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Abstract

The shuffle model of local differential privacy is an advanced
method of privacy amplification designed to enhance pri-
vacy protection with high utility. It achieves this by ran-
domly shuffling sensitive data, making linking individual data
points to specific individuals more challenging. However,
most existing studies have focused on the shuffle model based
on (ϵ0, 0)-Locally Differentially Private (LDP) randomizers,
with limited consideration for complex scenarios such as
(ϵ0, δ0)-LDP or personalized LDP (PLDP). This hinders a
comprehensive understanding of the shuffle model’s poten-
tial and limits its application in various settings. To bridge
this research gap, we propose a generalized shuffle frame-
work that can be applied to any (ϵi, δi)-PLDP setting with
personalized privacy parameters. This generalization allows
for a broader exploration of the privacy-utility trade-off and
facilitates the design of privacy-preserving analyses in diverse
contexts. We prove that shuffled (ϵi, δi)-PLDP process ap-
proximately preserves µ-Gaussian Differential Privacy with

µ =
√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

. This approach allows us

to avoid the limitations and potential inaccuracies associated
with inequality estimations. To strengthen the privacy guar-
antee, we improve the lower bound by utilizing hypothesis
testing instead of relying on rough estimations like the Cher-
noff bound or Hoeffding’s inequality. Furthermore, extensive
comparative evaluations clearly show that our approach out-
performs existing methods in achieving strong central privacy
guarantees while preserving the utility of the global model.
We have also carefully designed corresponding algorithms for
average function, frequency estimation, and stochastic gradi-
ent descent.

Introduction
The shuffle model (Bittau et al. 2017) is a state-of-the-art
technique to balance privacy and utility for differentially
private data analysis. In traditional differential privacy, a
trusted server (or aggregator) is often assumed to collect all
users’ data before privacy-preserving data analysis (Dwork
and Roth 2014). However, such approaches may not be fea-
sible or practical in scenarios where a trusted curator does
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not exist. Given this, Local Differential Privacy (LDP) (Ka-
siviswanathan et al. 2011) has been proposed to achieve dif-
ferential privacy by allowing the users to add noises indi-
vidually; however, LDP suffers from low utility due to the
accumulated noise. To address this, the shuffle model of dif-
ferential privacy (shuffle DP) (Bittau et al. 2017; Balle et al.
2019; Erlingsson et al. 2019) adds a shuffler between the
users and the server to randomly shuffle the noisy data be-
fore sending the server. The shuffle DP has an intriguing the-
oretical privacy amplification effect, which means a small
amount of local noise could result in a strong privacy guar-
antee against the untrusted server. Extensive studies (Balle
et al. 2019; Erlingsson et al. 2019; Girgis et al. 2021b; Feld-
man, McMillan, and Talwar 2022; Liu et al. 2021; Girgis
et al. 2021a) have been devoted to proving a better (tighter)
privacy amplification in the shuffle DP.

However, most existing studies have focused on the shuf-
fle model based on (ϵ0, δ0)-LDP randomizer with uniform
and limited settings of local privacy parameters ϵ0 and δ0.
For example, Erlingsson et al. 2019 assumes 0 < ϵ0 < 1/2
and δ0 = 0. Although a recent work Liu et al. 2023 provides
a privacy bound for local personalized privacy parameter ϵi
for each user i (and a fixed δ0), the bound is relatively rough
and has a large room to be improved. To address this prob-
lem, we make the following contributions.

Firstly, we propose a Generalized Shuffle framework for
Privacy Amplification (GSPA) to allow arbitrary local pri-
vacy parameters and provide new privacy amplification anal-
ysis. Our analysis technique benefits from the adoption of
Functional Differential Privacy (Dong, Roth, and Su 2022)
and carefully analyzing the distance between two multino-
mial distributions (see Theorem 1 and 2). For both uni-
form and personalized privacy parameter settings, we pro-
vide lower privacy bounds that exceed that of existing results
(see Figure 2).

Secondly, we apply GSPA with different personalized pri-
vacy parameter settings to diverse privacy-preserving analy-
sis tasks, including private mean, private frequency estima-
tion, and DP-SGD, to demonstrate the effectiveness of our
approach. For mean and frequency estimation with GSPA
(see Figure 3), the more conservative users there are, the
less utility is observed, showing a negative linear relation-
ship. Simultaneously, as the privacy parameters of conser-
vative users increase, utility demonstrates a positive linear
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Figure 1: The Generalized Shuffle framework for Privacy
Amplification (GSPA). Privacy parameters (ϵi, δi) and each
client’s output are shuffled separately. The random permuta-
tion of the shuffler is unknown to anyone except the shuffler
itself. The type of query, whether non-adaptive or adaptive,
depends on whether the next query depends on the previous
output.

relationship. For DP-SGD with GSPA (see Figure 4), there
exists an interesting phenomenon that despite the constant
scenario (ϵ0 = 0.5) offers a stronger privacy protection, its
test accuracy (94.8%) is higher than that (93.5%) of scenar-
ios U(0.01, 2), which have varying local privacy parameters.

Preliminaries
This section presents the definitions and tools necessary for
understanding the shuffle model. These serve as fundamen-
tal tools for proposing our methods and form the basis of our
approach.

