step-1: Identify Redundancy Before Training. Lee et al.
first proposed SNIP (Lee, Ajanthan, and Torr 2019) to prune
unnecessary weights in random initialized networks that are
least salient for the loss. They compute the gradients ∆ to
generate saliency scores for initial weight θinit with ran-
dom samples xrand and remove the weights with the lowest
scores. Specifically, an all-one mask m is attached to initial
weights to get θ0 ← m ⊙ θinit, and the saliency scores can
be computed as:

∆(wp, xrand) =
∂L(θ0, xrand)

∂mp
, (1)

swp
=
|∆(wp, xrand)|∑
q |∆(wq, xrand)|

, (2)

where m is the pruning mask with values 0s or 1s (initial
value is 1s), ∆ denotes gradients derived from labels, wp

is p-th weight in θinit, swp
is the saliency score for mea-

suring the importance of wp. Recently, Milad et al. pointed
out that pruning should consider the trainability of a certain
weight, instead of only its immediate impact on the loss be-
fore training (Alizadeh et al. 2022), they measured the im-
pact of pruning on loss across i gradient descent steps during
initial training, rather than assessing alterations in loss at ini-
tialization. The saliency scores are calculated based on the
updated weights θi as in Eq. (3):

∆(wp, xi) =
∂L(θi, xi)

∂mp
, (3)

where xi denotes i-th random sampled batch of data for
computing the gradients. In the classification tasks, the

cross-entropy (CE) loss runs through the entire process,
from pruning to training. The difference between predictions
and labels is used to evaluate the importance of weights and
optimize the pruned network.
Step-2: Distilling Knowledge from Soften Targets. In
classification task, we denote x ∈ X as input and y ∈
Y ={1, . . . , C} as its ground-truth label. Given the input
x, the predictive distribution of a softmax classifier is:

P (y | x; θ, τ) = exp (ly(x; θ)/τ)∑C
i=1 exp (li(x; θ)/τ)

, (4)

where li denotes the logit of DNNs for class i which
are parameterized by θ, and τ > 0 is the temperature
scaling factor. To improve the generalization ability, tradi-
tional KD (Hinton et al. 2014) transfers pre-trained teacher’s
knowledge by optimizing an additional Kullback-Leibler
(KL) divergence loss between the softened outputs P̃ from
teacher and student in every mini-batch xi:

LKD =
1

n

n∑
i=1

τ2 ·DKL

(
P̃ (xi; θt)∥P̃ (xi; θs)

)
. (5)

The original KD matches the predictions of the same in-
puts from two different networks, while the SD replaces the
teacher’s prediction with that of the student network itself.
Various works (Lee, Hwang, and Shin 2020; Xu and Liu
2019; Zhang et al. 2019; Zhang, Bao, and Ma 2021; Yang
et al. 2019; Shen et al. 2022) have explored enhancing the
SD method in different ways. Our work focuses on the gra-
dients of SD loss rather than specific improvements. We fur-
ther discuss the gradients of SD loss in Sec. . Without loss
of generality, we formulate SD loss as follows:

LSD =
1

n

n∑
i=1

τ2 ·DKL

(
P̃ (xi; θs)∥P̃ (xi; θs)

)
, (6)

where P̃ (xi; θs) represents the soft targets produced by the
student networks in SD, and different SD methods have dif-
ferent definitions of xi and θs. We refer the readers to the
Appendix for a more detailed explanation of these symbols.
Remarks. A baseline method for combing early pruning and
SD involves applying the two techniques sequentially (we
name it ‘Simple Combination.’). This straightforward ap-
proach produces a distilled, sparse network. The preliminary
study shown in Fig. 2 demonstrates that under the sparsity
ratio of 95%, the accuracy of the ‘Simple Combination’ is
only 62.67%, lower nearly 13% than the ‘Unpruned Base-
line’ and 8% than the ‘Pruning Only’. These anomalous re-
sults indicate that the pruned network can not effectively
learn via SD when directly applying SD to the early-pruned
network. To this end, we raised one question: “Why does
the early-pruned network degrade accuracy when training
with SD?” In the pruning step of the ‘Simple Combination’,
the gradient only reflects the difference between the network
output and the hard labels, without considering the soft tar-
gets generated in SD. We argue that it is difficult for the
early-pruned network to learn knowledge from itself during
SD when directly combining the early pruning and SD.
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Figure 3: EPSD prunes a random initialized network with weights θinit in step-1 (blue block) and then employs the SD al-
gorithm to train the pruned network in step-2 (orange block). In Step 1, EPSD identifies and retains distillable weights by
measuring the impact of SD loss on individual weights after i steps of training.

