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Abstract

Most reinforcement learning algorithms seek a single opti-
mal strategy that solves a given task. However, it can often
be valuable to learn a diverse set of solutions, for instance, to
make an agent’s interaction with users more engaging, or im-
prove the robustness of a policy to an unexpected perturbance.
We propose Diversity-Guided Policy Optimization (DGPO),
an on-policy algorithm that discovers multiple strategies for
solving a given task. Unlike prior work, it achieves this with
a shared policy network trained over a single run. Specifi-
cally, we design an intrinsic reward based on an information-
theoretic diversity objective. Our final objective alternately
constraints on the diversity of the strategies and on the extrin-
sic reward. We solve the constrained optimization problem
by casting it as a probabilistic inference task and use policy
iteration to maximize the derived lower bound. Experimen-
tal results show that our method efficiently discovers diverse
strategies in a wide variety of reinforcement learning tasks.
Compared to baseline methods, DGPO achieves comparable
rewards, while discovering more diverse strategies, and often
with better sample efficiency.

Introduction
Reinforcement Learning (RL) has pioneered breakthroughs
in various domains ranging from video games (Vinyals et al.
2019; Berner et al. 2019; Huang et al. 2019a, 2021) to
robotics (Raffin et al. 2018; Yu et al. 2021b). While its
achievements are remarkable, RL is not devoid of chal-
lenges. A paramount issue is the innate pursuit of RL algo-
rithms for a singular optimal solution, even when a myriad
of equally viable strategies exists. This tunnel vision for op-
timization can inadvertently introduce weaknesses.

For instance, RL algorithms are known for ”overfitting”
tasks. By zeroing in on just one strategy, they often miss out
on exploring a wealth of high-quality alternative solutions.
This over-specialization renders the agent vulnerable to un-
predictable environmental changes, as it lacks the robustness
multiple strategies could have offered (Kumar et al. 2020).
In competitive arenas, predictability can be an Achilles heel,
with adversaries exploiting the agent’s inflexibility. A di-
versified approach would obfuscate the agent’s strategies,
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improving its competitive edge (Lanctot et al. 2017). Fur-
thermore, in domains like dialogue systems, monotony can
dull user interactions, whereas varied responses could sig-
nificantly enhance user experience (Li et al. 2016; Gao et al.
2019; Pavel, Budulan, and Rebedea 2020; Xu et al. 2022;
Chow et al. 2022).

For instance, RL algorithms are known for ”overfitting”
tasks. By zeroing in on just one strategy, they often miss out
on exploring a wealth of high-quality alternative solutions.
This over-specialization renders the agent vulnerable to un-
predictable environmental changes, as it lacks the robustness
multiple strategies could have offered (Kumar et al. 2020).
In competitive arenas, predictability can be an Achilles heel,
with adversaries exploiting the agent’s inflexibility. A di-
versified approach would obfuscate the agent’s strategies,
improving its competitive edge (Lanctot et al. 2017). Fur-
thermore, in domains like dialogue systems, monotony can
dull user interactions, whereas varied responses could sig-
nificantly enhance user experience (Li et al. 2016; Gao et al.
2019; Pavel, Budulan, and Rebedea 2020; Xu et al. 2022;
Chow et al. 2022).

We identify two key scenarios where multiple strategies
are beneficial: 1. The margin for error is inconsequential to
the task’s success. In such cases, agents can operate opti-
mally without adhering strictly to the best strategy, enabling
a spread of near-optimal strategies (Zahavy et al. 2021).
2. The task inherently allows multiple optimal solutions,
such as a maze offering two equally efficient paths (Osa,
Tangkaratt, and Sugiyama 2021; Zhou et al. 2022).

Crafting an algorithm that harnesses diverse high-reward
solutions efficiently is intricate. With the Diversity-Guided
Policy Optimization (DGPO) we propose, we aim to address
several requisites for such an algorithm:

Strategy Representation: the diversity of a policy suite
is evaluated in DGPO using a metric grounded on the mu-
tual information between states and the latent variable, im-
plemented through a learned discriminator.

Diversity Evaluation: The diversity of a policy suite is
evaluated in DGPO using a metric grounded on the mutual
information between states and the latent variable, imple-
mented through a learned discriminator.