Definition 1 (Differential Privacy) A randomized algo-
rithm R satisfies (ϵ, δ)-differential privacy, denoted as
(ϵ, δ)-DP, if for all S ⊆ Range(R) and for all neighboring
databases D0, D1 (D0 can be obtained from D1 by replac-
ing exactly one record):

P(R(D0) ∈ S) ≤ eϵP(R(D1) ∈ S) + δ. (1)

ϵ is known as the privacy budget, while δ is referred to as the
indistinguishability parameter, which describes the probabil-
ity of privacy leakage exceeding ϵ. Both ϵ and δ should be
as small as possible, indicating stronger privacy protection.

Definition 2 (Local Differential Privacy) A randomized
algorithm R : D → S satisfies (ϵ, δ)-local differential pri-
vacy, denoted as (ϵ, δ)-LDP, if for all pairs x, x′ ∈ D,R(x)
andR(x′) satisfies

P(R(x) ∈ S) ≤ eϵP(R(x′) ∈ S) + δ. (2)

In Local Differential Privacy (LDP), each data contributor
applies a local randomization mechanism to perturb their
own data before sharing it with a central aggregator.

Privacy Tools
Differential privacy can be regarded as a hypothesis test-
ing problem for a given distribution (Kairouz, Oh, and

Actual True Actual False
Accept Hypothesis Correct Type II Error (β)
Reject Hypothesis Type I Error (α) Correct

Table 1: Table of Error Types

Viswanath 2015). In brief, we consider the hypothesis test-
ing issue with two hypotheses.

H0 : The underlying dataset is D0,

H1 : The underlying dataset is D1.

To provide an intuitive explanation, we designate the name
Bob to denote the exclusive individual present in D0 but ab-
sent in D1. Consequently, rejecting the null hypothesis im-
plies the recognition of Bob’s nonexistence, whereas accept-
ing the null hypothesis suggests observing Bob’s existence
in the dataset.

Inspired by this, an effective tool called f -DP (Dong,
Roth, and Su 2022) has been introduced, which utilizes hy-
pothesis testing to handle differential privacy. For two neigh-
bouring databases D0 and D1, let U and V denote the prob-
ability distributions of R(D0) and R(D1), respectively. We
consider a rejection rule 0 ≤ ϕ ≤ 1, with type I and type II
error rates defined as

αϕ = EU [ϕ], βϕ = 1− EV [ϕ]. (3)

It is well-known that

αϕ + βϕ ≥ 1− TV (U, V ), (4)

where TV (U, V ) is the supremum of |U(A) − V (A)| over
all measurable sets A. To characterize the fine-grained trade-
off between the two errors, Table 1 helps to establish a clear
understanding of the relationship between the two errors.

For any two probability distributions U and V on the same
space Ω, the trade-off function T (U, V ) : [0, 1] → [0, 1] is
defined as

T (U, V )(α) = inf{βϕ : αϕ ≤ α}, (5)

where the infimum is taken over all measurable rejection
rules ϕ, and αϕ = EU (ϕ) and βϕ = 1− EV (ϕ).

Definition 3 (Functional Differential Privacy, f -DP) Let
f be a trade-off function, a mechanismR is said to be f -DP
if

T (R(D0),R(D1)) ≥ f, (6)

for all neighboring data sets D0 and D1.

To enhance readability, we have included the introduction
and relevant properties of f -DP in the section of Appendix.
It is worth noting that traditional DP belongs to a special
case of f -DP, therefore f -DP has a wider scope of applica-
bility.

In addition, Laplace mechanism and Gaussian mecha-
nism are two common approaches used in differential pri-
vacy (Dwork and Roth 2014). The choice between the
Laplace mechanism and the Gaussian mechanism depends
on the data type, privacy requirements, and query tasks. The



Laplace mechanism provides stronger privacy but may in-
troduce larger errors, while the Gaussian mechanism is more
suitable for accurate results. Thus, it’s important to strike a
balance between privacy and accuracy based on specific re-
quirements.

Definition 4 (Laplace Mechanism) Given a query func-
tion Q : D → Rd, privacy parameter ϵ and ℓ1 sensitivity
∆(Q) = max ∥Q(D) − Q(D′)∥1, then for any two neigh-
bouring datasets D,D′, the Laplace mechanism

M(D,Q) = Q(D) + Lap
(
∆(Q)

ϵ

)
(7)

preserves ϵ-DP, where Lap(λ) denotes the centralized
Laplace noise with scale parameter λ.

In the absence of ambiguity, we express both queries and
answers as Q(·) and A(·) respectively.

Definition 5 (Gaussian Mechanism) Given a query func-
tion Q : D → Rd, privacy parameter ϵ and ℓ2 sensitivity
∆2(Q) = max ∥Q(D)−Q(D′)∥2, then for any two neigh-
bouring datasets D,D′, the Gaussian mechanism

M(D,Q) = Q(D) +N

(
0,

2 log(1.25/δ)∆2
2(Q)

ϵ2

)
(8)

preserves (ϵ, δ)-DP, where N(µ, σ2) denotes the Gaussian
noise with mean µ and variance σ2.

