
Accelerate Multi-Agent Reinforcement Learning in Zero-Sum Games with
Subgame Curriculum Learning

Jiayu Chen1*, Zelai Xu1*, Yunfei Li1, Chao Yu1,
Jiaming Song2, Huazhong Yang1, Fei Fang3, Yu Wang1†, Yi Wu1,4†

1Tsinghua University
2Luma AI

3Carnegie Mellon University
4Shanghai Qi Zhi Institute

{jia768167535, zelai.eecs, jxwuyi}@gmail.com

Abstract

Learning Nash equilibrium (NE) in complex zero-sum games
with multi-agent reinforcement learning (MARL) can be ex-
tremely computationally expensive. Curriculum learning is
an effective way to accelerate learning, but an under-explored
dimension for generating a curriculum is the difficulty-to-
learn of the subgames – games induced by starting from a
specific state. In this work, we present a novel subgame cur-
riculum learning framework for zero-sum games. It adopts an
adaptive initial state distribution by resetting agents to some
previously visited states where they can quickly learn to im-
prove performance. Building upon this framework, we derive
a subgame selection metric that approximates the squared dis-
tance to NE values and further adopt a particle-based state
sampler for subgame generation. Integrating these techniques
leads to our new algorithm, Subgame Automatic Curriculum
Learning (SACL), which is a realization of the subgame cur-
riculum learning framework. SACL can be combined with
any MARL algorithm such as MAPPO. Experiments in the
particle-world environment and Google Research Football
environment show SACL produces much stronger policies
than baselines. In the challenging hide-and-seek quadrant en-
vironment, SACL produces all four emergent stages and uses
only half the samples of MAPPO with self-play. The project
website is at https://sites.google.com/view/sacl-rl.

Introduction
Applying reinforcement learning (RL) to zero-sum games
has led to enormous success, with trained agents defeating
professional humans in Go (Silver et al. 2016), StarCraft
II (Vinyals et al. 2019), and Dota 2 (Berner et al. 2019).
To find an approximate Nash equilibrium (NE) in complex
games, these works often require a tremendous amount of
training resources including hundreds of GPUs and weeks
or even months of time. The unaffordable cost prevents RL
from more real-world applications beyond these flagship
projects supported by big companies and makes it important
to develop algorithms that can learn close-to-equilibrium
strategies in a substantially more efficient manner.

*These authors contributed equally.
†Corresponding Authors.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One way to accelerate training is curriculum learning –
training agents in tasks from easy to hard. Many existing
works in solving zero-sum games with MARL generate a
curriculum by choosing whom to play with. They often use
self-play to provide a natural policy curriculum as the agents
are trained against increasingly stronger opponents (Bansal
et al. 2018; Baker et al. 2020). The self-play framework can
be further extended to population-based training (PBT) by
maintaining a policy pool and iteratively training new best
responses to mixtures of previous policies (McMahan, Gor-
don, and Blum 2003; Lanctot et al. 2017). Such a policy-
level curriculum generation paradigm is very different from
the paradigm commonly used in goal-conditioned RL (Mati-
isen et al. 2019; Portelas et al. 2020). Most curriculum learn-
ing methods for goal-conditioned problems directly reset the
goal or initial states for each training episode to ensure the
current task is of suitable difficulty for the learning agent. In
contrast, the policy-level curriculum in zero-sum games only
provides increasingly stronger opponents, and the agents are
still trained by playing the full game starting from a fixed
initial state distribution, which is often very challenging.

In this paper, we propose a general subgame curriculum
learning framework to further accelerate MARL training for
zero-sum games. It leverages ideas from goal-conditioned
RL. Complementary to policy-level curriculum methods like
self-play and PBT, our framework generates subgames (i.e.,
games induced by starting from a specific state) with grow-
ing difficulty for agents to learn and eventually solve the
full game. We provide justifications for our proposal by
analyzing a simple iterated Rock-Paper-Scissors game. We
show that in this game, vanilla MARL requires exponen-
tially many samples to learn the NE. However, by using a
buffer to store the visited states and choosing an adaptive
order of state-induced subgames to learn, the NE can be
learned with linear samples.

A key challenge in our framework is to choose which sub-
game to train on. This is non-trivial in zero-sum games since
there does not exist a clear progression metric like the suc-
cess rate in goal-conditioned problems. While the squared
difference between the current state value and the NE value
can measure the progress of learning, it is impossible to cal-
culate this value during training as the NE is generally un-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11320

known. We derive an alternative metric that approximates
the squared difference with a bias term and a variance term.
The bias term measures how fast the state value changes and
the variance term measures how uncertain the current value
is. We use the combination of the two terms as the sampling
weights for states and prioritize subgames with fast change
and high uncertainty. Instantiating our framework with the
state selection metric and a non-parametric subgame sam-
pler, we develop an automatic curriculum learning algorithm
for zero-sum games, i.e., Subgame Automatic Curriculum
Learning (SACL). SACL can adopt any MARL algorithm
as its backbone and preserve the overall convergence prop-
erty. In our implementation, we choose the MAPPO algo-
rithm (Yu et al. 2021) for the best empirical performances.

We first evaluate SACL in the Multi-Agent Particle En-
vironment and Google Research Football, where SACL
learns stronger policies with lower exploitability than exist-
ing MARL algorithms for zero-sum games given the same
amount of environment interactions. We then stress-test the
efficiency of SACL in the challenging hide-and-seek envi-
ronment. SACL leads to the emergence of all four phases
of different strategies and uses 50% fewer samples than
MAPPO with self-play.

