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Abstract

Improving the diversity of Artificial Intelligence Generated
Content (AIGC) is one of the fundamental problems in the
theory of generative models such as generative adversarial
networks (GANs). Previous studies have demonstrated that
the discriminator in GANs should have high capacity and ro-
bustness to achieve the diversity of generated data. However,
a discriminator with high capacity tends to overfit and guide
the generator toward collapsed equilibrium. In this study, we
propose a novel discriminative forest GAN, named Forest-
GAN, that replaces the discriminator to improve the capac-
ity and robustness for modeling statistics in real-world data
distribution. A discriminative forest is composed of multiple
independent discriminators built on bootstrapped data. We
prove that a discriminative forest has a generalization error
bound, which is determined by the strength of individual dis-
criminators and the correlations among them. Hence, a dis-
criminative forest can provide very large capacity without any
risk of overfitting, which subsequently improves the genera-
tive diversity. With the discriminative forest framework, we
significantly improved the performance of AutoGAN with a
new record FID of 19.27 from 30.71 on STL10 and improved
the performance of StyleGAN2-ADA with a new record FID
of 6.87 from 9.22 on LSUN-cat.

Introduction
Generating high diversity samples in Artificial Intelligence
Generated Content (AIGC) (Cao et al. 2023; Zhong et al.
2023) inherently requires being able to capture and model
complex statistics in real-world data distribution. Generative
adversarial networks (GANs) have been widely investigated
in the field of AIGC research. In GANs, only the discrimi-
nator touches real data, and thus its capacity and robustness
have a critical effect on generative diversity. Previous stud-
ies (Arora, Risteski, and Zhang 2018) showed that the num-
ber of modes in the generator’s distribution grows linearly
with the capacity of the discriminator. However, a discrimi-
nator with high capacity tends to overfit and guide the gen-
erator toward collapsed equilibrium (Thanh-Tung, Tran, and
Venkatesh 2019). Thus, improving the capacity while keep-
ing robustness of the discriminator is the primary obstacle to
ensure that the generator produces data with high diversity.

Copyright © 2024, Association for the Advancement of Artificial
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Many remarkable variations of GANs (Gui et al. 2021; Li
et al. 2023) have been proposed to generate more realistic
samples. Several recent works investigated the generaliza-
tion of GANs under multiple adversaries settings. GMAN
(Durugkar et al. 2017) is the first endeavor to extend GANs
to multiple discriminators. Dropout-GAN (Mordido et al.
2018) integrates adversarial feedback dropout in GMAN,
forcing the generator to appease and learn from a dynamic
ensemble of discriminators. D2GAN (Nguyen et al. 2017)
theoretically analyzed that two discriminators can effec-
tively avoid the mode collapsing problem. PAR-GAN (Chen
et al. 2021) extended D2GAN by using disjoint partitions
of input data for multiple discriminators. MCL-GAN (Choi
and Han 2022) employs a Multiple Choice Learning (MCL)
framework to learn multiple discriminators and update the
generator via a set of expert discriminators. Generally speak-
ing, a GAN with multiple discriminators studies the ensem-
ble strategies of discriminators, including the sampling of
training data and the aggregation of multiple discrimina-
tors. However, for ensemble learning, Random Forest (RF)
(Breiman 2001) has been theoretically and practically shown
to be robust with a generalization error bound by aggregat-
ing a number of randomly built decision trees. Inspired by
the RF, we wonder if we construct a set of discriminators
as a discriminative forest instead of the one to compete with
the generator, could this discriminative forest provide high
capacity and robustness to improve the generative diversity?