Diversity Exploration: DGPO embarks on exploration
that encourages deviation from familiar strategies while
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safeguarding performance. This is achieved using a con-
strained optimization method that harmonizes performance
and diversity.

Sample Efficiency: Unlike predecessors like RSPO
(Zhou et al. 2022) and RPG (Tang et al. 2021), which neces-
sitated multiple networks and training phases, DGPO em-
ploys a shared network for concurrent learning of strategies,
resulting in superior sample efficiency.

In encapsulation, this work makes three pivotal contribu-
tions: (1) We introduce a structured approach to discover di-
verse high-reward policies by framing it as two constrained
optimization problems, coupled with tailored diversity re-
wards to guide the policy learning. (2) DGPO, a novel on-
policy algorithm, is unveiled, designed to seamlessly un-
cover a diverse suite of high-quality strategies. (3) Our em-
pirical evaluations elucidate that DGPO not only holds its
own against benchmarks but frequently surpasses them in
terms of diversity, performance, and sample efficiency.

Related Works
In this section, we provide an overview of prior research that
encompasses two main aspects: the representation of rein-
forcement learning (RL) as a probabilistic graphical model
(PGM), and the explicit integration of diversity learning with
RL.

Reinforcement Learning as Probabilistic Graphical
Model
PGM’s have proven to be a useful way of framing the
RL problem (Ziebart et al. 2008; Furmston and Barber
2010; Levine 2018). The soft actor-critic (SAC) algo-
rithm (Haarnoja et al. 2018b) formalizes RL as probabilis-
tic inference and maximizes an evidence lower bound by
adding an entropy term to the training objective, encour-
aging exploration. PGM’s also serve as useful tools for
studying partially observable Markov decision processes
(POMDP’s) (Igl et al. 2018; Huang et al. 2019b; Lee et al.
2019). Haarnoja et al. (Haarnoja et al. 2018a) use PGM’s
to construct a hierarchical reinforcement learning algorithm.
Hausman et al. (Hausman et al. 2018) optimize a multi-task
policy through a variational bound, allowing for the discov-
ery of multiple solutions with a minimum number of dis-
tinct skills. In this work, we modify the PGM of a Markov
decision process (MDP) by introducing a latent variable to
induce diversity into the MDP. We then derive the evidence
lower bound of the new PGM, allowing us to construct a
novel RL algorithm.

Diversity in Reinforcement Learning
Achieving diversity has been studied in various contexts in
RL (Mouret and Doncieux 2009; Mohamed and Rezende
2015; Eysenbach et al. 2018; Osa, Tangkaratt, and Sugiyama
2021; Derek and Isola 2021). Eysenbach et al. (Eysen-
bach et al. 2018) proposed DIAYN to maximize the mu-
tual information between states and skills, which results in
a maximum entropy policy. Osa et al. (Osa, Tangkaratt, and
Sugiyama 2021) proposed a method that can learn infinitely

Figure 1: (a) The graphical model of MDPs. (b) The graph-
ical model of diverse MDPs. Grey nodes are observed, and
white nodes are hidden. As introduced in (Levine 2018), Ot

is a binary random variable, where Ot = 1 denotes that the
action is optimal at time t, and Ot = 0 denotes that the ac-
tion is not optimal.

many solutions by training a policy conditioned on a con-
tinuous or discrete low-dimensional latent variable. Their
method can learn diverse solutions in continuous control
tasks via variational information maximization. There is also
a growing corpus of work on diversity in multi-agent re-
inforcement learning (Mahajan et al. 2019; Lee, Yang, and
Lim 2019; He, Shao, and Ji 2020). Mahajan et al. (Mahajan
et al. 2019) proposed MAVEN, a method that overcomes the
detrimental effects of QMIX’s (Rashid et al. 2018) mono-
tonicity constraint on exploration by maximizing the mutual
information between latent variables and trajectories. How-
ever, their method can not find multiple diverse strategies
for a specified task. He et al. (He, Shao, and Ji 2020) in-
vestigated multi-agent algorithms for learning diverse skills
using information bottlenecks with unsupervised rewards.
However, their method operates in an unsupervised manner,
without external rewards. More recently, RSPO (Zhou et al.
2022) was proposed to derive diverse strategies. However, it
requires multiple training stages, which results in poor sam-
ple efficiency – our method trains diverse strategies simulta-
neously which reduces sample complexity.