Privacy Analysis of GSPA Framework
Our Generalized Shuffle framework for Privacy
Amplification (GSPA) consists of three main compo-
nents: local randomizers, a trustworthy shuffler, and an
aggregator, which are the same as existing shuffle DP
frameworks; however, GSPA allows local randomizers
with arbitrary privacy parameters. (i) For n users, the local
randomizer Mi adds noise to the original data xi on the i-th
user’s devices, thus providing (ϵℓi , δ

ℓ
i )-PLDP for user i. (ii)

The shuffler randomly permutes the order of data elements,
ensuring that the resulting arrangement is unknown to any
party other than the shuffler itself. (iii) The aggregator
collects and integrates shuffled data for simple queries,
while for complex tasks like machine learning, it trains
models based on shuffled data with multiple iterations.
Without causing confusion, the notation (ϵ0, δ0)-LDP is
used to represent the uniform scenario, while (ϵi, δi)-PLDP
denotes the personalized scenario.

Privacy Amplification Effect In this section, we address
the issue of privacy protection in the context of a general
shuffled adaptive process for personalized local randomiz-
ers.

Definition 6 For a domain D, let R(i) : S(1) × S(2) ×
· · · × S(i−1) × D → S(i) for i ∈ [n], where S(i) is the
range space of R(i) be a sequence of algorithms such that
R(i)(z1:i−1, ·) is an (ϵi, δi)-PLDP randomizer for all val-
ues of auxiliary inputs z1:i−1 ∈ S(1) × S(2) × · · · S(i−1).
Let AR : D → S(1) × S(2) × · · · × S(n) be the algorithm
that given a dataset x1:n ∈ Dn, then sequentially computes

zi = R(i)(z1:i−1, xi) for i ∈ [n] and outputs z1:n. We say
AR(D) is a personalized LDP (PLDP) adaptive process.
Similarly, if we first sample a permutation π uniformly at
random, then sequentially computes zi = R(i)(z1:i−1, xπi

)
for i ∈ [n] and outputs z1:n, we say this process is shuffled
PLDP adaptive and denote it by AR,S(D).
Lemma 1 Given an (ϵi, δi)-PLDP adaptive process, then in
the i-th step, local randomizerR(i):D → S and for any n+
1 inputs x0

1, x
1
1, x2, · · · , xn ∈ D, there exists distributions

Q0
1,Q1

1,Q1,Q2, · · · ,Qn such that

R(i)(x0
1) =

(1− δi)e
ϵi

1 + eϵi
Q0

1 +
1− δi
1 + eϵi

Q1
1 + δiQ1, (9)

R(i)(x1
1) =

(1− δi)

1 + eϵi
Q0

1 +
(1− δi)e

ϵi

1 + eϵi
Q1

1 + δiQ1. (10)

∀xi ∈ {x2, · · · , xn},

R(xi) =
1− δi
1 + eϵi

Q0
1 +

1− δi
1 + eϵi

Q1
1 +

(
1− 2(1− δi)

1 + eϵi

)
Qi.

(11)

Proof: For inputs X0 = {x0
1, x2, . . . , xn} and X1 =

{x1
1, x2, . . . , xn},R(i) satisfies the constraints of Lemma 4,

so there exists an (ϵi, δi)-PLDP local randomizerR′ : D →
Z for the i-th output and post-processing function proc(·)
such that proc(R′(i)(x)) = R(i)(x), and

P (R′(i)(x0
1) = z) =


0 if z = A,
(1−δi)e

ϵi

1+eϵi if z = 0,
1−δi
1+eϵi if z = 1,
δi if z = B.

P (R′(i)(x1
1) = z) =


δi if z = A,
1−δi
1+eϵi if z = 0,
(1−δi)e

ϵi

1+eϵi if z = 1,
0 if z = B.

Let L = {z ∈ Z|P(R′(x0
1 = z)) = (1−δi)e

ϵi

1+eϵi and
P(R′(x1

1 = z)) = 1−δi
1+eϵi } , U = {z ∈ Z|P(R′(x1

1 =

z)) = 1−δi
1+eϵi and P(R′(x1

1 = z)) = (1−δi)e
ϵi

1+eϵi }. Let M =

Z/{L
⋃
U} and p =

∑
z∈L pz =

∑
z∈U pz. Since con-

ditioned on the output lying in L, the distribution ofR′(x0
1)

andR′(x1
1) are the same. LetW0

1 = R′(x0
1)|L = R′(x1

1)|L,
W1

1 = R′(x0
1)|U = R′(x1

1)|U and W1 = R′(x0
1)|M =

R′(x1
1)|M. Then

R′(x0
1) =

(1− δi)e
ϵi

1 + eϵi
W0

1 +
1− δi
1 + eϵi

W1
1 + δiW1,

R′(x1
1) =

1− δi
1 + eϵi

W0
1 +

(1− δi)e
ϵi

1 + eϵi
W1

1 + δiW1.

Further, for all xi ∈ {x2, · · · , xn},

R′(xi) ≥
1− δi
1 + eϵi

W0
1+

1− δi
1 + eϵi

W1
1+

(
1− 2(1− δi)

1 + eϵi

)
Wi.

Letting Q0
1 = proc(W0

1 ), Q1
1 = proc(W1

1 ), Q1 =
proc(W1) and for all i ∈ {2, · · · , n}, Qi = proc(Wi). The
proof is completed. □



Theorem 1 For a domain D, if AR,S(D) is a shuffled
PLDP adaptive process, then for arbitrary two neighbor-
ing datasets D0, D1 ∈ Dn distinct at the n-th data point,
there exists a post-processing function proc(·): (0, 1, 2) →
S(1) × S(2) × · · · × S(n), such that

T (AR,S(D0),AR,S(D1)) = T (proc(ρ0), proc(ρ1)).