Therefore, in this study, we propose a discriminative for-
est GAN (Forest-GAN) that consists of a number of discrimi-
nators built upon bootstrapping datasets (Figure 1). The pre-
dictive results of multiple discriminators are aggregated by
an aggregation function. Our contributions are in both the-
oretical results and the experimental improvement of state-
of-the-art on real-world image generation. For the theoret-
ical contributions: (1) We found the global optimality of
Forest-GAN approximates to a mixture distribution of boot-
strapping datasets. This result indicates that the generator in
Forest-GAN has a natural character to defend against over-
fitting of the original data. (2) We proved the discriminative
forest is robust with an upper bound of generalization deter-
mined by the strength of individual discriminators as well
as the correlation between them. Such a proof provides the
foundation of understanding the relationship between dis-
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Figure 1: The framework of proposed Forest-GAN.

criminators and generation error, in that the more strength
of individual discriminators and less correlation among them
leads to a lower generalization error bound. For the experi-
mental contributions: (1) AutoGAN achieves a FID of 19.27
on STL10 (96 × 96, 105K images), significantly improv-
ing over the state of the art of 30.71. (2) And StyleGAN2
(ADA) achieves a new record FID of 6.87 from 9.22 on
LSUN-cat (256 × 256, 200K images). Besides, Forest-GAN
is also flexible as it can be combined with any loss function
and weight normalization. Since discriminators are indepen-
dently trained, Forest-GAN can be deployed with any paral-
lel computing paradigm.

Preliminaries
Generative Adversarial Networks (GANs)
A GAN is composed of a generator (G) and a discriminator
(D), which play an adversarial game. Specifically, G learns
the distribution pg over the real data distribution pr by map-
ping a random noise vector z ∼ pz to generate a sample
x ∼ pg . D is trained to maximize the probability of assign-
ing the correct labels to both real samples and fake samples.
Its value function V (G,D) is:

min
G

max
D

V (G,D)

= Ex∼pr
[φ(D(x))] + Ez∼pz

[φ(1−D(G(z)))] ,
(1)

where the φ is a measuring function. If φ(x) = log(x), Eq.
(1) is the objective function in a classic GAN (Goodfellow
et al. 2014). When φ(x) = x, Eq. (1) becomes a Wasserstein
GAN (WGAN) (Arjovsky, Chintala, and Bottou 2017).

Multi-Discriminator GANs
Multi-discriminator GANs consist of one generator and mul-
tiple discriminators. D2GAN (Nguyen et al. 2017) has one
generator G and two discriminators DΘ1

and DΘ2
that have

different parameters Θ1 and Θ2, playing three-player mini-
max optimization game:

min
G

max
{DΘk

}2
k=1

V (G, {DΘk}
2
k=1)

= αEx∼pr [φ(DΘ1(x))] + Ez∼pz [φ(1−DΘ1(G(z)))]

+ Ex∼pr [φ(1−DΘ2(x))] + βEz∼pz [φ(DΘ2(G(z)))] .

(2)

Given a sample x, DΘ1 rewards a high score if x is drawn
from the data distribution pr, and gives a low score if gener-
ated from the model distribution pg . In contrast,DΘ2 returns
a high score for x generated from pg while giving a low score
for a sample drawn from pr.

PAR-GAN (Chen et al. 2021) extended the D2GAN by
using disjoint partitions of input data for multiple different
discriminators. More specifically, a training dataset X =
{x1, x2, · · · , xn} with a distribution pX is randomly split
into K disjoint partitions Xr

1 , X
r
2 , · · · , Xr

K , each with the
distribution pXr

1
, pXr

2
, · · · , pXr

K
respectively. Then K dif-

ferent discriminators, {DΘk
}Kk=1, are trained independently

on theK partitions. The generator competes with all of these
K discriminators. The value function in PAR-GAN is:

min
G

max
{DΘk

}K
k=1

V (G, {DΘk}
K
k=1) =

1

K
×

K∑
k=1

{Ex∼pXr
k
[φ(DΘk (x))] + Ez∼pz [φ(1−DΘk (G(z)))]}

(3)

Compared to PAR-GAN, our proposed Forest-GAN is a
general multi-discriminator GAN framework that provides
a more effective solution by constructing a discriminative
forest instead of one discriminator. Intuitively, as the num-
ber of discriminators increases, the discriminative forest can
capture more complex distribution of real data, subsequently
leading the generator to produce samples with high quality
and diversity. However, for PAR-GAN, when the training
dataset is limited, more number of discriminators leads to
smaller data partitions for each discriminator, resulting in
more difficult for the discriminators to learn valid distribu-
tions on small data partitions. In contrast, Forest-GAN has
no such concerns, because its discriminators are constructed
on bootstrapping datasets which are sampling repeatedly
with replacement from the original dataset. Each bootstrap-
ping dataset has the same size with the original dataset.
Taking the advantage of bootstrapping strategy, Forest-GAN
theoretically guarantees the generalization of discriminative
forest, but D2GAN and PAR-GAN have no such properties.