Preliminary
Markov Game
A Markov game (Littman 1994) is defined by a tupleMG =
(N ,S,A, P,R, γ, ρ), where N = {1, · · · , N} is the set
of agents, S is the state space, A = ΠN

i=1Ai is the joint
action space with Ai being the action space of agent i,
P : S ×A → ∆(S) is the transition probability function,
R = (R1, · · · , RN) : S × A → Rn is the joint reward
function with Ri being the reward function for agent i, γ is
the discount factor, and ρ is the distribution of initial states.
Given the state s and the joint action a = (a1, · · · , aN), the
game moves to the next state s′ with probability P (s′|s,a)
and agent i receives a reward Ri(s,a).

For infinite-horizon Markov games, a subgameMG(s) is
defined as the Markov game induced by starting from state
s, i.e., ρ(s) = 1. Selecting subgames is therefore equivalent
to setting the Markov game’s initial states. The subgames of
finite-horizon Markov games are defined similarly and have
an additional variable to denote the current step t.

We focus on two-player zero-sum Markov games, i.e.,
N = 2 and R1(s,a) + R2(s,a) = 0 for all state-action
pairs. We use the subscript i to denote variables of player i
and the subscript −i to denote variables of the player other
than i. Each player uses a policy πi : S → Ai to produce ac-
tions and maximize its own accumulated reward. Given the
joint policy π = (π1, π2), each player’s value function of
state s and Q-function of state-action pair (s,a) are

V π
i (s) = E

[∑
t

γtRi(s
t,at)

∣∣∣s0 = s
]
, (1)

Qπ
i (s,a) = E

[∑
t

γtRi(s
t,at)

∣∣∣s0 = s,a0 = a
]
. (2)

The solution concept of two-player zero-sum Markov games

is Nash equilibrium (NE), a joint policy where no player can
get a higher value by changing the policy alone.
Definition 1 (NE). A joint policy π∗ = (π∗

1 , π
∗
2) is a Nash

equilibrium of a Markov game if for all initial states s0 with
ρ(s0) > 0, the following condition holds

π∗
i = argmax

πi

V
(πi,π

∗
−i)

i (s0), ∀i ∈ {1, 2}. (3)

We use V ∗
i (·) to denote the NE value function of player

i and Q∗
i (·, ·) to denote the NE Q-function of player i, and

the following equations hold by definition and the minimax
nature of zero-sum games.

V ∗
i (s) = max

πi

min
π−i

Ea∼π(·|s) [Q
∗
i (s,a)] , (4)

Q∗
i (s,a) = Ri(s,a) + γ · Es′∼P (·|s,a) [V

∗
i (s

′)] . (5)

MARL Algorithms in Zero-Sum Games
MARL methods have been applied to zero-sum games trac-
ing back to the TD-Gammon project (Tesauro 1995). A
large body of work (Zinkevich et al. 2007; Brown et al.
2019; Steinberger, Lerer, and Brown 2020; Gruslys et al.
2020) is based on regret minimization, and a well-known
result is that the average of policies produced by self-play
of regret-minimizing algorithms converges to the NE pol-
icy of zero-sum games (Freund and Schapire 1996). An-
other notable line of work (Littman 1994; Heinrich, Lanc-
tot, and Silver 2015; Lanctot et al. 2017; Perolat et al. 2022)
combines RL algorithms with game-theoretic approaches.
These works typically use self-play or population-based
training to collect samples and then apply RL methods like
Q-learning (Watkins and Dayan 1992) and PPO (Schulman
et al. 2017) to learn the NE value functions and policies,
and have recently achieved great success (Silver et al. 2016;
Jaderberg et al. 2018; Vinyals et al. 2019; Berner et al. 2019).

For the analysis in the next section, we introduce a clas-
sic MARL algorithm named minimax-Q learning (Littman
1994) that extends Q-learning to zero-sum games. Initializ-
ing functions Qi(·, ·) with zero values, minimax-Q uses an
exploration policy induced by the current Q-functions to col-
lect a batch of samples {(st,at, rti , s

t+1)}Tt=0 and uses these
samples to update the Q-functions by

Qi(s
t,at)← (1− α) ·Qi(s

t,at)+

α ·
(
rti + γ ·max

πi

min
π−i

Ea∼π(·|s)
[
Qi(s

t+1,a)
])

, (6)

where α is the learning rate. This sample-and-update pro-
cess continues until the Q-functions converge. Under the as-
sumptions that the state-action sets are discrete and finite
and are visited an infinite number of times, it is proved
that the stochastic updates by Eq. (6) lead to the NE Q-
functions (Szepesvári and Littman 1999).

A Motivating Example
In this section, we show by a simple illustrative example that
vanilla MARL methods like minimax-Q require exponen-
tially many samples to derive the NE. However, if we can
dynamically set the initial state distribution and induce an

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11321

round 1 0

round 2 0

round n 0

1

!! wins ……

""#!

!! loses
or draws

"$

"!

Figure 1: Illustration of the RPS(n) game.

2 4 6 8 10
RPS(n)

102

104

106

sa
m

pl
es

standard minimax-Q
subgame w. full access
subgame w. state buffer

Figure 2: Number of samples used to learn the NE Q-values
of RPS(n) games.

appropriate order of subgames to learn, the sample complex-
ity can be substantially reduced from exponential to linear.
Such an observation motivates our proposed algorithm de-
scribed in later sections.