Preliminaries
RL can be formalized as an MDP. An MDP is a tuple
(S,A, P, r, γ), where S and A represent state and action
space respectively, P (s, a) : S × A → S is the transition
probability density, r(s, a) : S × A → R is a reward func-
tion, and γ ∈ [0, 1] is the discount factor.

Latent conditioned policy: We consider a policy πθ that
is conditioned on latent variable z to model diverse strate-
gies, where θ represents policy parameters. For compact-
ness, we will omit θ in our notation. We denote the latent-
conditioned policy as π(a|s, z) and a latent conditioned
critic network as V π(s, z). For each episode, a single latent
variable is sampled, z ∼ p(z) from a categorical distribution
with nz categories. In our work, we choose p(z) to be a uni-
form distribution. The agent then conditions on this latent
code z, to produce a trajectory τz .

Discounted state occupancy: The discounted state oc-
cupancy measure for policy π is defined as ρπ(s) = (1 −
γ)

∑∞
t=0 γ

tPπt (s), where Pπt (s) is the probability that pol-
icy π visit state s at time t. The goal of the RL agent is to
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train a policy π to maximize the discounted accumulated re-
ward J(θ) = Ez∼p(z),s∼ρπ(s),a∼π(·|s,z)[

∑
t γ

tr(st, at)].
RL as probabilistic graphical model: An MDP can

be framed as a probabilistic graphical model as shown in
Fig. 1(a) and the optimal control problem can be solved as a
probabilistic inference task (Levine 2018). In this paper, we
propose a new probabilistic graphical model, denoted as the
diverse MDP, as shown in Fig. 1(b). We introduce a binary
random variable Ot and an integer random variable z into
the model. Ot = 1 denotes that action at is optimal at time
step t and Ot = 0 denotes it is not. Previous work(Levine
2018) has defined, p(Ot = 1|st, at, z) ∝ exp(r(st, at)).
The evidence lower bound (ELBO) is given by:

log p(O1:T )

≥ Eτ∼Dπ
[log p(O1:T , a1:T , s1:T , z)

− log π(a1:T , s1:T , z)]

= Eτ∼Dπ [log p(Ot|st, at, z)
+ log p(z|st, at)− log π(at|st, z)],

(1)

where the trajectory τ = {a1:T , s1:T , z} is sampled from a
trajectory dataset Dπ . The proof of Eq. 1 can be found in
Appendix C. Note that the introduction of z gives rise to
the term p(z|st, at), which represents how identifiable the
latent code is from the current policy behavior. This will be
a crucial ingredient of DGPO, guiding the policy to explore
and discover a set of diverse strategies.

Methodology
In this section, we will introduce our algorithm in detail. Our
algorithm can be divided into two stages. In the first stage,
we will focus on improving the agent’s performance while
maintaining its diversity. In the second stage, we will focus
more on enhancing diverse strategies. Finally, we will intro-
duce our final algorithm, denoted as Diversity-Guided Pol-
icy Optimization (DGPO), that unifies the two-stage training
processes and also the implementation details.

Diversity Measurement
In this section, we present a diversity score capable of eval-
uating the diversity of a given set of policies. We then derive
a diversity objective from this score to facilitate exploration.
Eysenbach et al. (Eysenbach et al. 2018) proposed a diver-
sity score based on mutual information between states and
latent codes z,

I(s; z) = Ez∼p(z),s∼ρπ(s)[log p(z|s)− log p(z)], (2)

where I(·, ·) stands for mutual information. As we can
not directly calculate p(z|s), we approximate it with a
learned discriminator qϕ(z|s) and derive the ELBO as
Ez∼p(z),s∼ρπ(s)[log qϕ(z|s)− log p(z)], where ϕ are the pa-
rameters of the discriminator network.