Generalization Bound of Random Forest
RF is an ensemble learning method that applies bootstrap
aggregating (bagging) to construct multiple independent de-
cision trees for classification at training time. The predictive
output is the class voted by the majority of trees. Given a
training set (X,Y ) with size of n, an RF works by bootstrap-
ping samples repeatedly K times with replacement from
the training set (X,Y ) to generate bootstrapping datasets
{(Xk, Yk)}Kk=1, each with a size of n, and then fitting de-
cision trees {fk}Kk=1 on bootstrapping datasets. After train-
ing, the classification for unseen samples x′ is made by av-
eraging predictions from all individual trees on x′: f̂ =
1
K

∑K
k=1 fk(x

′) or taking the majority vote.
The generalization error of RF can be bounded as long

as the trees in RF are not correlated. Bootstrap sampling is
an effective solution to de-correlate trees by showing them
different training sets, as sampling with replacement ensures
each bootstrap is independent. Since sampling is conducted
with replacement, some observations may be repeated in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11339



each bootstrapping dataset (Xk, Yk). For a limited large
size n, each dataset (Xk, Yk) is expected to have a fraction
(1−1/e ≈ 63.2%) of unique observations of (X,Y ). The re-
maining observations are called out-of-bag datasets. To de-
correlate the trees, RF also includes feature bootstrapping
since some features are very strong predictors for the re-
sponse variable. Selecting these features in many trees will
cause them to be correlated. In this study, we will adapt the
key idea of RF to Forest-GAN, and show its effectiveness in
facilitating model generalization and diversity of GANs.

Discriminative Forest GAN
We proposed a novel discriminative Forest GAN (Forest-
GAN) that is composed of one generator and one discrim-
inative forest. The discriminative forest consists of mul-
tiple discriminators constructed upon bootstrap sampling
data. Formally, given a real dataset X = {xi}ni=1 that
consists of n samples and with distribution of pXr , we
utilized bootstrapping to repeatedly sample K times from
X to generate corresponding datasets {Xr

k}Kk=1, each of
size n and distribution of pXr

k
. The discriminative forest

D = {DΘk
(Xr

k)}Kk=1 is then constructed on bootstrapping
datasets, where DΘk

(Xr
k) represents the k-th discriminator

built on Xr
k with parameters Θk, and each Θk is initialized

independently with same distribution. The value function of
Forest-GAN can be defined as Eq (4).
min
G

max
{DΘk

}K
k=1

V (G, {DΘk}
K
k=1) = Ex∼pXr

k
[ϕ(φ(DΘk (x)))]

+ Ez∼pz [ϕ(φ(1−DΘk (G(z))))],
(4)

where φ is a measuring function, and ϕ is an aggregating
function which can be an average function, max function or
majority votes of multiple discriminators. Without loss of
generality, we use the average function in the following.

Algorithm 1 shows the training process of Forest-GAN.
Intuitively, since only the discriminative forest touches real
data in Forest-GAN, “averaging” individual discriminators’
outputs does not change the expected value but reduces its
variance, subsequently leading to a better and more gen-
eralized generator. In the following, we will show Forest-
GAN approximates a mixture distribution of bootstrapping
datasets. This result indicates that Forest-GAN has a natu-
ral character to defend overfitting of training samples. We
will then provide the robustness of discriminative forest in
Forest-GAN with an upper bound of the generalization er-
ror, and show that the bound is determined by the strength of
individual discriminators and the correlation between them.

Global Optimality
If we take the discriminative forest as a whole, Forest-GAN
can be considered as a standard GAN. This indicates that the
convergence of Forest-GAN can be guaranteed.

We first consider the global optimality of each individual
discriminator and the generator. Because each discriminator
is trained on its corresponding bootstrapping dataset, for any
fixed generator G, the optimal discriminator DΘk

on boot-
strapping dataset Xr

k with distribution of pXr
k

are:

D∗
Θk

(x) =
pXr

k
(x)

pXr
k
(x) + pg(x)

. (5)

Algorithm 1: Training process of Forest-GAN.
Input: Real data Xr, with n samples and distribution

of pXr ; Random noise z is sampled from a
normal distribution pz; K is the number of
individual discriminators in Forest-GAN.