Iterated Rock-Paper-Scissors Game
We introduce an iterated variant of the Rock-Paper-Scissor
(RPS) game, denoted as RPS(n). As shown in Fig. 1, P1

and P2 play the RPS game for up to n rounds. If P1 wins
all rounds, it gets a reward of 1 and P2 gets a reward of −1.
If P1 loses or draws in any round, the game ends immedi-
ately without playing the remaining rounds and both players
get zero rewards. Note that the RPS(n) game is different
from playing the RPS game repeatedly for n times because
players can play less than n rounds and they only receive
a non-zero reward if P1 wins in all rounds. We use sk to
denote the state where players have already played k RPS
games and are at the k+1 round. It is easy to verify that the
NE policy for both players is to play Rock, Paper, or Scis-
sors with equal probability at each state. Under this joint NE
policy, P1 can win one RPS game with 1/3 probability, and
the probability for P1 to win all n rounds and get a non-zero
reward is 1/3n.

Consider using standard minimax-Q learning to solve the
RPS(n) game. With Q-functions initialized to zero, we ex-
ecute the exploration policy to collect samples and perform
the update in Eq. (6). Note all state-actions pairs are required
to be visited to guarantee convergence to the NE. Therefore,
in this sparse-reward game, random exploration will clearly
take O(3n) steps to get a non-zero reward. Moreover, even
if the exploration policy is perfectly set to the NE policy, the
probability for P1 to get the non-zero reward by winning all
RPS games is still O(1/3n), requiring at least O(3n) sam-
ples to learn the NE Q-values of the RPS(n) game.

Algorithm 1: Subgame curriculum learning
Input: state sampler oracle(·).

1 Initialize policy π;
2 repeat
3 Sample s0 ∼ oracle(S);
4 Rollout π inMG(s0);
5 Train π via MARL;
6 until π converges;

Output: final policy π.

From Exponential to Linear Complexity
An important observation is that the states in later rounds
become exponentially rare in the samples generated by start-
ing from the fixed initial state. If we can directly reset the
game to these states and design a smart order of minimax-
Q updates on the subgames induced by these states, the NE
learning can be accelerated significantly. Note that RPS(n)
can be regarded as the composition of n individual RPS(1)
games, a suitable order of learning would be from the easiest
subgame RPS(1) starting from state sn−1 to the full game
RPS(n) starting from state s0. Assuming we have full ac-
cess to the state space, we first reset the game to sn−1 and
use minimax-Q to solve subgame RPS(1) with O(1) sam-
ples. Given that the NE Q-values of RPS(k) are learned,
the next subgame RPS(k + 1) is equivalent to an RPS(1)
game where the winning reward is the value of state sn−k.
By sequentially applying minimax-Q to solve all n sub-
games from RPS(1) to RPS(n), the number of samples
required to learn the NE Q-values is reduced substantially
from O(3n) to O(n).

In practice, we usually do not have access to the entire
state space and cannot directly start from the last subgame
RPS(1). Instead, we can use a buffer to store all visited
states and gradually span the state space. By resetting games
to the newly visited states, the number of samples required to
cover the full state space is stillO(n), and we can then apply
minimax-Q from RPS(1) to RPS(n). Therefore, the total
number of samples is stillO(n). We validate our analysis by
running experiments on RPS(n) games for n = 1, · · · , 10
and the results averaged over ten seeds are shown in Fig. 2.
It can be seen that the sample complexity reduces from ex-
ponential to linear by running minimax-Q over a smart order
of subgames, and the result of using a state buffer in prac-
tice is comparable to the result with full access. The detailed
analysis can be found in Appendix A.11.

Method
The motivating example suggests that NE learning can be
largely accelerated by running MARL algorithms in a smart
order over states. Inspired by this insight, we present a gen-
eral framework to accelerate NE learning in zero-sum games
by training over a curriculum of subgames. We further pro-
pose two practical techniques to instantiate the framework
and present the overall algorithm.

1Appendix can be found at http://arxiv.org/abs/2310.04796.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11322

Algorithm 2: Subgame Automatic Curriculum
Learning (SACL)

1

Input: state buffersM with capacity K, probability p
to sample initial state from the state buffer.

2 Randomly initialize policy πi and value function Vi

for player i = 1, 2;
3 repeat
4 V ′

i ← Vi, i = 1, 2;
// Select subgame and train

policy.
5 for each parallel environment do
6 Sample s0 ∼ sampler(M) with probability p,

else s0 ∼ ρ(·);
7 Rollout inMG(s0) and collect samples;

8 Train {πi, Vi}2i=1 via MARL;
// Compute weight by Eq. (10) and

update state buffer.

9 w̃t ← α·E[Ṽi(s
t)−Ṽ ′

i (s
t)]2+Var({Ṽi(s

t)}2i=1),
t = 0, · · · , T ;

10 M←M∪ {(st, w̃t)}Tt=0;
11 if ∥M∥ > K then
12 M← FPS(M,K);

13 until (π1, π2) converges;
Output: final policy (π1, π2).

Subgame Curriculum Learning
The key issue of the standard sample-and-update framework
is that the rollout trajectories always start from the fixed ini-
tial state distribution ρ, so visiting states that are most crit-
ical for efficient learning can consume a large number of
samples. To accelerate training, we can directly reset the en-
vironment to those critical states. Suppose we have an ora-
cle state sampler oracle(·) that can initiate suitable states for
the current policy to learn, i.e., generate appropriate induced
subgames, we can derive a general-purpose framework in
Alg. 1, which we call subgame curriculum learning. Note
that this framework is compatible with any MARL algorithm
for zero-sum Markov games.
A desirable feature of subgame curriculum learning is that it
does not change the convergence property of the backbone
MARL algorithm, as discussed below.