Mutual information is equal to the KL distance be-
tween the state marginal distribution of one policy and
the average state marginal distribution, i.e., I(s; z) =
Ez∼p(z)[DKL(ρ

π(s|z)||ρπ(s))] (Eysenbach, Salakhutdi-
nov, and Levine 2021). This means that I(s; z) captures the

diversity averaged over the whole set of policies. In DGPO,
we wish to ensure that any given pair of strategies is dif-
ferent, rather than on average. As such, we define a novel,
stricter diversity score,

DIV(πθ) = Ez∼p(z)[min
z′ ̸=z

DKL(ρ
πθ (s|z)||ρπθ (s|z′))]. (3)

Instead of comparing policy with the average state
marginal distribution, we compare it with the nearest pol-
icy in ρπ(s) space. In this way, setting DIV(πθ) ≥ δ means
that each pair of policies have at least δ distance in terms
of expectation. In order to optimize Eq. 3, we first derive a
lower bound,

DIV(πθ) ≥ Ez,s
[
min
z′ ̸=z

log
p(z|s)

p(z|s) + p(z′|s)

]
. (4)

The proof is given in Appendix D. To maximize this lower
bound, we first assume we can learn a latent code discrim-
inator, qϕ(z|s), to approximate p(z|s). We then define an
intrinsic reward,

rint = min
z′ ̸=z

log
qϕ(z|st+1)

qϕ(z|st+1) + qϕ(z′|st+1)
. (5)

This allows us to define our final diversity objective,

JDiv(θ) = Ez∼p(z),s∼ρπ(s),a∼π(·|s,z)[
∑
t

γtrint ]. (6)

A straightforward way to incorporate the diversity metric
into a PGM is defining elements in Eq. 1 as,

p(Ot = 1|st, at, z) = exp (r(st, at)) ,

p(z|st, at) = exp
(
rint

)
.

(7)

However, the simple combination of extrinsic and intrin-
sic rewards may lead to poor performance. In the following
paragraph, we formulate the algorithm as constrained op-
timization problems and mask elements in Eq. 7 based on
constraints to guide the policy to explore.

Stage 1: Diversity-Constrained Optimization
Strategies that solve a given RL task may be very distinct.
One can think of these as a set of discrete points in ρπ(s)
space – if the distance between the points is large, perturb-
ing around one single solution may not allow the discov-
ery of all optimal strategies. Thus, we formulate the policy
optimization process as a diversity-constrained optimization
problem,

max
πθ

J(θ), s.t. JDiv(θ) ≥ δ. (8)

Under this objective, individual policies are constrained
to keep a certain distance δ apart from each other, and sys-
tematically explore their own regions. We can introduce a
Lagrange multiplier λ to tackle this constrained optimiza-
tion problem,

max
πθ

min
λ≥0

J(θ) + λ(JDiv(θ)− δ)

≥max
πθ

Ez∼p(z),s∼ρπ(s)[min
λ≥0

Ea∼π(·|s,z)

[
∑
t

γtr(st, at)] + λ(
∑
t

γtrint − δ)].

(9)
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Figure 2: The overall framework of the DGPO algorithm. The top illustrates the way of calculating rtotalt , where maskr =
I[J(θ) ≥ Rtarget] and maskd = I[JDiv(θ) ≥ δ]. The center shows the network structure and the data flow of the DGPO
algorithm. The bottom shows the latent variable sampling process.

The proof can be found in Appendix E. Eq. 9 provides a
lower bound on the Lagrange multiplier objective, which can
be optimized more easily than the original problem. Eq. 9
can be interpreted as optimizing the extrinsic-rewards, J(θ),
when diversity is greater than some threshold. Otherwise,
the intrinsic rewards objective JDiv(θ) are optimized. From
another perspective, one can think of masking out terms in
elements in Eq. 1 based on a diversity metric. The updated
objective can be written,

p(Ot = 1|st, at, z) = exp (I[JDiv(θ) ≥ δ]r(st, at)) ,

p(z|st, at) = exp
(
(1− I[JDiv(θ) ≥ δ])rint

)
,

(10)

where I[·] is the indicator function.