Output: Trained generator GΘg and discriminative
forest {DΘk

}Kk=1.

Initialize generator G with random weights Θg;
for Number of individual discriminators K do

Initialize each discriminator DΘk
with i.i.d

weights Θk;
Bootstrap sample from real data Xr with
replacement to produce Xr

k , with a sample size
of n and distribution of pXr

k
;

for Number of training iterations do
for Number of individual discriminators K do

Sample a batch of m noisy samples
{z1, z2, · · · , zm} from a noise prior pz;

Sample a batch of m real samples
{x1, x2, · · · , xm} from Xr

k dataset;
Update the discriminator DΘk

ascendingly by
following its stochastic gradient:
∇Θk

1
m

∑m
i=1[φ(DΘk

(xi)) + φ(1−
DΘk

(G(z)))] .
for Number of individual discriminators K do

Sample a batch of m noisy samples
{z1, z2, · · · , zm} from a noise prior pz;

Calculate the generator’s stochastic gradient
competed with DΘk

:
∆Θg

k
= ∇Θg

1
m

∑m
i=1[φ(1−DΘk

(G(z)))] .

Update the generator descendingly by following
the mean of all generators’ stochastic gradients:
1
K

∑K
i=1 ∆Θg

k
.

As each bootstrapping dataset is independently sampled
from the original dataset with replacement, more than 36%
samples of the original dataset are out-of-the-bag. Subse-
quently, when the training data is limited in large size, the
bootstrapping dataset distributions {pXr

k
}Kk=1 are different.

According to Eq. (5), the global optimality of discriminators
is slightly different.

We next consider the global optimality of generator G.
Given K individual discriminators that have achieved their
optimal solutions {D∗

Θk
(x)}Kk=1. The globally optimized so-

lution of the generator is achieved if and only if G learns
the minimum Jensen-Shannon divergence (JSD) of all boot-
strapping datasets.

min
G

V (G, {D∗
Θk

}Kk=1) ⇔ min
pg

K∑
k=1

JSD(pXr
k
∥ pg) . (6)

This result demonstrates that the global solution of pg ap-
proximates a mixture distribution of all bootstrapping distri-
butions {pXr

k
}Kk=1 when the train dataset is limited, which

indicates that Forest-GAN has a natural character to defend
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overfitting of original samples.
The proof can be found in Appendix A. Although Forest-

GAN has global optimality in formulation similar to that of
PAR-GAN, the bootstrapping datasets lead Forest-GAN to
learn more general distribution. We also note that the global
optimality of individual discriminators depends on the dis-
tribution of pXr

k
and the distribution of pg(x). But as in the

condition of Eq. (5), with any fixed generator, discrimina-
tors approximate to their global optimalities independently.
However, the learned discriminators are not exactly indepen-
dent, because during training, the generator receives signals
from all discriminators to update itself, and then each dis-
criminator is trained with the generated samples from the
shared generator. This issue will increase the correlation
among individual discriminators. We will thus discuss the
effect of correlation of discriminators to the generalization
bound of discriminative forest in the next subsection.

Generalization Bound of a Discriminative Forest
In this section, we prove that a discriminative forest can
achieve high capacity while keeping the robustness within
a generalization bound. As a discriminative forest is con-
structed following the strategy of RF, we utilize the margin
function of RF (Breiman 2001) to derive the upper bound of
generalization error of discriminative forest. Formally, given
K independent decision trees {TΘk

(x)}Kk=1 with the train-
ing set (X,Y ), the raw margin function of RF is defined as:

frm(TΘ(X,Y )) =
1

K

K∑
k=1

I(TΘk
(X) = Y )

−max
j ̸=Y

1

K

K∑
k=1

I(TΘk
(X) = j) ,

(7)

where I(·) can be an indicator function or activation func-
tion that outputs probability ranging [0,1], and TΘ(X,Y ) is
the decision tree with a set of independent weights Θ trained
in dataset (X,Y ). The margin measures the extent to which
the average difference at (X,Y ) for the right class exceeds
any other class. For a large number of trees, the raw margin
function converges to

fm(DΘ(X,Y )) =P (TΘ(X) = Y )