Proposition 1. If all initial states s0 with ρ(s0) > 0 are
sampled infinitely often, and the backbone MARL algorithm
is guaranteed to converge to an NE in zero-sum Markov
games, then subgame curriculum learning also produces an
NE of the original Markov game.

The proof can be found in Appendix A.2. Note that such
a requirement is easy to satisfy. For example, given any state
sampler oracle(·), we can construct a valid mixed sampler
by sampling from oracle(·) for probability 0 < p < 1 and
sampling from ρ for probability 1− p.

Remark. With a given state sampler, the only requirement
of our subgame curriculum learning framework is that the
environment can be reset to a desired state to generate the

induced game. This is a standard assumption in the curricu-
lum learning literature (Florensa et al. 2018; Matiisen et al.
2019; Portelas et al. 2020) and is feasible in many RL envi-
ronments. For environments that do not support this feature,
we can simply reimplement the reset function to make them
compatible with our framework.

Subgame Sampling Metric
A key question is how to instantiate the oracle sampler, i.e.,
which subgame should we train on for faster convergence?
Intuitively, for a particular state s, if its value has converged
to the NE value, that is, Vi(s) = V ∗

i (s), we should no longer
train on the subgame induced by it. By contrast, if the gap
between its current value and the NE value is substantial, we
should probably train more on the induced subgame. Thus,
a simple way is to use the squared difference of the current
value and the NE value as the weight for a state and sample
states with probabilities proportional to the weights. Con-
cretely, the state weight can be written as

w(s) =
1

2

2∑
i=1

(V ∗
i (s)− Vi(s))

2 (7)

= Ei

[
(V ∗

1 (s)− Ṽi(s))
2
]

(8)

= Ei

[
V ∗
1 (s)− Ṽi(s)

]2
+Vari

[
V ∗
1 (s)− Ṽi(s)

]
, (9)

where Ṽ1(s) = V1(s) and Ṽ2(s) = −V2(s). The second
equality holds because the game is zero-sum and V ∗

2 (s) =
−V ∗

1 (s). With random initialization and different training
samples, {Ṽi}2i=1 can be regarded as an ensemble of two
value functions, and the weight w(s) becomes the expec-
tation over the ensemble. The last equality further expands
the expectation to a bias term and a variance term, and we
sample state with probability P (s) = w(s)/

∑
s′ w(s

′). For
the motivating example of RPS(n) game, the NE value de-
creases exponentially from the last state sn−1 to the initial
state s0. With value functions initialized close to zero, the
prioritized subgames throughout training will move gradu-
ally from the last round to the first round, which is approxi-
mately the optimal order.

However, Eq. (9) is very hard to compute in practice
because the NE value is generally unknown. Inspired by
Eq. (9), we propose the following alternative state weight

w̃(s) = α · Ei

[
Ṽ

π
(t)
i

i (s)− Ṽ
π
(t−1)
i

i (s)
]2

+Vari
[
Ṽi(s)

]
, (10)

which takes a hyperparameter α and uses the difference
between two consecutive value function checkpoints instead
of the difference between the NE value and the current value
in Eq. (9). The first term in Eq. (10) measures how fast the
value functions change over time. If this term is large, the
value functions are changing constantly and still far from
the NE value; if this term is marginal, the value functions are
probably close to the converged NE value. The second term
in Eq. (10) measures the uncertainty of the current learned
values and is the same as the variance term in Eq. (9) because
V ∗
1 (s) is a constant. If α = 1, Eq. (10) approximates Eq. (9)

as t increases. It is also possible to train an ensemble of value
functions for each player to further improve the empirical
performance. More analysis can be found in Appendix A.3.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11323

highlow

sam
ple

weight
initial states

update

self-play

reset

Fort BuildingRunning and Chasing Ramp Use Ramp Defense
sam

ple

weight
initial states

update

self-play

reset

low high

agentagentagent environmentagentagentagent environment

Figure 3: Illustration of SACL in the hide-and-seek environment. In the Fort Building stage, the states with hiders near the
box have high weights (red) and agents can easily learn to build a fort by practicing on these subgames, while the states with
randomly spawned hiders have low weights (green) and contribute less to learning.

Since Eq. (10) does not require the unknown NE value
to compute, it can be used in practice as the weight for
state sampling and can be implemented for most MARL
algorithms. By selecting states with fast value change and
high uncertainty, our framework prioritizes subgames where
agents’ performance can quickly improve through learning.

Particle-based Subgame Sampler
With the sample weight at hand, we can generate subgames
by sampling initial states from the state space. But it is
impractical to sample from the entire space which is usu-
ally unavailable and can be exponentially large for com-
plex games. Typical solutions include training a genera-
tive adversarial network (GAN) (Dendorfer, Osep, and Leal-
Taixé 2020) or using a parametric Gaussian mixture model
(GMM) (Portelas et al. 2020) to generate states for auto-
matic curriculum learning. However, parametric models re-
quire a large number of samples to fit accurately and can-
not adapt instantly to the ever-changing weight in our case.
Moreover, the distribution of weights is highly multi-modal,
which is hard to capture for many generative models.

We instead adopt a particle-based approach and maintain
a large state buffer M using all visited states throughout
training to approximate the state space. Since the size of the
buffer is limited while the state space can be infinitely large,
it is important to keep representative samples that are suffi-
ciently far from each other to ensure good coverage of the
state space. When the number of states exceeds the buffer’s
capacity K, we use farthest point sampling (FPS) (Qi et al.
2017) which iteratively selects the farthest point from the
current set of points. In our implementation, we first nor-
malize each dimension of the states and the distance between
two states is simply the Euclidean distance. More details can
be found in Appendix B.1.