Here,
ρ0 = (∆0,∆1,∆2) + VVV , (12)

ρ1 = (∆1,∆0,∆2) + VVV , (13)

∆2 ∼ Bern(δn),∆0 ∼ Bin(1 − ∆2,
eϵn

1+eϵn ), ∆1 =

1 − ∆0 − ∆2, where Bern(p) denotes a Bernoulli ran-
dom variable with bias p, Bin(n, p) denotes a Binomial
distribution with n trials and success probability p. In addi-
tion, VVV =

∑n−1
i=1 MultiBern

(
1−δi
1+eϵi ,

1−δi
1+eϵi , 1−

2(1−δi)
1+eϵi

)
,

where MultiBern(θ1, · · · , θd) represents a d-dimensional
Bernoulli distribution with

∑d
j=1 θj = 1.

In order to enhance readability, proof details are placed in
the section of Appendix. Based on Theorem 1, we can sim-
plify the original problem by analyzing the shuffling process
in a simple non-adaptive protocol.

The primary objective in the following is to demonstrate
the distance between two distributions. The Berry Esseen
lemma (Berry 1941; Esseen 1942) is highly valuable and
essential for proving asymptotic properties.

Lemma 2 (Berry Esseen) Let P = (ξ0, ξ1, ξ2) ∼∑m
i=1 MultiBern

(
pi

2 ,
pi

2 , 1− pi
)

and Q ∼ N(µ,Σ),
where µ = E(P ) and Σ = V ar(P ). Then for the first
two components (X0, X1), there exists C > 0, such that
∥P̃ − Q̃∥TV ≤ C√

m
, where P̃ and Q̃ represent the distribu-

tion of (ξ0, ξ1) and corresponding normal distribution, re-
spectively.

In fact, for given n, we can obtain sophisticated bound of
∥P̃ − Q̃∥TV by numerical methods. Without loss of gen-
erality, we assume ϵi = ϵ0, δi = δ0 = O(1/n), then
p0 = 1−δ0

1+eϵ0 . For some fixed output (ξ0, ξ1) = (k0, k1), we
approximate by integrating the normal probability density
function around that point. Let G(·) be the cumulative dis-
tribution function of Q̃ and h(k0, k1) = G(k0 + 0.5, k1 +
0.5)−G(k0 +0.5, k1)−G(k0, k1 +0.5)+G(k0, k1), then

∥P̃ − Q̃∥TV = sup
(k0,k1)

|P(ξ0 = k0, ξ1 = k1)− h(k0, k1)|.

(14)

Lemma 3 Let pi = 2(1−δi)
1+eϵi , if µ̄ =

∑n−1
i=1 (

pi

2 ,
pi

2 )
′

and µ0 = (1, 0)′ + µ̄, µ1 = (0, 1)′ + µ̄, then
T (N(µ0,ΣΣΣ), N(µ1,ΣΣΣ)) = Φ(Φ−1(1− α)− 2√∑n−1

i=1 pi

),

ΣΣΣ =

n−1∑
i=1

(
pi

2 (1−
pi

2 ) −p2
i

4

−p2
i

4
pi

2 (1−
pi

2 )

)
.

Theorem 2 (Enhanced Central Privacy Upper bound)
Assume ρ0 and ρ1 are defined in equations (12) and (13),
then there exists C > 0, such that

T (ρ0, ρ1) ≥
(
Gµ

(
α+

C√
n− 1

)
− C√

n− 1

)
, (15)

where Gµ(α) = Φ(Φ−1(1 − α) − µ), µ =√
2∑n

i=1
1−δi
1+eϵi

−maxi
1−δi
1+eϵi

. In an unambiguous manner,

we refer to it as approximately following the µ-GDP.

Proof: First, let’s analyze the scenarios where the n-
th data point differs. According to the definition of
(∆0,∆1,∆2),

(∆0,∆1,∆2) =


(0, 0, 1) w.p. δn;

(1, 0, 0) w.p. (1− δn)
eϵn

1+eϵn ;

(0, 1, 0) w.p. (1− δn)
1

1+eϵn .

(16)
When ∆2 = 1, ρ0 and ρ1 are indistinguishable, which
indicates that T (ρ0, ρ1)|∆2=1 = 1 − α. Let ρ′0 =

(1, 0, 0)′ +
∑n−1

i=1 MultiBern (pi/2, pi/2, 1− pi) and
ρ′1 = (0, 1, 0)′ +

∑n−1
i=1 MultiBern (pi/2, pi/2, 1− pi)

with pi =
1−δi
1+eϵi , then

T (ρ0, ρ1) = δn(1− α) + (1− δn)Tsymm(ρ′0, ρ
′
1), (17)

where Tsymm(ρ′0, ρ
′
1) = max{T (ρ′0, ρ′1), T (ρ′1, ρ′0)}. As-

sume P ∼ N(µ0,Σ), Q ∼ N(µ1,Σ), where µ0, µ1,Σ are

same as that in Lemma 3. Let µ =
√

2∑n−1
i=1

1−δi
1+eϵi

, according

to equation (4),

T (ρ′0, P ) ≥ 1− α− ∥ρ′0 − P∥TV ,

T (ρ′1, Q) ≥ 1− α− ∥ρ′1 −Q∥TV ,

then based on Fact 4,

T (ρ′0, Q) ≥ Φ(Φ−1(1− α− ∥ρ′0 − P∥TV )− µ) = F (α).