Stage 2: Extrinsic-Reward-Constrained
Optimization
The objective developed in the previous section can return
a set of discrete optimal points. However, sometimes two
strategies may still converge to the same sub-optimal point.
This can destabilize the training process since both strate-
gies are attracted to the same optimal point but simultane-
ously repelled by each other. To stabilize the training process
and improve diversity, we relax the definition of “optimal”
and assume that a policy with accumulated extrinsic rewards
greater than some target value Rtarget is an optimal policy.
Thus, the policy optimization process can be formulated as
an extrinsic-reward-constrained optimization problem,

max
πθ

JDiv(θ), s.t. J(θ) ≥ Rtarget. (11)

This means that if two strategies try to converge to the
same sub-optimal point. They are allowed to find their des-
tiny in the neighborhood of the optimal point to further max-
imize the level of diversity. On the other hand, for those

policies that are already sufficiently distinct, the diversity
objective serves as an intrinsic reward to encourage explo-
ration. Similar to how we deal with diversity-constrained op-
timization. We implement Eq. 11 by injecting an extrinsic-
rewards-constraint into the framework. The updated ele-
ments in Eq. 1 can be defined as:

p(Ot = 1|st, at, z) = exp(r(st, at)),

p(z|st, at) = exp(I[J(θ) ≥ Rtarget]r
in
t ).

(12)

Diversity-Guided Policy Optimization
In this section, we will introduce our final algorithm which
unifies the two-stage training processes into one unified al-
gorithm We develop a new variation of PPO (Schulman et al.
2017) by considering policy network and critic network that
are conditioned on latent variable z, i.e., π(at|st, z). The
critic network is divided into two parts, i.e., V πψex

(o1:t, z)

and V πψin
(o1:t, z), where ψex and ψin are their parameters.

The parameters of critic networks can be trained by a tem-
poral difference (TD) loss (Sutton and Barto 2018):

L(ψex) =MSE
(
V πψex

(o1:t, z),

∞∑
t′=t

γt
′−tI[JDiv(θ) ≥ δ]r(st′ , at′)

)
,

L(ψin) =MSE
(
V πψin

(o1:t, z),
∞∑
t′=t

γt
′−t

[(1− I[JDiv(θ) ≥ δ]) + I [J(θ) ≥ Rtarget]] r
in
t′

)
,

(13)

where L(·) stands for loss function and MSE(·)
stands for mean square error. We maintain a
running average of V πψex

(st, z) to approximate
Es∼ρπ(s),a∼π(·|s)[

∑
t γ

tr(st, at)]. We also construct a
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Figure 3: Experimental results in two MPE scenarios – Spread (easy) and Spread (hard) – each with multiple optimal solutions.
(a) Plot showing extrinsic reward performance vs. how diverse the set of discovered strategies are. Positions in the upper–right
corner are preferred – DGPO is located here. (b) Plot showing at which point in training each optimal strategy is discovered.
Results show that only DGPO and RSPO can find all the solutions. But DGPO achieved over 1.7× and 15× speedup in
convergence speed compared to RSPO in the Spread (easy) and Spread (hard) scenarios, respectively.

discriminator qϕ(z|st) that takes the state as input and
predict the probability of latent variable z, where ϕ is
the parameter of the discriminator network. And the
discriminator can be trained in a supervised manner:

L(ϕ) = E(st,at,z)∼Dπ
[CE(qϕ(st), z)], (14)

where CE(·, ·) stands for cross entropy loss. We implement
DGPO by incorporating diversity-constrained optimization
and extrinsic-reward-constrained optimization into the same
framework, i.e., the total value of the state and the total re-
ward can be defined as below:

V πtotal(o1:t, z) = V πψin
(o1:t, z) + V πψex

(o1:t, z),

rtotalt = I[JDiv(θ) ≥ δ]r(st′ , at′)

+ [(1− I[JDiv(θ) ≥ δ]) + I [J(θ) ≥ Rtarget]] r
in
t′ .

(15)

In theory, it is not feasible to simultaneously conduct
diversity-constrained optimization and extrinsic-reward-
constrained optimization. As a result, the aforementioned
implementation serves as an approximation to the original
objective. We posit that this approximation is reasonable,
as the empirical findings demonstrate that the two training
stages are not concurrent. Fig. 2 shows the overall frame-
work of the DGPO algorithm. The detailed training process
of DGPO can be found in the Appendix G.