−max
j ̸=Y

P (TΘ(X) = j). (8)

Specifically in Forest-GAN, the discriminative forest is a
binary classifier, where the training set (X,Y ) consists of
the real data (Xr, 1) and generated data (Xg, 0).
Definition 1. The margin function of a discriminative for-
est D with a large number of individual discriminators is
defined as :

ψ(DΘ(X,Y )) = 2 ∗ P (DΘ(X) = Y )− 1 . (9)

When the margin function ψ(DΘ(X,Y )) is lower than 0,
the discriminative forest makes a wrong prediction. Thus,
the discriminative generalization error can be defined as a
probability that D can’t distinguish correctly whether an in-
put is real or not.

Definition 2. The generalization error of the discriminative
forest D is defined as

ΨD = P (ψ(DΘ(X,Y )) < 0) . (10)

The larger the margin is, the more confidence the dis-
criminative forest is for classification. Thus, the strength of
the discriminative forest can be defined as its expectation
of margin function s = E[ψ(DΘ(X,Y ))], which measures
how accurate each individual discriminator is. We define
the correlation between two members of the discriminative
forest as ρ(DΘ, DΘ′), and the mean value of correlation is
ρ̄ = E[ρ(DΘ, DΘ′)], which is a result of the same architec-
ture and feature space. The upper bound of discriminative
error can be derived in terms of the expected strength s and
mean correlation ρ̄.
Theorem 1. The upper bound on the generalization error of
the discriminative forest D is given by

ΨD ≤ ρ̄(1− s2)/s2. (11)

The proof can be found in Appendix B. Theorem 1 indi-
cates that the generalization error of discriminative forest is
dependent on two terms, namely the strength s of individual
discriminators and the mean correlation ρ̄ among them in
terms of the margin function. Hence, these two terms, s and
ρ̄, form the foundation of understanding how to reduce the
upper bound of generalization error. The more strength of
individual discriminators and less correlation among them,
the lower is the generalization error bound of the discrimina-
tive forest. But the limitation of Theorem 1 is that it doesn’t
give a way to calculate the correlation and strength. Specif-
ically, the shared generator among multiple discriminators
could make them correlated. We will discuss some strate-
gies to reduce the correlation in Discussion section.

Results
Experimental settings. We conducted evaluation on sim-
ulated data, real-word images STL10 (96 × 96, 105K im-
ages) (Coates, Ng, and Lee 2011) and LSUN-Cat(256×256,
200K images) (Yu et al. 2015), respectively. We first in-
vestigated the effectiveness of Forest-GAN and visualized
the changes of diversity in generated samples on simu-
lated data. The simulated data was generated using a 2D
Gaussian Mixture Model (2D-GMM) with 9 mixture com-
ponents. Then we employed the AutoGAN (Gong et al.
2019) as a basis model on STL10 dataset to evaluate the
effect of capacity of discriminative forest by controlling
the number of total parameters. We also employed Style-
GAN2 (Karras et al. 2019) as the basis model on LSUN-cat
dataset to evaluate the improvement of Forest-GAN on the
large and high-resolution dataset. Since more efficient gen-
eralization error bound may be established when the num-
ber of individual discriminators K is larger, we evaluated
Forest-GAN with K=1,2,5,10,20,50 on simulated data. But
considering the time-consuming of training, we evaluated
Forest-GAN with K=1,2,5,10 on STL10 and with K=1,5
on LSUN-cat. To highlight the effectiveness of Forest-GAN,
we kept the backbone of basis methods, other than the num-
ber of discriminators. Implementation details are described
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Figure 2: Illustration of effectiveness of discriminative forest on simulated data. (A) Comparison of mode distribution, density
estimation and distribution of discriminative forest’s scores. (B) Precision and recall curves of Forest-GAN during training.

in Appendix C. Implementation details can be found at
https://github.com/chen-bioinfo/Forest-GAN.