Reusing Fact 4, we can obtain that

T (ρ′0, ρ
′
1) ≥ 1− (1− F (α))− ∥ρ′1 −Q∥TV

= F (α)− ∥ρ′1 −Q∥TV

(18)

Lemma 2 shows that there exists C > 0, such that ∥ρ′1 −
Q∥TV ≤ C√

n−1
and ∥ρ′0 − P∥TV ≤ C√

n−1
. Hence

T (ρ′0, ρ
′
1) ≥ Gµ

(
α+

C√
n− 1

)
− C√

n− 1
.

Then
T (ρ0, ρ1) ≥ δn(1− α)

+ (1− δn)

(
Gµ

(
α+

C√
n− 1

)
− C√

n− 1

)
.

Since for an arbitrary trade-off function f , we have f ≤
1− α, it follows that:

T (ρ0, ρ1) ≥
(
Gµ

(
α+

C√
n− 1

)
− C√

n− 1

)
.



Name Distribution of ϵℓ = (ϵℓ1, · · · , ϵℓn)
Unif 1 U(0.01, 1)
Unif 2 U(0.01, 2)
Constant 0.5
Mixed Constant 50% 0.5 + 50% 0.01

Table 2: Distributions of LDP budgets ϵℓ. U(a, b) represents
uniform distribution ranging from a to b.

Finally, taking into account the case where the i-th (1 ≤ i ≤
n) data differs in neighboring datasets, the privacy bound is
determined based on the worst-case scenario, that is, µ =√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

. □

Comparison with Existing Results We provide numeri-
cal evaluations for privacy amplification effect under fixed
LDP settings in Table 2. Given a local privacy budget set
ϵℓ ∈ [0.01, 2]. For the purpose of comparison, we examine
privacy amplification for a fixed ϵℓ while varying n from
103 to 104, with central δ for shuffling to be 10−4 for the
sake of simplicity. To avoid misunderstandings, we repeat
the first 103 parameters. Considering that convergence rate
in Lemma 2 is nearly O(1/n) and can be negligible in nu-
merical analysis, our focus lies in measuring Gµ.

To keep it concise, we use Fact 3 in Appendix to com-
pute the corresponding central ϵ and δ for Theorem 2. Base-
line bounds of privacy amplification effect include: [Liu23]
(Liu et al. 2023), [FMT22] (Feldman, McMillan, and Talwar
2022), [Erlingsson19] (Erlingsson et al. 2019). [Liu23] pro-
vides bounds for the personalized scenario, while [FMT22]
and [Erlingsson19] only consider the same ϵℓ.

The numerical results demonstrate the following results:
(i) Our bound is suitable for extreme privacy budgets while
[Liu23] required each ϵi should not be close to zero. How-
ever, it is natural to encounter user responses that contain
no information, resulting in ϵi = 0. (ii) As the sample size
n increases, the amplification effect also increases propor-
tionally to the square root of n. (iii) Our privacy bounds sig-
nificantly outperform in all current scenarios, even in cases
where the privacy parameters are the same.

Application and Experiments
All the experiments are implemented on a workstation with
an Intel Core i5-1155G7 processor on Windows 11 OS.

Application to Mean and Frequency Estimation
Mean Estimation The average function is a fundamen-
tal and commonly used mathematical operation with wide-
ranging applications. In this section, we apply GSPA to the
average function on the synthetic data. We randomly di-
vide the users into three groups: conservative, moderate,
and liberal. The fraction of three groups are determined by
fc, fm, fl. As is reported (Acquisti and Grossklags 2005),
the default values in this experiment are fc = 0.54, fm =
0.37, fl = 0.09. For convenience, the privacy preferences
for the users in conservative, moderate and liberal groups

12 4 6 8 10 20 40
n

0

0.1

0.2

0.3

0.4

0.5

0.6
GSPA-- Unif 1
Liu23-- Unif 1
GSPA-- Unif 2
Liu23-- Unif 2
GSPA-- Mixed Constant
Liu23 -- Mixed Constant
GSPA-- Constant
FMT22-- Constant
Erlingsson19-- Constant
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Figure 2: Privacy Bounds for Varied Budgets

are ϵC , ϵM and ϵl, respectively. In the LDP case, the privacy
preference of users in the liberal group is fixed at ϵL = 1,
while the default values of ϵC and ϵM are set to 0.1 and 0.5,
respectively.

Theorem 3 Algorithm 1 approximately preserves µ-GDP

for each user, where µ =
√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

.