Identify Distillable Weights via SD
As introduced in the previous section, a simple combination
of early pruning and SD does not lead to performance gains
and even results in severe degradation at large sparsity. In
the SD scenario, when the teacher network is pruned, the
students are also affected, potentially leading to inadequate
distillation if a weak student is involved. A desirable miti-
gation solution is to make pruning results favorable to SD,
i.e., to preserve more distillable weights to ensure that the
pruned model can be better distilled. Intuitively, obtaining
distillable weights implies that the pruned network should
be consistent with the optimized objective of SD.

As a result, we propose to identify distillable weights with
SD loss before training. More specifically, during pruning,
we establish a knowledge transmission path to facilitate the
model to learn from its own outputs. We evaluate the impor-
tance of the weights by conducting a few SD iterations to
derive the necessary gradients. Formally, the salience score
for an individual weight can be derived from Eq. (3) and (6):

∆̃(wp, xi) =
∂LSD(θi, xi)

∂mp
, (7)

s̃wp
=

∣∣∣∆̃(wp, xi)
∣∣∣∑

q

∣∣∣∆̃(wq, xi)
∣∣∣ . (8)

We remove weights that have the least impact on SD loss
according to the desired sparsity ratio, and the weights
with higher salience scores s̃ are regarded as distillable
to be preserved. We thoroughly assess weight importance
by considering both hard label influences and network-
generated knowledge during pruning, resulting in more reli-
able saliency criteria driven mainly by the SD loss.

To analyze the trainability of the pruned model, we lever-
age loss surface (Li et al. 2018) to visualize the loss land-
scape and assess the ease of optimization. Additionally,
we utilize the mean Jacobian singular values (Mean-JSV)
as a quantitative metric to gauge compliance with the dy-
namic isometry conditions (Wang et al. 2021; Wang and
Fu 2023). The top of Fig. 4 shows the contour plots of
loss. We observed that the loss surface of EPSD is flatter
than the ‘Simple Combination’, and reaches local minima

Figure 4: Trainability analysis. Top: Loss contour plots of
early-pruned networks using (a) ‘Simple Combination’ and
(b) EPSD. Bottom: Comparison of Mean-JSV curves of
EPSD and the ‘Simple Combination’ approach.

faster (minimum loss value 0.6 v.s 1.6 within equal train-
ing steps), implying the pruned model by EPSD is easier to
optimize (Arora et al. 2018; Dinh et al. 2017). The bottom
of Fig. 4 shows Mean-JSV curves over the first 200 training
steps for pruned model obtained by EPSD and the ‘Simple
Combination’, respectively. In theory, a larger Mean-JSV
(closer to 1) indicates better trainability of the model. The
Mean-JSV of EPSD better meets dynamic isometry require-
ments than the ‘Simple Combination’, revealing the poten-
tial of keeping objective consistency between pruning and
SD in preserving trainable weights.
Remarks. To tackle the degradation issue raised by the
‘Simple Combination’, we aim to pinpoint distillable
weights preferred by SD for improved accuracy. Our visual
and quantitative analysis reveals that sub-networks identified
by maintaining objective consistency exhibit superior train-
ability compared to those identified solely through pruning.

Towards Efficient Model Compression
Fig. 3 shows the overall compression procedure of EPSD.
There are mainly two steps as mentioned in Sec. . In step-
1, given randomly initialized weights θinit, EPSD estimates
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Figure 5: Training efforts comparisons among various rep-
resentative compression approaches. Left: Total training
epochs of CPKD (Aghli and Ribeiro 2021), PKD (Park and
No 2022), ReKD (Chen et al. 2021), DMC (Gao et al. 2020).
‘PR’ and ‘KD (SD)’ denote pruning and knowledge distil-
lation (self-distillation), respectively. Right: Comparison of
total training wall time under identical conditions.

the effect of pruning on the SD loss (Eq. 6) over i steps of
gradient descent. By doing so, EPSD preserves more distill-
able weights, which become crucial since they offer superior
trainability and are more easily optimized by the SD loss as
discussed in Sec. . Once the pruning mask m is generated by
the gradients ∆̃, we apply it to the initial weights θinit to get
a pruned network. In Step 2, we train the pruned network by
SD until it reaches convergence.