Experiments
In this section, we evaluate our algorithm on sev-
eral RL benchmarks – Multi-agent Particle Environment
(MPE) (Mordatch and Abbeel 2018), StarCraft Multi-
Agent Challenge (SMAC) (Samvelyan et al. 2019), and
Atari (Bellemare et al. 2013). We compare our algorithm to
four baseline algorithms:
MAPPO (Yu et al. 2021a): MAPPO adapts the single-agent
PPO (Schulman et al. 2017) algorithm to the multi-agent set-
ting by using a centralized value function with shared team-
based rewards.

DIAYN (Eysenbach et al. 2018): DIAYN trains agents with
a mutual-information based intrinsic reward to discover a
diverse set of skills. In our setup, these intrinsic rewards are
combined with extrinsic rewards.
SMERL (Kumar et al. 2020): SMERL maximizes a
weighted combination of intrinsic rewards and extrinsic re-
wards when the return of extrinsic reward is greater than
some given threshold.
RSPO (Zhou et al. 2022): RSPO is an iterative algorithm for
discovering a diverse set of quality strategies. It toggles be-
tween extrinsic and intrinsic rewards based on a trajectory-
based novelty measurement.

As far as possible, all methods use the same hyper-
parameters. However, there is some difference for RSPO, for
which we use the open-source implementation. (Full hyper-
parameters are listed in the Appendix B.) All experiments
were performed on a machine with 128 GB RAM, one 32-
core CPU, and one GeForce RTX 3090 GPU.

Multi-Agent Particle Environment
We evaluate on two scenarios shown per Fig. 5, Spread
(easy) and Spread (hard). In Spread (easy), there are four
landmarks and one agent. The agent starts from the center
and aims to reach one of the landmarks, giving four optimal
solutions. In Spread (hard), there are three agents and three
landmarks. Agents cooperate to cover all the landmarks and
avoid colliding with others, giving two optimal solutions.
Model weights are shared across agents.

Similar to (Parker-Holder et al. 2020), we intro-
duce a metric to quantitatively evaluate the diversity
score of the given set of policies, Π: MDiv(Π) =
1
nz

∑nz

i=1

∑nz

j=i+1 ln(∥Φ(πi)−Φ(πj)∥2), where Φ(π) is the
behavior embedding of the policy π. For MPE, Φ(π) is
represented by the concatenated agents’ positions over an
episode.

We set nz = 4 in Spread (easy) and nz = 2 in Spread
(hard) to test whether an algorithm can discover all optimal
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Figure 4: Plots showing extrinsic reward performance vs. the diversity of the set of discovered strategies. (a) In two Atari games.
(b) In two SMAC scenarios.

(a) Easy (b) Hard

Figure 5: The initial state of Spread (easy) and Spread
(hard). In both scenarios, Agents (orange dots) aim to reach
one of the destinies (blue dots). We highlight the optimal
solutions with arrows of different colors.

solutions. The performance, diversity score, and steps re-
quired for convergence for all algorithms are given in Fig. 3.
Results are averaged over five seeds.

DGPO provides a favorable combination of high diversity,
and high reward. It also exhibits rapid convergence. MAPPO
only recovers a single solution in each setting. DIAYN only
finds 2/4 optimal solutions in Spread (easy) and often only
1/2 in Spread (hard). This supports our earlier claim that a
naive combination of extrinsic and intrinsic rewards is in-
sufficient. SMERL is only able to discover new strategies
by perturbing around a discovered global optimal. Thus, it
is unable to find more than one optimal strategy. RSPO is
the only other method also to recover all optimal strategies.
However, relative to DGPO, RSPO achieves lower overall
reward and slower convergence.