Proof: According to the definition of Laplace mechanism,
data point i ∈ [n] satisfies (ϵ, 0)-LDP. Combined with The-
orem 2, we can obtain that Algorithm 1 approximately sat-

isfies µ-GDP with µ =
√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

. □

Next, we simulate the accuracy for different set of pri-
vacy protection. To facilitate comparison, we set fl = 0.09
as a fixed value and vary fc from 0.01 to 0.5 with fm =
1 − fl − fc. Additionally, we generate n = 10, 000 privacy
budgets for users based on the privacy preferences rule. We
assume that each sample is drawn from a normal distribution
N(50, σ2), and then the samples are clipped into the range
[20, 80]. We repeat this procedure for a total of 1, 000 times
to give a confidence interval. According to Fact 3, privacy
parameter µ under the shuffle model can be obtained for
varying ϵc. Figure 3a shows that an increase in the propor-
tion of conservative users leads to a decrease in estimation
accuracy. On the other hand, Figure 3b demonstrates that in-
creasing privacy budget is beneficial for improving accuracy.

Algorithm 1: Mean estimation with GSPA.

Input: Dataset X = (x1, . . . , xn) ∈ Rn, privacy budget
S = {ϵ1, · · · , ϵn} for each user.

Output: z ∈ N
1: for each i ∈ [n] do
2: yi ← xi + Lap(∆f/ϵi)
3: end for
4: Choose a random permutation π: [n]→ [n]
5: z = 1

n

∑n
i=1 yπ(i)

6: return z
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Figure 3: Impact of privacy parameter settings on MAE.

Frequency estimation In machine learning, frequency es-
timation is often used as a preprocessing step to understand
the distribution and importance of different features or cat-
egories within a dataset. By accurately estimating the fre-
quencies of various features or categories, it helps in feature
selection, dimensionality reduction, and building effective
models.

In order to obtain the dataset, a total of 10,000 records are
generated for counting. Each record is encoded as a binary
attribute. The proportion of records with a value of 1 is de-
termined by a density parameter c, which ranges from 0 to 1
(with a default value of c = 0.7).

Theorem 4 Algorithm 2 approximately preserves µ-GDP

for each user, where µ =
√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

.

The proof of Theorem 4 is the same as Theorem 3. The direct
calculation shows that z is an unbiased estimator of c, that
is, E(z) = c. Similar to the average function, we adopt the
same configuration for personalized privacy budgets.

Algorithm 2: Frequency estimation with GSPA

Input: Dataset X = (x1, . . . , xn) ∈ {0, 1}n, privacy bud-
get S = {ϵ1, · · · , ϵn} for each user.

Output: z ∈ N
1: for each i ∈ [n] do
2: if xi = 1 then
3: yi ← Ber( eϵi

1+eϵi )
4: else
5: yi ← Ber( 1

1+eϵi )
6: end if
7: end for
8: Choose a random permutation π: [n]→ [n]
9: A =

∑n
i=1 yπ(i)

10: B =
∑n

i=1
1

1+e
ϵπ(i)

11: z = A−B
n−2B

12: return z

Personalized Private Stochastic Gradient Descent

The private stochastic gradient descent is a common method
in deep learning (Abadi et al. 2016). However, personal-
ized private stochastic gradient descent combines personal-
ized differential privacy with stochastic gradient descent op-
timization for model training and parameter updates while
ensuring privacy protection. In the context of personalized
differential privacy, privacy of individual users must be pro-
tected, and direct use of raw data for parameter updates is
not feasible .

The key idea of personalized differential privacy is to in-
troduce personalized parameters into the differentially pri-
vate mechanism to flexibly adjust the level of privacy protec-
tion. For the gradient descent algorithm, personalized differ-
ential privacy can be achieved by introducing noise during
gradient computation.

Theorem 5 Algorithm 3 approximately satisfies
√
Tµ-GDP

with µ =
√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

.

Proof: For arbitrary j ∈ [m], client j satisfies (ϵj , δj)-
LDP before sending to the shuffler by the definition of Gaus-
sian mechanism. By using Theorem 2, it preserves µ-GDP

after shuffling with µ =
√

2∑n
i=1

1−δi
1+eϵi

−maxi
1−δi
1+eϵi

. In addi-

tion, combined with Fact 3, it holds
√
Tµ-GDP under T -fold

composition.
□

Dataset and implementation The MNIST dataset (Le-
Cun et al. 1998) for handwritten digit recognition consists of
60, 000 training images and 10, 000 test images. Each sam-
ple in the dataset represents a 28×28 vector generated from
handwritten images, where the independent variable corre-
sponds to the input vector, and the dependent variable rep-
resents the digit label ranging from 0 to 9. In our experi-
ments, we consider a scenario with m clients, where each
client has n/m samples. For simplicity, we train a simple
classifier using a feed-forward neural network with ReLU
activation units and a softmax output layer with 10 classes,
corresponding to the 10 possible digits. The model is trained
using cross-entropy loss and an initial PCA input layer with
60 components. At each step of the shuffled SGD, we choose
at one client at random without replacement. The parameters
of experimental setup is listed in Table 3. This experiment is
designed to demonstrate the use cases of the shuffle model
and therefore does not focus on comparing with previous re-
sults. For comparative results, please refer to Figure 2.

Parameter Selection As a result, our approach achieves
an accuracy of 96.78% on the test dataset after approxi-
mately 50 epochs. This result is consistent with the findings
of a vanilla neural network (LeCun et al. 1998) trained on
the same MNIST dataset. By employing this methodology,
we can effectively train a simple classifier that achieves high
accuracy in recognizing handwritten digits from the MNIST
dataset.