We emphasize that EPSD is efficient, which is attributed
to: 1) the absence of pre-training for pruning, 2) the elimina-
tion of teacher training, and 3) the pruned network’s distill-
able weights, which contribute to improved trainability and
faster convergence during SD. In Fig. 5, we demonstrate the
training efforts of EPSD and compare them against other
representative compression methods. Among them, EPSD
combines early pruning and SD (PR+SD), DMC uses ad-
vanced pruning (PR), ReKD is a KD method (KD), and the
other two are combinations of pruning and KD (PR+KD).
EPSD achieves efficient training with fewer epochs than
other methods. For instance, the training time of PKD is
about eight times that of EPSD (11.3 vs. 1.4 hours).

Experiments
We evaluate EPSD on various benchmarks, including
CIFAR-10/CIFAR-100 (Krizhevsky, Hinton et al. 2009),
Tiny-ImageNet, and full ImageNet (Deng et al. 2009) us-
ing diverse networks and comparing with the ‘Simple Com-
bination’ approach, advanced pruning and SD methods. We
also assess EPSD’s adaptability and scalability in two down-
stream tasks. More details can be found in the Appendix.

EPSD equipped with Various SD Methods
We incorporate three distinct SD algorithms (CS-KD (Yun
et al. 2020), PS-KD (Kim et al. 2021), and DLB (Shen et al.
2022)) into EPSD to ensure a comprehensive evaluation.
Our experiments are conducted on CIFAR-10/100 and Tiny-
ImageNet datasets across five sparsity ratios (36%, 59%,
79%, 90%, 95%). To ensure fairness in comparison, we em-
ploy identical hyper-parameters for training each dataset.
For each variant of EPSD utilizing a specific SD method, we
conduct a comprehensive comparison with 1) the unpruned

Backbone VGG-19 ResNet-50

Sparsity 90% 95% 90% 95%
Accuracy top1 top5 top1 top5 top1 top5 top1 top5

Unpruned 73.1 91.3 73.1 91.3 75.6 92.8 75.6 92.8

SNIP19′ 68.5 88.8 63.8 86.0 61.5 83.9 44.3 69.6
GraSP20′ 69.5 89.2 67.0 87.4 65.4 86.7 46.2 66.0

FORCE21′ 70.2 89.5 65.8 86.8 64.9 86.5 59.0 82.3
DOP22′ - - - - 64.1 - 48.1 -

ProsPr22′ 70.7 89.9 66.1 87.2 65.9 86.9 59.6 82.8

Sim.Cmb. 17.3 25.8 15.4 23.0 9.9 16.4 8.3 15.3
EPSD 71.2 90.1 67.1 87.6 66.3 87.3 60.1 83.0

Table 1: Comparing test accuracy of various advanced early
pruning methods at 90% and 95% sparsity on full ImageNet.
‘Sim.Cmb.’ refers to the ‘Simple Combination’.

network without any pruning or SD (Unpruned Baselines’),
2) network training using the respective SD method (’SD
Only’), and 3) the simple combination of pruning and the
specific SD method (‘Simple Combination’). Figure 6 illus-
trates the specific comparison results.

Based on the results, we have the following observations:
• EPSD consistently outperformed the ‘Simple Combina-

tion’ overall settings. Moreover, under high sparsity con-
ditions (e.g., 95%), EPSD remained competitive while
the ‘Simple Combination’ heavily declined.

• On the more challenging Tiny-ImageNet, the ‘Simple
Combination’ degraded more severely than EPSD for all
three SD methods. For instance, with DLB and VGG-19
on Tiny-ImageNet at sparsity 90%, the accuracy of the
‘Simple Combination’ is 20.80% lower than ‘Unpruned
Baseline’ (29.08% vs. 49.88%), while EPSD achieved
53.91% accuracy, increasing 1.80% and 3.93% compared
to ‘SD Only’ and ‘Unpruned Baseline’, respectively.

• EPSD outperformed ‘Unpruned Baseline’ and ‘SD Only’
over all three SD methods in most settings, indicating that
early pruning with SD can boost the performance of SD.
EPSD maintains an advantage over the ‘Simple Combi-
nation’, affirming its efficacy in preserving more distill-
able weights and achieving promising performance.