Overall Algorithm
Combining the subgame sampling metric and the particle-
based sampler, we present a realization of the subgame cur-
riculum learning framework, i.e., the Subgame Automatic
Curriculum Learning (SACL) algorithm, which is summa-

rized in Alg. 2. When each episode resets, we use the
particle-based sampler to generate suitable initial states s0
for the current policy to learn. To satisfy the requirements in
Proposition 1, we also reset the game according to the initial
state distribution ρ(·) with 0.3 probability. After collecting a
number of samples, we train the policies and value functions
using MARL. The weights for the newly collected states are
computed according to Eq. (10) and used to update the state
buffer M. If the capacity of the state buffer is exceeded,
we use FPS to select representative states-weight pairs and
delete the others. An overview of SACL in the hide-and-seek
game is illustrated in Fig. 3.

Experiment
We evaluate SACL in three different zero-sum environ-
ments: Multi-Agent Particle Environment (MPE) (Lowe
et al. 2017), Google Research Football (GRF) (Kurach et al.
2020), and the hide-and-seek (HnS) environment (Baker
et al. 2020). We use a state-of-the-art MARL algorithm
MAPPO (Yu et al. 2021) as the backbone in all experiments.
We evaluate the performance of policies by approximate ex-
ploitability. The definition and method to compute approxi-
mate exploitability can be found in Appendix B.3.

Main Results
We first compare the performance of SACL in three environ-
ments against the following baselines for solving zero-sum
games: self-play (SP), two popular variants including Ficti-
tious Self-Play (FSP) (Heinrich, Lanctot, and Silver 2015)
and Neural replicator dynamics (NeuRD) (Hennes et al.
2020), and a population-based training method policy-space
response oracles (PSRO) (Lanctot et al. 2017). More imple-
mentation details can be found in Appendix B.2.

Multi-Agent Particle Environment. We consider the
predator-prey scenario in MPE, where three slower cooper-
ating predators chase one faster prey in a square space with
two obstacles. In the default setting, all agents are spawned
uniformly in the square. We also consider a harder setting
where the predators are spawned in the top-right corner and
the prey is spawned in the bottom-left corner. All algorithms

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11324

0 1 2 3 4
samples 1e7

1

2

3

4

ap
pr

ox
im

at
e

ex
pl

oi
ta

bi
lit

y 1e3

SACL
SP
FSP
PSRO
NeuRD

(a) MPE: exploitability.

0 1 2 3 4
samples 1e7

2

3

4

ap
pr

ox
im

at
e

ex
pl

oi
ta

bi
lit

y 1e3

SACL
SP
FSP
PSRO
NeuRD

(b) MPE hard: exploitability.

Running Fort Building Ramp Use Ramp Defense
0.0

0.2

0.4

0.6

0.8

1.0

sa
m

pl
es

1e10

0.37B
1.16B

1.63B

4.69B

0.71B

2.62B
3.25B

9.78B
SACL
MAPPO

(c) HnS: number of samples.

Figure 4: Main experiment results in (a) MPE, (b) MPE hard, and (c) Hide-and-seek.

Scenario SACL SP FSP PSRO NeuRD

pass and shoot 0.35 (0.13) 0.48 (0.31) 0.83 (0.10) 0.80 (0.09) 0.79 (0.15)
run pass and shoot 0.60 (0.04) 0.68 (0.09) 0.78 (0.08) 0.83 (0.04) 0.95 (0.04)
3 vs 1 with keeper 0.45 (0.06) 0.83 (0.03) 0.63 (0.25) 0.85 (0.05) 0.81 (0.16)

Table 1: Approximate exploitability of learned policies in different GRF scenarios.

are trained for 40M environment samples and the curves
of approximate exploitability w.r.t. sample over three seeds
are shown in Fig. 4(a) and 4(b). SACL converges faster and
achieves lower exploitability than all baselines in both set-
tings, and its advantage is more obvious in the hard scenario.
This is because the initial state distribution in corners makes
the full game challenging to solve, while SACL generates an
adaptive state distribution and learns on increasingly harder
subgames to accelerate NE learning. More results and dis-
cussions can be found in Appendix C.1.

Google Research Football. We evaluate SACL in three
GRF academy scenarios, namely pass and shoot, run pass
and shoot, and 3 vs 1 with keeper. In all scenarios, the left
team’s agents cooperate to score a goal and the right team’s
agents try to defend them. The first scenario is trained for
300M environment samples and the last two scenarios are
trained for 400M samples. Table 1 lists the approximate ex-
ploitabilities of different methods’ policies over three seeds,
and SACL achieves the lowest exploitability. Additional re-
sults and discussions can be found in Appendix C.2.

Hide-and-seek environment. HnS is a challenging zero-
sum game with known NE policies, which makes it possible
for us to directly evaluate the number of samples used for NE
convergence. We consider the quadrant scenario where there
is a room with a door in the lower right corner. Two hiders,
one box, and one ramp are spawned uniformly in the envi-
ronment, and one seeker is spawned uniformly outside the
room. Both the box and the ramp can be moved and locked
by agents. The hiders aim to avoid the lines of sight from the
seeker while the seeker aims to find the hiders.