Parameters Value Explanation
C 2 Clipping bound
δℓ 10−5 Indistinguishability parameter
ϵℓ [0.01, 2] Privacy budget
η 0.05 Step size of the gradient
m 100 The number of clients
n 60, 000 Total number of training samples
T 50 The number of epochs

Table 3: Experiment Setting for the Shuffled Personalized-
SGD on the MNIST dataset.

0 10 20 30 40 50
Epoch

0.7

0.8

0.9

1

T
es

t a
cc

ur
ac

y

=10-5, n=60,000

Non-private
Unif 1
Unif 2
Unif 3
Constant
Mixed Constant

Figure 4: Comparison of Test Accuracy with Different Noise
Distributions

Utility of GSPA We evaluate the utility of GSPA with ϵℓ

drawing from Table 2 on MNIST dataset. We introduce Unif
3 as a distribution to represent U(0.5, 1). The numerical re-
sults indicate that Unif 3 exhibits the best accuracy, which
aligns with expectations as it corresponds to a larger value
of the privacy budget. Despite constant scenario exhibiting
stronger privacy protection than Unif 2, it actually achieves
better accuracy. One possible reason behind this interesting
observation is the significant difference in the privacy pa-
rameters, which can cause instability in gradient iterations.

Conclusion and Future Work
This work focuses on privacy amplification of shuffle model.
To address the trade-off between privacy and utility, we pro-
pose the GSPA framework, which achieves a higher accu-
racy while maintaining at least 33% privacy loss compared
to existing methods.

In our future research, we plan to expand by incorporat-
ing additional privacy definitions such as Renyi differential
privacy (Girgis et al. 2021b). Moreover, we acknowledge the
significance of enhancing techniques for specific data types
like images, speech, and other forms. This entails develop-
ing specialized privacy metrics, differential privacy mecha-
nisms, and model training algorithms that offer more accu-
rate and efficient privacy protection.

Appendix
f -DP Here are several important properties of f -DP. We
present these facts directly for the sake of brevity, and for
comprehensive proofs, please refer to the related article

Algorithm 3: SGD with GSPA

Input: Dataset X = (x1, . . . , xn), loss function L(θθθ, x),
initial point θθθ0, learning rate η, number of epochs T ,
privacy budget S = {ϵ1, δ1, · · · , ϵn, δn}, batch size m
and gradient norm bound C.

Output: θ̂θθT,m

1: Split [n] into n/m disjoint subsets S1, · · · , Sm with
equal size m

2: Choose arbitrary initial point θ̂θθ0
3: Choose a random permutation π: [m]→ [m]
4: for each t ∈ [T ] do
5: θ̃θθt,m = θ̂θθt
6: for each i ∈ [n/m] do

7: σ = 2C
m

√
2 log(1.25/δπ(i))

ϵπ(i)

8: bbbi ∼ N(0, σ2IIId)
9: for each j ∈ Sπ(i) do

10: Compute gradient:
gggji = ∇ℓ(θ̃θθi−1, xj)

11: end for
12: Clip to norm C:

gggi =
∑

j ggg
j
i

m
g̃ggi = gggi/max(1, ∥gggi∥2/C)

13: θ̃θθi = θ̃θθi−1 − η(g̃ggi + bbbi)
14: end for
15: θ̂θθt,m = θ̃θθm
16: end for
17: return θ̂θθT,m

(Dong, Roth, and Su 2022).
Fact 1 (ϵ, δ)-DP is equivalent to fϵ,δ-DP, where

fϵ,δ = max{0, 1− δ − eϵα, e−ϵ(1− δ − ϵ)}. (19)

Fact 2 f -DP holds the post-processing property, that is, if a
mechanism M is f -DP, then its post-processing Proc ◦M
is also f -DP.

Fact 3 (µ-GDP) A f -DP mechanism is called µ-GDP if f
can be obtained by f = T (N(0, 1), N(µ, 1)) = Φ(Φ−1(1−
α) − µ), where Φ(·) is cumulative distribution function of
standard Gaussian distribution N(0, 1). Then a mechanism
is µ-GDP if and only if it is (ϵ, δ(ϵ))-DP for all ϵ ≥ 0, where

δ(ϵ) = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
).

In particular, if a mechanism is µ-GDP, then it is kµ-GDP
for groups of size k and the n-fold composition of µi-GDP
mechanisms is

√
µ2
1 + · · ·+ µ2

n-GDP.

Fact 4 Suppose T (P,R) ≥ f, T (Q,R) ≥ g, then
T (P,R) ≥ f ◦ g = g(1− f(α)).

The relationship between f -DP and traditional DP has been
illustrated from the perspective of hypothesis testing (Dong,
Roth, and Su 2022). It provides a visual representation of
how the choice of parameter µ in µ-GDP relates to the
strength of privacy protection.



The (ϵi, δi)-PLDP mechanism can be dominated by the
following hypothesis testing problem (Kairouz, Oh, and
Viswanath 2015). This forms the foundation for the subse-
quent analysis.

Lemma 4 (KOV15) Let R(i) : D → S be an (ϵi, δi)-DP
local randomizer, and x0, x1 ∈ D, then there exist two qua-
ternary random variables X̃0 and X̃1, such that R(i)(x0)

and R(i)(x1) can be viewed as post-processing of X̃0 and
X̃1, respectively. In details,

P (X̃0 = x) =


δi if x = A,
(1−δi)e

ϵi

1+eϵi if x = 0,
1−δi
1+eϵi if x = 1,
0 if x = B,

and

P (X̃1 = x) =


0 if x = A,
1−δi
1+eϵi if x = 0,
(1−δi)e

ϵi

1+eϵi if x = 1,
δi if x = B.