Comparison of Pruning Methods
To illustrate the effectiveness of EPSD, we compared EPSD
with advanced pruning methods on CIFAR-10/100 (See Ap-
pendix) and ImageNet. Further, we extended EPSD with
structured pruning to show the extensibility of our method.
CIFAR-10/100. We perform extensive comparisons with re-
cent early pruning methods on CIFAR-10 and CIFAR-100,
and we applied EPSD to two popular lightweight networks
(MobileNet-v2 (Sandler et al. 2018) and MobileViT (Mehta
and Rastegari 2022)), which is not a common practice in pre-
vious early pruning works. We also investigated the iterative
version of EPSD. Please refer to the Appendix.
ImageNet. We evaluated EPSD on the challenging full Ima-
geNet dataset. Table 1 compared EPSD with advanced prun-
ing methods in terms of top-1 and top-5 accuracy under
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Figure 6: Test accuracy among ‘Unpruned Baseline’, ‘SD Only’, ‘Simple Combination’ and EPSD with three equipped SD
methods (CS-KD, PS-KD, DLB) on CIFAR-10/100 and Tiny-ImageNet under various sparsity. The three rows illustrate the
three datasets and the three columns display the three equipped SD methods.

90% and 95% sparsity ratio with VGG-19 and ResNet-50.
EPSD surpasses other early pruning methods and notably
addresses the degradation problem of ‘Simple Combination’
on challenging datasets. For instance, EPSD leads GraSP by
0.9% and improves by 0.4% over ProsPr at sparsity 90%
with ResNet-50. This highlights EPSD’s effective synergy
of early pruning and SD, leading to enhanced performance.
Structured Pruning. To illustrate the extensibility of
EPSD, We evaluate structured pruning, where entire chan-
nels are eliminated rather than individual weights. We com-
pare EPSD against 3SP (van Amersfoort et al. 2020),
ProsPr (Alizadeh et al. 2022), and random structure pruning
reported in ProsPr. The results are summarized in Table 2,
and our EPSD achieves the best accuracy performance com-
pared with other structured pruning methods.

Comparison of SD Methods
Since EPSD is to explore the effective combination of early
pruning and SD, we compare EPSD with SD methods to
show the effectiveness. Specifically, we compare EPSD with
LSR (Szegedy et al. 2016), TFKD (Yuan et al. 2020),
CSKD (Yun et al. 2020), PSKD (Kim et al. 2021), and
DLB (Shen et al. 2022) using various models (ResNet-
32/110 and VGG-16/19) on CIFAR-10/100. When com-
pared to SD methods, EPSD prunes networks at 80% spar-
sity. Table 3 shows the comparison results. Surprisingly,
though EPSD removes most of the weights, it still achieved
comparable or better performance than other advanced SD
methods. Please be aware that directly comparing early-
pruned models with unpruned self-distilled models is un-
common in prior research. This is because models ob-
tained through early pruning are often considered less train-
able (Lee et al. 2020; Frankle et al. 2021; Wang et al. 2022).
However, we demonstrate that combining early pruning with

self-distillation is a viable and competitive approach.

Sparsity Method CIFAR-10 CIFAR-100
- Unpruned 93.88(%) 72.84 (%)
80% Random 92.00 67.50

3SP 93.40 69.90
ProsPr 93.61 72.29
EPSD 93.82 73.16

90% Random 90.40 63.80
3SP 93.10 68.30
ProsPr 93.64 71.12
EPSD 93.72 71.80

Table 2: Test accuracy among various structured pruning
methods using VGG-19 on CIFAR-10 and CIFAR-100 un-
der sparsity ratios 80% and 90%.

Impact of SD-based Pre-training
In previous sections, we showed that a simple combination
of early pruning and SD can lead to performance degrada-
tion. To verify the key idea of EPSD that identifying more
distillable weights enhances the accuracy performance, we
design another way for combination: 1) start by training the
network from scratch with SD, then 2) prune it, and 3) fine-
tune the pruned model with SD to regain performance. We
name this method ‘Simple Combination-2’ (SC-2). Com-
pared to ‘Simple Combination’ (SC-1), SC-2 requires more
pre-training effort. To explore the potential impact of SD-
based pre-training on the pruned model, we tested SC-2’s
effect on ImageNet using ResNet-50. Experiments shown
in Table 4 indicated that SC-2 achieved comparable accu-
racy to EPSD (66.4% vs. 66.2%). We argue this happened
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Net. U.P. LSR TFKD CSKD PSKD DLB EPSD

R32 93.46 93.27 93.68 93.12 94.04 94.15 94.68
R110 94.79 94.40 95.08 93.88 94.91 95.15 95.32
V16 93.97 94.09 94.08 93.78 94.10 94.62 94.51
V19 93.88 93.95 94.09 93.62 93.93 94.42 94.45

R32 71.74 71.79 73.91 70.79 72.51 74.00 74.30
R110 76.36 76.68 72.98 76.59 77.15 78.18 78.45
V16 73.63 74.19 74.06 74.19 74.05 76.12 76.31
V19 74.61 73.25 72.54 73.35 73.64 75.47 76.11

Table 3: Comparing test accuracy against advanced SD
methods and the unpruned baseline (U.P.). The top section
shows CIFAR-10 and the lower section displays CIFAR-
100. We use ‘R’ for ResNet and ‘V’ for VGG. EPSD is 80%
sparsity, while the other approaches remain unpruned.