There is a total of four stages of emergent stages in HnS,
i.e., Running and Chasing, Fort Building, Ramp Use, and
Ramp Defense. As shown in Fig. 4(c), SACL with MAPPO
backbone produces all four stages and converges to the NE
policy with only 50% the samples of MAPPO with self-
play. We also visualize the initial state distribution to show

how SACL selects appropriate subgames for agents to learn.
Fig. 5(a) depicts the distribution of hiders’ position in the
Fort Building stage. The probabilities of states with hiders
inside the room are much higher than states with hiders out-
side, making it easier for hiders to learn to build a fort with
the box. Similarly, the distribution of the seeker’s position in
the Ramp Use stage is shown in Fig. 5(b), and the most sam-
pled subgames start from states where the seeker is close to
the walls and is likely to use the ramp.

Ablation Study
We perform ablation studies to examine the effectiveness of
the proposed sampling metric and particle-based sampler.
All experiments are done in the hard predator-prey scenario
of MPE and the results are averaged over three seeds. More
ablation studies on state buffer size, subgame sample proba-
bility, and others can be found in Appendix C.1.

Subgame sampling metric. The sampling metric used in
SACL follows Eq. (10) which consists of a bias term and
a variance term. We compare it with five other metrics in-
cluding a uniform metric, a bias-only metric, a variance-only
metric and a temporal difference (TD) error metric. The last
metric uses the TD error |δt| = |rt + γV (st+1)− V (st)| as
the weight, which can be regarded as an estimation of value
uncertainty. The results are shown in Fig. 5(c) and the sam-
pling metric used by SACL outperforms both the bias-only
metric and variance-only metric.

State generator. We substitute the particle-based sam-
pler with other state generators including using GAN from
the work (Dendorfer, Osep, and Leal-Taixé 2020) and us-
ing GMM from the work (Portelas et al. 2020). We also re-
place the FPS buffer update method with a uniform one that
randomly keeps states and a greedy one that keeps states
with the highest weights. Results in Fig. 5(c) show that our
particle-based sampler with FPS update leads to the fastest
convergence and lowest exploitability.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11325

(a) Fort Building. (b) Ramp Use.

0 1 2 3 4
samples 1e7

1

2

3

4

ap
pr

ox
im

at
e

ex
pl

oi
ta

bi
lit

y 1e3

SACL
uniform
bias-only
variance-only
TD error

(c) Ablation on metric.

0 1 2 3 4
samples 1e7

1

2

3

4

ap
pr

ox
im

at
e

ex
pl

oi
ta

bi
lit

y 1e3

SACL
random
greedy
GAN
GMM

(d) Ablation on generator.

Figure 5: Visualization of the state distributions in HnS (a-b) and ablation studies (c-d).

Related Work
A large number of works achieve faster convergence in zero-
sum games by playing against an increasingly stronger pol-
icy. The most popular methods are self-play and its vari-
ants (Heinrich and Silver 2016; Bai, Jin, and Yu 2020; Jin
et al. 2021; Perolat et al. 2022). Self-play creates a natural
curriculum and leads to emergent complex skills and behav-
iors (Bansal et al. 2018; Baker et al. 2020). Population-based
training like double oracle (McMahan, Gordon, and Blum
2003) and policy-space response oracles (PSRO) (Lanctot
et al. 2017) extend self-play by training a pool of poli-
cies. Some follow-up works further accelerate training by
constructing a smart mixing strategy over the policy pool
according to the policy landscape (Balduzzi et al. 2019;
Perez-Nieves et al. 2021; Liu et al. 2021; Feng et al. 2021).
(McAleer et al. 2021) extends PSRO to extensive-form
games by building policy mixtures at all states rather than
only the initial states, but it still directly solves the full game
starting from some fixed states.

In addition to policy-level curriculum learning methods,
other works to accelerate training in zero-sum games usually
adopt heuristics and domain knowledge like the number of
agents (Long et al. 2020; Wang et al. 2020b) or environment
specifications (Berner et al. 2019; Serrino et al. 2019; Tang
et al. 2021). By contrast, our method automatically gener-
ates a curriculum over subgames without domain knowledge
and only requires the environments can be reset to desired
states. Subgame-solving technique (Brown and Sandholm
2017) is also used in online strategy refinement to improve
the blueprint strategy of a simplified abstract game. Another
closely related work to our method is (Chen et al. 2021b)
which combines backward induction with policy learning,
but this method requires knowledge of the game topology
and can only be applied to finite-horizon Markov games.

Besides zero-sum games, curriculum learning is also stud-
ied in cooperative settings. The problem is often formalized
as goal-conditioned RL where the agents need to reach a
specific goal in each episode. Curriculum learning methods
design or train a smart sampler to generate proper task con-
figurations or goals that are most suitable for training ad-
vances w.r.t. some progression metric (Chen et al. 2016; Flo-
rensa et al. 2017, 2018; Racaniere et al. 2019; Matiisen et al.
2019; Portelas et al. 2020; Dendorfer, Osep, and Leal-Taixé
2020). Such a metric typically relies on an explicit signal,
such as the goal-reaching reward, success rates, or the ex-

pected value of the testing tasks. However, in the setting of
zero-sum games, these explicit progression metrics become
no longer valid since the value associated with a Nash equi-
librium can be arbitrary. A possible implicit metric is value
disagreement (Zhang, Abbeel, and Pinto 2020) used in goal-
reaching tasks, which can be regarded as the variance term in
our metric. By adding a bias term, our metric approximates
the squared distance to NE values and gives better results in
ablation studies.