Proof of Theorem 1

Proof: Formally, for each i ∈ {2, · · · , n}, let pi =
2(1−δi)
1+eϵi , we define random variables Y 0

1,i, Y
1
1,i and Yi as fol-

lows:

Y 0
1,i =


0 w.p. eϵi pi

2 ,

1 w.p. pi

2 ,

2 w.p. 1− eϵi pi

2 −
pi

2 .

(20)

Y 1
1,i =


0 w.p. pi

2 ,

1 w.p. eϵi pi

2 ,

2 w.p. 1− eϵi pi

2 −
pi

2 .

(21)

and

Yi =


0 w.p. pi

2 ,

1 w.p. pi

2 ,

2 w.p. 1− pi.

(22)

We consider the case in the t-th iteration. Given a dataset
Xb for b ∈ {0, 1}, we generate n samples from {0, 1, 2}
in the following way. Client number one reports a sample
from Y b

1,i. Client i (i = 2, · · · , n) each reports an indepen-
dent sample from Yi. We then shuffle the reports randomly.
Let ρb denote the resulting distribution over {0, 1, 2}n. We
then count the total number of 0s and 1s. Note that a vector
containing a permutation of the users responses contains no
more information than simply the number of 0s and 1s, so
we can consider these two representations as equivalent.
We claim that there exists a post-processing function proc(·)
such that for y sampled from ρb, proc(y) is distributed
identically to AS(Xb). To see this, let π be a randomly
and uniformly chosen permutation of {1, · · · , n}. For ev-
ery i ∈ {1, · · · , n}, given the hidden permutation π, we can
generate a sample from AS(Xb) by sequentially transform-
ing proc(yt) to obtain the correct mixture components, then

sampling from the corresponding mixture component. Spe-
cially, by Lemma 1,

zt =


R(t)(z1:t−1, x

0
1) if yt = 0;

R(t)(z1:t−1, x
1
1) if yt = 1;

R(t)(z1:t−1, xπ(i)) if yt = 2.

(23)

By our assumption, this produces a sample zt from
R(i)(xπ(i)). It is easy to see that the resulting random vari-
able (z, y) has the property that for input b ∈ {0, 1}, its
marginal distribution over S is the same as AS(Xb) and
its marginal distribution over {0, 1, 2}n is ρb. The difficulty
then lies in the fact that conditioned on a particular instan-
tiation y = v, the permutation π|y=v is not independent of
b. Note that if vt = 0 or 1, the corresponding Q0(t)

1 (z1:t−1)

or Q1(t)
1 (z1:t−1), is independent of π. Therefore, in order to

do the appropriate post-processing, it suffices to know the
permutation π restricted to the set of users who sampled 2,
K = π({i : yi = 2}). The set K of users who select 2 is
independent of b since Y 0

1,i and Y 1
1,i have the same probabil-

ity of sampling 2. The probability of being included in K is
identical for each i ∈ {2, · · · , n}, and slightly smaller for
the first user. Since the sampling of z given y only needs K,
we can sample from z|(y,K)=(v,J) without knowing b. This
conditional sampling is exactly the post-processing step that
we claimed.

We now analyze the divergence between ρ0 and ρ1, the
shuffling step implies that ρ0 and ρ1 are symmetric. This
implies that the divergence between ρ0 and ρ1 is equal to
the divergence between the distribution between the distri-
bution of the counts of 0′s and 1′s. The decomposition in
equation (11) implies that the divergence between AS(X0)
and AS(X1) can be dominated by the divergence of ρ0 and
ρ1, where ∆2 ∼ Bern(δn),∆0 ∼ Bin(1 − ∆2,

eϵn

1+eϵn ),
∆1 = 1−∆0−∆2 and MultiBern(θ1, · · · , θd) represents
a d-dimensional Bernoulli distribution with

∑d
j=1 θj = 1.

□

Proof of Lemma 3

Proof: Since T (N(µµµ0,ΣΣΣ), N(µµµ1,ΣΣΣ)) is

Φ(Φ−1(1− α)−
√
(µµµ1 −µµµ0)′ΣΣΣ−1(µµµ1 −µµµ0)),

according to the property of normal distribution, the key is to
calculate (µµµ1−µµµ0)

′ΣΣΣ−1(µµµ1−µµµ0). Let v1 =
∑n−1

i=1 pi, v2 =∑n−1
i=1 p2i , then

ΣΣΣ =

(
v1
2 −

v2
4 −v2

4
−v2

4
v1
2 −

v2
4

)
,

and

ΣΣΣ−1 =

(
2v1−v2
v2
1−v1v2

v2
v2
1−v1v2

v2

v2
1−v1v2

2v1−v2
v2
1−v1v2

)
.

By simple calculation, we can obtain that

(µµµ1−µµµ0)
′ΣΣΣ−1(µµµ1−µµµ0) = (−1, 1)ΣΣΣ−1(−1, 1)′ = 4∑n−1

i=1 pi
.

Substituting µ =
√

4∑n−1
i=1 pi

yields the proof. □
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