Method P.T. w/ SD PR. w/ (Re-)Train w/ SD
#Epochs CE SD #Epochs Top1 Acc.(%)

SC-1 0 ✓ 100 9.9
EPSD 0 ✓ 100 66.2

SC-2 100 ✓ 100 66.4
P.T.+EPSD 100 ✓ 100 66.6

Table 4: Investigation of the impact of SD-based Pre-
training. ‘P.T.’ means pre-training and ‘PR.’ is the pruning
process with a 90% sparsity ratio.

because SD-based pre-training in SC-2 produced distillable
weights. After pruning with a standard cross-entropy (CE)
loss, the remaining weights still kept their distillable nature,
allowing the pruned model to regain from fine-tuning with
SD. In addition, building upon SC-2, we used EPSD to com-
press the SD-pre-trained model (instead of starting from ran-
dom initialization), resulting in further accuracy improve-
ment (66.6%), which is attributed to retaining more distill-
able weights through pruning with the SD loss.

Downstream Tasks

We further verify the robustness of EPSD on two down-
stream tasks presented below. See the Appendix for details.
Weakly Supervised Object Localization. As shown in Ta-
ble 5, we reported the error rates with a pruning ratio of 50%.
Compared to ProsPr, EPSD achieved lower errors (Cls. Err
of 24.40% vs. 25.39%, Top-1 Loc. Err. as low as 41.23%).
Compared to the unpruned baseline, EPSD only saw a slight
0.27% drop in localization accuracy, showing improved gen-
eralization in weakly supervised scenarios.
Semantic Segmentation. As shown in Table 6, across two
different metrics, EPSD outperforms ProsPr and the ‘Simple
Combination’. Specifically, EPSD achieves a 1.63% higher
than ProsPr in mean IoU and 2.63% higher in pixel accu-
racy. Compared to the ‘Simple Combination’, the improve-
ments are even more significant, with increases of 5.26%
and 5.76% in two metrics, respectively.

Method s.p. Cls.Err. (↓) Loc.Err. (↓)
Top-1 Gt-Known

Unpruned - 23.90% 40.96% 23.97%

ProsPr 50% 25.39% 48.65% 32.69%
Sim.Cmb. 50% 27.53% 50.57% 33.33%

EPSD 50% 24.40% 41.23% 25.08%

Table 5: Results of weakly supervised object localiza-
tion task on CUB-200-2011. The top-1 classification error
(Cls.Err.) and localization error rates (Loc.Err.) are reported.

Method s.p. Mean IoU (↑) pixAcc (↑)

Unpruned - 46.46% 85.70%

ProsPr 40% 42.87% 80.34%
Sim.Cmb. 40% 39.24% 77.21%

EPSD 40% 44.50% 82.97%

Table 6: Results of semantic segmentation task on Pascal
VOC 2012. The mean intersection-over-union (Mean IOU)
and pixel accuracy (pixAcc) are reported.

Discussion and Limitation
This paper explores an efficient model compression frame-
work. By effectively combining early pruning with SD,
EPSD improved performance for pruned models without the
burden of extensive training. Importantly, we address the
degradation issue arising in a simple combination of early
pruning and SD, shedding light on a promising research di-
rection for combining these two techniques, which might of-
fer enlightening insights to the community. However, this
paper mainly addresses fundamental vision models in com-
puter vision. Our focus has yet to encompass the presently
prevalent large-scale language or multi-model networks. It
remains a potential direction for our future research.

Conclusion
In this study, we introduce the Early Pruning with Self-
Distillation (EPSD) framework, which identifies and retains
distillable weights during pruning for a specific SD task.
EPSD seamlessly integrates early pruning and SD in just
two steps, ensuring the trainability of pruned networks for
effective model compression. We unveil that a straightfor-
ward combination of pruning and SD can result in perfor-
mance decline, particularly at high sparsity ratios. Exten-
sive visual and quantitative analysis show that EPSD en-
hances the trainability of pruned networks, and outperforms
advanced pruning and SD methods. We believe EPSD will
inspire more follow-ups for efficient compression of other
multi-modal networks, which will accelerate the deployment
of the latest deep models to edge devices.
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