Our work adopts a non-parametric subgame sampler
which is fast to learn and naturally multi-modal, instead of
training an expensive deep generative model like GAN (Flo-
rensa et al. 2018). Such an idea has been recently popu-
larized in the literature. Some representative samplers are
Gaussian mixture model (Warde-Farley et al. 2019), Stein
variational inference (Chen et al. 2021a), Gaussian pro-
cess (Mehta et al. 2020), or simply evolutionary computa-
tion (Wang et al. 2019, 2020a). Technically, our method is
related to prioritized experience replay (Schaul et al. 2015;
Florensa et al. 2017; Li et al. 2022) with the difference
that we maintain a buffer (Warde-Farley et al. 2019) to ap-
proximate the uniform distribution over the state space. Our
method is also related to episodic memory replay (Blundell
et al. 2016; Pritzel et al. 2017) which stores past experience
and chooses actions based on previous success when similar
states are encountered. By contrast, our method proactively
resets the environment to intermediate states and collects ex-
perience in the sampled subgame.

Conclusion
We present SACL, a general algorithm for accelerating
MARL training in zero-sum Markov games based on the
subgame curriculum learning framework. We propose to use
the approximate squared distance to NE values as the sam-
pling metric and use a particle-based sampler for subgame
generation. Instead of starting from the fixed initial states,
RL agents trained with SACL can practice more on sub-
games that are most suitable for the current policy to learn,
thus boosting training efficiency. We report appealing exper-
iment results that SACL efficiently discovers all emergent
strategies in the challenging hide-and-seek environment and
uses only half the samples of MAPPO with self-play. We
hope SACL can be helpful to speed up prototype develop-
ment and help make MARL training on complex zero-sum
games more affordable to the community.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11326

Acknowledgments
This research was supported by the National Natural Science
Foundation of China (No.62325405, U19B2019, M-0248),
Tsinghua University Initiative Scientific Research Program,
Tsinghua-Meituan Joint Institute for Digital Life, Beijing
National Research Center for Information Science, Tech-
nology (BNRist) and Beijing Innovation Center for Future
Chips.

References
Bai, Y.; Jin, C.; and Yu, T. 2020. Near-optimal reinforcement
learning with self-play. Advances in neural information pro-
cessing systems, 33: 2159–2170.
Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.;
McGrew, B.; and Mordatch, I. 2020. Emergent Tool Use
From Multi-Agent Autocurricula. In International Confer-
ence on Learning Representations.
Balduzzi, D.; Garnelo, M.; Bachrach, Y.; Czarnecki, W.;
Perolat, J.; Jaderberg, M.; and Graepel, T. 2019. Open-
ended learning in symmetric zero-sum games. In Interna-
tional Conference on Machine Learning, 434–443. PMLR.
Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2018. Emergent Complexity via Multi-Agent Com-
petition. In International Conference on Learning Represen-
tations.
Berner, C.; et al. 2019. Dota 2 with large scale deep rein-
forcement learning. arXiv preprint arXiv:1912.06680.
Blundell, C.; et al. 2016. Model-free episodic control. arXiv
preprint arXiv:1606.04460.
Brown, N.; Lerer, A.; Gross, S.; and Sandholm, T. 2019.
Deep counterfactual regret minimization. In International
conference on machine learning, 793–802. PMLR.
Brown, N.; and Sandholm, T. 2017. Safe and nested sub-
game solving for imperfect-information games. Advances
in neural information processing systems, 30.
Chen, J.; Zhang, Y.; Xu, Y.; Ma, H.; Yang, H.; Song, J.;
Wang, Y.; and Wu, Y. 2021a. Variational Automatic Curricu-
lum Learning for Sparse-Reward Cooperative Multi-Agent
Problems. Advances in Neural Information Processing Sys-
tems, 34: 9681–9693.
Chen, W.; Zhou, Z.; Wu, Y.; and Fang, F. 2021b. Temporal
Induced Self-Play for Stochastic Bayesian Games. arXiv
preprint arXiv:2108.09444.
Chen, X.; et al. 2016. Variational Lossy Autoencoder. arXiv
preprint arXiv:1611.02731.
Dendorfer, P.; Osep, A.; and Leal-Taixé, L. 2020. Goal-gan:
Multimodal trajectory prediction based on goal position es-
timation. In Proceedings of the Asian Conference on Com-
puter Vision.
Feng, X.; Slumbers, O.; Wan, Z.; Liu, B.; McAleer, S.; Wen,
Y.; Wang, J.; and Yang, Y. 2021. Neural auto-curricula in
two-player zero-sum games. Advances in Neural Informa-
tion Processing Systems, 34: 3504–3517.
Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; and
Abbeel, P. 2017. Reverse curriculum generation for rein-
forcement learning. In Conference on robot learning, 482–
495. PMLR.

Florensa, C.; et al. 2018. Automatic goal generation for re-
inforcement learning agents. In International conference on
machine learning, 1515–1528. PMLR.

Freund, Y.; and Schapire, R. E. 1996. Game theory, on-line
prediction and boosting. In Proceedings of the ninth annual
conference on Computational learning theory, 325–332.

Gruslys, A.; et al. 2020. The advantage regret-matching
actor-critic. arXiv preprint arXiv:2008.12234.

Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Fictitious
self-play in extensive-form games. In International confer-
ence on machine learning, 805–813. PMLR.

Heinrich, J.; and Silver, D. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121.

Hennes, D.; et al. 2020. Neural replicator dynamics: Multi-
agent learning via hedging policy gradients. In Proceedings
of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, 492–501.

Jaderberg, M.; et al. 2018. Human-level performance in
first-person multiplayer games with population-based deep
reinforcement learning. arXiv preprint arXiv:1807.01281.