Metrics. As common metrics such as Fréchet Inception
Distance (FID) (Heusel et al. 2017) and Inception Score (IS)
(Salimans et al. 2016) are only able to distinguish sample
quality but the coverage of the sample distribution, we also
evaluated the generated distributions of GANs using preci-
sion (P) and recall (R) (Sajjadi et al. 2018; Kynkäänniemi
et al. 2019), which disentangle the divergence into two di-
mensions to separately measure the generative quality and
diversity. The higher score of Precision means the model
can learn more realistic modes from real dataset, and the
higher score of Recall means more modes are recalled
from real dataset. While the original formulation of preci-
sion and recall fails to consider distribution density in the
high-dimensional feature space, we modified the conditional
function by adding a density constraint λ ≥ dg

dr
≥ 1

λ , where
dg and dr are the radius of hypersphere in generated space
and real data space, and λ was optimized as 3 on simulated
data. Thus, we set λ = 3 in this study. Above metrics are
calculated based on the high-dimensional feature space of
the Inception-V3 network (Simonyan and Zisserman 2014).

Effectiveness of a Discriminative Forest on
Simulated Data
We first used simulated data to investigate the capability
of Forest-GAN in improving generative diversity and en-
hancing density estimation. The simulated dataset includes
10,000 points with 9 mixture components, where the cen-
troids of these components are [-2, 2], [0, 2], [2, 2], [-2, 0],
[0, 0], [2, 0], [-2, -2], [0, -2], [2, -2] and variances are 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, respectively. As
each component has the same number of points, the densities
of 9 components are decreasing. Capturing accurate density
is more challengeable than only learning the components.

Improving generative diversity. We evaluated genera-
tive diversity by qualitatively visualizing the generated mode
coverage and quantitatively calculating precision and re-

call. The ground truth and generated distributions produced
by Forest-GAN are shown in Figure 2A. When K = 1,
the learned distribution only has four components out of 9
components in the real distribution. More components are
learned asK increases. Forest-GANs learn all 9 modes until
K ≥ 20, and its performance is further improved when K is
50, achieving a precision of 0.896 and recall of 0.906.

Enhancing density estimation. Compared to mode cov-
erage, density estimation is to learn the probability mass
function, requiring more close approximation to real dis-
tribution. We calculated the density of each component us-
ing 2D-GMM, and visualized the densities of simulated and
generated modes in 3D plots (Figure 2A). As the number
K increases, the learned densities of components are sig-
nificantly improved. Both Forest-GAN with K = 20 and
K = 50 learn all 9 components, but Forest-GAN at K = 50
provide more accurate density estimation of the target distri-
bution. These results indicate that a larger K provides more
promising generative capability.

Reducing overfitting of discriminative forest. When the
number of discriminators is small, Forest-GANs suffer from
the mode collapse. To investigate the reason, we visualized
the distribution of discriminative forest’s outputs (Figure
2A). It’s obvious that the discriminative forest is overfit-
ting when K = 1, and the overfitting is inhibited as the
K increases. We can draw a similar conclusion according to
the precision and recall curves during training (Figure 2B).
The recall of Forest-GANs with K = {1, 2} decreases af-
ter training 1,000 epochs, which indicates that models with
small K are prone to overfit, guiding the generator towards
mode collapse. As K increases, discriminative forest in-
hibits overfitting and leads the generator to be more diverse.

Enhancement of AutoGAN by a Discriminative
Forest on STL10 Dataset
We further evaluated the enhancement of discriminative for-
est framework on existing GANs. We first employed Auto-
GAN (Gong et al. 2019) as the basis model on a popular
real-world image dataset, STL10 (96 × 96, 105K images).
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Figure 3: Performance comparison between Forest-GAN and PAR-GAN on STL dataset with 100K samples and 50K samples.

Method FID IS Precision Recall

Para
1M

K=1 30.71 9.42 0.538 0.471
K=2 28.01 9.82 0.542 0.509
K=5 25.88 9.82 0.564 0.540
K=10 24.52 9.64 0.556 0.554

Para
2M

K=1 29.10 9.23 0.538 0.520
K=2 25.46 9.66 0.573 0.556
K=5 23.08 10.09 0.577 0.556
K=10 22.72 10.07 0.565 0.572

Para
5M

K=1 27.96 9.30 0.530 0.535
K=2 26.98 9.53 0.600 0.574
K=5 22.21 9.79 0.593 0.574
K=10 19.82 10.03 0.594 0.605

Para
10M

K=1 31.23 9.19 0.515 0.501
K=2 25.79 9.56 0.578 0.548
K=5 21.78 8.89 0.606 0.562
K=10 19.27 10.12 0.607 0.596

Table 1: The performance of AutoGAN is enhanced by dis-
criminative forest on STL10 in different parameter settings.
Para indicates the total number of parameters in discrimina-
tor forest. 1M means 1 Million.

The details of AutoGAN are shown in Appendix D.
Keeping same architecture of individual discrimina-

tors. We kept the backbone and training hyperparameters
of the generator and discriminator in AutoGAN, and only
increased the number of discriminators according to the
discriminative forest framework settings. All discriminators
have the same architecture, but are independently initialized
and trained on their own bootstrapping datasets. We inves-
tigated the performance of Forest-GANs with K=1,2,5,10.
The discriminator of the original AutoGAN has 1 Million
parameters. For K discriminators in a discriminator forest,
the total parameters become as K times, as all discrimina-
tors have the same architecture. Thus, with keeping same
architecture of discriminators, we sought to compare the re-
sults of Para=1M (K=1), Para=2M (K=2), Para=5M (K=5)
and Para=10M (K=10) in Table 1. These results show that
when K increases, discriminator forest indeed improves the
generated sample quality of AutoGAN’s generator in terms
of FID, IS and Precision, and generative diversity in terms of
Recall. The Forest-GAN with K=10 significantly improved

the generated sample quality of AutoGAN with a new record
FID of 19.27 from the FID of 30.71 achieved by original Au-
toGAN, as well as a generative diversity with recall of 0.596.
As training more epochs (Figure D2), we observed that the
model with fewer discriminators tends to deteriorate after it
reaches an optimal value, but the discriminator forest with
more discriminators can effectively alleviate this dilemma.

Keeping the total number of parameters in a discrimi-
nator forest. For a fair comparison, we also evaluated the
effectiveness of Forest-GAN with the same total parame-
ters. The number of parameters in discriminator forest is
controlled by scaling the width in each layer rather than ad-
justing its depth. Same as above comparison, we set up four
experiments with total parameters of 1M, 2M, 5M and 10M,
respectively. Each of them conducted four experiments with
K=1,2,5,10, which indicates that there are Para/K param-
eters per discriminator (Table 1 and Figure D2). With the
same number of parameters, in other words, discriminator
forest has the same capacity, the generated sample quality is
improved as the K increases in terms of FID, IS and Preci-
sion, as well as the generative diversity in terms of Recall.
However, with the same number of discriminators, when the
total number of parameters increases, in other words, the
discriminator forest has more capacity, but the generative
quality and diversity are not improved. These results indi-
cate discriminator forest can own very large capacity with-
out worries about overfitting so that capturing and modeling
more complex statistics in real-world data distribution.

Comparison with PAR-GAN. Considering the SOTA
performance of PAR-GAN and its correlation with Forest-
GAN, we compared them on STL10 dataset with 50K and
100K images (Figure 3). It is obvious that Forest-GAN
outperforms PAR-GAN under all comparisons. When com-
pared on the STL10(50K images), Forest-GAN becomes
slightly better as the number of discriminators K increases.
However, PAR-GAN becomes worse. When compared on
the STL10(100K images), PAR-GAN(K=2) suffers from
mode collapse. Although PAR-GAN(K=5) improves the
performance, it’s still significantly worse than Forest-GAN.
These results are not surprising. PAR-GAN builds multi-
ple discriminators on disjoint partitions of input data. Sub-
sequently, PAR-GAN could suffer from underfitting, espe-
cially when it has a large number of discriminators trained
on a small dataset, as the partitions of the small dataset have
fewer samples that are not enough to optimize individual dis-
criminators. While Forest-GAN builds multiple discrimina-
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Original
StyleGAN2-ADA

PAR-GAN
(K=5)

Forest-GAN
(K=5)

FID 9.22 7.45 6.87
Precision 0.595 0.624 0.625

Recall 0.202 0.274 0.279
PPL ↓ 541 485 482

Table 2: Forest-GAN improves the generation performance.