Jin, C.; Liu, Q.; Wang, Y.; and Yu, T. 2021. V-Learning–A
Simple, Efficient, Decentralized Algorithm for Multiagent
RL. arXiv preprint arXiv:2110.14555.

Kurach, K.; et al. 2020. Google research football: A novel
reinforcement learning environment. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
4501–4510.

Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing sys-
tems, 30.

Li, Y.; Kong, T.; Li, L.; and Wu, Y. 2022. Learning Design
and Construction with Varying-Sized Materials via Priori-
tized Memory Resets. In 2022 International Conference on
Robotics and Automation (ICRA), 7469–7476.

Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of the
eleventh international conference on machine learning, vol-
ume 157, 157–163.

Liu, X.; Jia, H.; Wen, Y.; Hu, Y.; Chen, Y.; Fan, C.; Hu,
Z.; and Yang, Y. 2021. Towards Unifying Behavioral and
Response Diversity for Open-ended Learning in Zero-sum
Games. Advances in Neural Information Processing Sys-
tems, 34: 941–952.

Long, Q.; et al. 2020. Evolutionary Population Curriculum
for Scaling Multi-Agent Reinforcement Learning. In Inter-
national Conference on Learning Representations.

Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11327

Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J. 2019.
Teacher-student curriculum learning. IEEE transactions on
neural networks and learning systems.
McAleer, S.; Lanier, J. B.; Wang, K. A.; Baldi, P.; and Fox,
R. 2021. XDO: A double oracle algorithm for extensive-
form games. Advances in Neural Information Processing
Systems, 34: 23128–23139.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the presence of cost functions controlled by an ad-
versary. In Proceedings of the 20th International Conference
on Machine Learning (ICML-03), 536–543.
Mehta, B.; et al. 2020. Active domain randomization. In
Conference on Robot Learning, 1162–1176. PMLR.
Perez-Nieves, N.; Yang, Y.; Slumbers, O.; Mguni, D. H.;
Wen, Y.; and Wang, J. 2021. Modelling behavioural diver-
sity for learning in open-ended games. In International Con-
ference on Machine Learning, 8514–8524. PMLR.
Perolat, J.; et al. 2022. Mastering the Game of Stratego
with Model-Free Multiagent Reinforcement Learning. arXiv
preprint arXiv:2206.15378.
Portelas, R.; Colas, C.; Hofmann, K.; and Oudeyer, P.-Y.
2020. Teacher algorithms for curriculum learning of deep
rl in continuously parameterized environments. In Confer-
ence on Robot Learning, 835–853. PMLR.
Pritzel, A.; et al. 2017. Neural episodic control. In Interna-
tional conference on machine learning, 2827–2836. PMLR.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. Advances in Neural Information Processing
Systems, 30.
Racaniere, S.; Lampinen, A. K.; Santoro, A.; Reichert,
D. P.; Firoiu, V.; and Lillicrap, T. P. 2019. Automated
curricula through setter-solver interactions. arXiv preprint
arXiv:1909.12892.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Serrino, J.; Kleiman-Weiner, M.; Parkes, D. C.; and Tenen-
baum, J. 2019. Finding friend and foe in multi-agent games.
Advances in Neural Information Processing Systems, 32.
Silver, D.; et al. 2016. Mastering the game of Go with deep
neural networks and tree search. nature, 529(7587): 484.
Steinberger, E.; Lerer, A.; and Brown, N. 2020. DREAM:
Deep regret minimization with advantage baselines and
model-free learning. arXiv preprint arXiv:2006.10410.
Szepesvári, C.; and Littman, M. L. 1999. A unified analysis
of value-function-based reinforcement-learning algorithms.
Neural computation, 11(8): 2017–2060.
Tang, Z.; et al. 2021. Discovering diverse multi-agent strate-
gic behavior via reward randomization. arXiv preprint
arXiv:2103.04564.
Tesauro, G. 1995. Temporal difference learning and TD-
Gammon. Communications of the ACM, 38(3): 58–68.

Vinyals, O.; et al. 2019. Grandmaster level in StarCraft II us-
ing multi-agent reinforcement learning. Nature, 575(7782):
350–354.
Wang, R.; Lehman, J.; Clune, J.; and Stanley, K. O. 2019.
Poet: open-ended coevolution of environments and their op-
timized solutions. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, 142–151.
Wang, R.; Lehman, J.; Rawal, A.; Zhi, J.; Li, Y.; Clune, J.;
and Stanley, K. 2020a. Enhanced POET: Open-ended rein-
forcement learning through unbounded invention of learning
challenges and their solutions. In International Conference
on Machine Learning, 9940–9951. PMLR.
Wang, W.; Yang, T.; Liu, Y.; Hao, J.; Hao, X.; Hu, Y.; Chen,
Y.; Fan, C.; and Gao, Y. 2020b. From few to more: Large-
scale dynamic multiagent curriculum learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, 7293–7300.
Warde-Farley, D.; de Wiele, T. V.; Kulkarni, T.; Ionescu,
C.; Hansen, S.; and Mnih, V. 2019. Unsupervised Control
Through Non-Parametric Discriminative Rewards. In Inter-
national Conference on Learning Representations.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3): 279–292.
Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; and Wu,
Y. 2021. The surprising effectiveness of ppo in cooperative,
multi-agent games. arXiv preprint arXiv:2103.01955.
Zhang, Y.; Abbeel, P.; and Pinto, L. 2020. Automatic cur-
riculum learning through value disagreement. Advances in
Neural Information Processing Systems, 33: 7648–7659.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2007. Regret minimization in games with incomplete infor-
mation. Advances in neural information processing systems,
20.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11328