Figure 4: Comparison of training process and generated im-
ages by original model, PAR-GAN and Forest-GAN. (A)
The FID curves during training process. (B) The style space
interpolation.

tors on bootstrapping datasets that have the same size with
the original dataset. Thus, Forest-GAN has no such issue.

Improvement on High-Resolution Images
To illustrate the validity of Forest-GAN on more com-
plex real-world images, we selected StyleGAN2-ADA (Kar-
ras et al. 2020) as the original model on a large and
high-resolution image dataset, LSUN-Cat (256 × 256,
200K images). The raw images were prepared the same as
StyleGAN2-ADA. We fitted StyleGAN2-ADA into the dis-
criminative framework with 5 discriminators (K=5), while
keeping others settings. We make the similar changes to
PAR-GAN for the fair comparison between the Forest-GAN
and PAR-GAN.

Improving the quality and diversity. Table 2 shows
PAR-GAN improves the original model from 9.22 to 7.43
on FID, while the Forest-GAN further improves the perfor-
mance to a new record FID of 6.87, even higher than that
trained on 1.6M images, whose best FID is 6.93 (Karras
et al. 2019). The generative diversity is also significantly im-
proved in terms of Recall. Besides, the FID curves of these
three models are reproduced to compare the convergence of

training, as shown in Figure 4A, where discriminator forest
can further accelerate the optimization of the generator. Note
that they may be further improved if training more epochs.

Better interpolation generation. Since above results
show the generative diversity is significantly improved, the
style space interpolation is further explored. We employed
perceptual path length (PPL) (Karras et al. 2019) to measure
the smoothness of generated samples. Discriminator forest
achieves a PPL of 482, which is much better than the PPL
of 541 achieved by original StyleGAN2-ADA and 485 by
PAR-GAN. And Figure 4B shows the generative images and
style space interpolation from Forest-GAN and the original
model. The generator from Forest-GAN can generate realis-
tic images from intermediate style, however, the one from
the original model fails to restore the intermediate mode,
which indicates the generator from Forest-GAN captured
high generative diversity. Although the PAR-GAN shows
comparable image interpolation performance with Forest-
GAN, its generated images lack reality in the naked eye,
which is consistent with its performance on FID.

Discussion
In this study, we introduce a discriminative forest GAN
(Forest-GAN) framework to improve generative diversity
in GANs. The discriminative forest in Forest-GAN is com-
posed of multiple independent discriminators built on boot-
strap sampling data. We have proved that the discrimina-
tive forest has an upper bound of generalization error that
depends on the strength of individual discriminators and
the correlation among discriminators. Experimental results
demonstrate that a large number of discriminators indeed
reduces the generalization error to improve diversity and
quality of generated samples. A discriminative forest thus
greatly improves the generative quality and diversity of ex-
isting GANs with achieving state-of-the-art performance.

Although a discriminative forest has shown its promis-
ing performance in improving generative diversity and qual-
ity, several strategies should be explored in future. (1) De-
correlation between individual discriminators. There is
still a need to further reduce the correlatiosn among in-
dividual discriminators. De-correlating techniques such as
feature bootstrapping, diverse neural network architectures,
and adding random noises to input, are worth exploring to
investigate their effect on the generalization of discrimina-
tive forest in Forest-GAN. (2) Aggregating function. In this
study, we average the gradients of all discriminators to up-
date the generator. Recent aggregation functions such as that
in GMAN (Durugkar et al. 2017) describe a soft version of
one Pythagorean means parameterized λ to aggregate gra-
dients, where λ = 0 corresponds to mean and the max is
recovered as λ → ∞. This kind of aggregating function
may work in Forest-GAN for future exploration. (3) Par-
allel computing. Since individual discriminators are inde-
pendently trained, Forest-GAN can be deployed to a parallel
computing paradigm, and thus can be adapted to distributed
machine learning. (4) Pre-trained discriminators. Several
pre-trained classifiers (Kumari et al. 2021) can be integrated
into our multi-discriminator adversarial framework to im-
prove the Forest-GAN training.
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