Atari
We evaluate DGPO on the Atari games Pong and Boxing,
to test the performance for tasks with image observations.
DGPO’s diversity metric is defined similarly to the one used
in MPE (full details in Appendix F). In each environment,
we set nz = 2. Results are summarized in Fig. 4(a), av-
eraged over five seeds. We also reported the experimental
results for nz = 10 in Appendix I. DGPO again delivers
a favorable trade-off between external reward and strategy
diversity. Fig. 6(a) visualizes the results of the two strate-

𝑧 = 0 𝑧 = 1

(a) Pong

𝑧 = 0 𝑧 = 1

(b) Boxing

Figure 6: Screen shots and heat maps of agents’ trajectories
on Pong and Boxing. (a) In the Pong game, our agent con-
trols the paddle (green block) to hit the ball (white dot). (b)
In the Boxing game, our agent (in white) has a boxing match
with the opponent (in black).

gies obtained by DGPO on Pong. In this game, the agent
controls the green paddle. When z = 0 the agent holds the
paddle at the bottom of the screen until the ball is near, while
when z = 1, the default position of the paddle is at the top
of the screen. Fig. 6(b) similarly shows the different strate-
gies obtained by DGPO on Boxing, where the agent controls
the white character, and is rewarded for punching the black
opponent. The heatmap shows DGPO learns to attack from
different sides. Other baseline algorithms tend to remain in
a single corner.
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𝑧 = 0

𝑧 = 1 𝑧 = 2

Figure 7: Visualization results of the three strategies ob-
tained by DGPO on 3m map. The green arrows show the
trajectories of our agents (in green).

StarCraft II
We conduct experiments on two StarCraft II maps
(2s vs. 1sc & 3m) from SMAC. We set nz = 3 and mea-
sure the mean win rates over five seeds. Fig. 4(b) shows that,
relative to other algorithms, DGPO discovers sets of strate-
gies that are both diverse and achieve good win rates. Fig. 7
visualizes three strategies obtained by DGPO on 3m map.
In this map, we control the three green agents to combat
the red built-in agents. We visualize the trajectories of our
agents with green arrows. When z = 0, the policy produces
an aggressive strategy, with agents moving directly forward
to attack the enemies. When z = 1, the agents display a kit-
ing strategy, alternating between attacking and moving. This
allows them to attack enemies while limiting the taken dam-
age. When z = 2, the policy produces another kiting strategy
but now with a downwards, rather than upwards drift.

Ablation Study
We performed ablation studies on MPE Spread (hard) tasks,
systematically removing each element of our algorithm to
assess its impact on diversity. The empirical result is shown
in Fig. 8(a). Throughout this section, we set nz = 3
and the result is averaged over 5 seeds. Change-Diversity-
Measurement uses mutual information as shown in Eq. 2
as diversity metric. Experimental results indicate that in
the Spread (hard) scenario, the diversity score of Change-
Diversity-Measurement is lower than that of DGPO. While
optimizing three policies simultaneously, the limited number
of optimal solutions (only two) leads to one policy behaving
differently while the other two exhibit similar behavior. Con-
sequently, the diversity score based on mutual information
becomes artificially high (as it reflects the overall diversity
level of the policy set), causing the policy to stop optimizing
diversity, even though two policies continue to behave sim-
ilarly. No-Diversity-Constrained-Optimization excludes
diversity-constrained optimization. Empirical results reveal
that it only identifies one optimal solution. This suggests
that utilizing the diversity metric as a constraint, rather
than blending it with extrinsic rewards during the ini-
tial stages of training, significantly enhances the algo-
rithm’s effectiveness. No-Extrinsic-Reward-Constrained-
Optimization omits extrinsic-reward-constrained optimiza-

1.0

0.5

0.0

D
iv

er
si

ty
 S

co
re

Change-Div-Measurement
No-Extrinsic-Rew-Constrained

No-Div-Constrained
DGPO(ours)

0.0 0.2 0.4 0.6 0.8 1.0
Steps (x106)

3

2

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Steps(x105)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

ratio of data that satisfy JDiv( )
ratio of data that satisfy J( ) Rtarget

(b)

Figure 8: (a) The impact of each component of our algorithm
on diversity scores in the MPE Spread (hard) scenario. (b)
DGPO can be distinctly divided into two stages: diversity-
constrained optimization and extrinsic-reward-constrained
optimization.

tion. While DGPO continues to enhance the diversity score
as the expected return surpasses Rtarget, No-Extrinsic-
Reward-Constrained-Optimization fails to do so. Conse-
quently, it ultimately attains a lower diversity score com-
pared to DGPO.

Our algorithm can be divided into two distinct stages,
as depicted in Fig. 8(b). In the initial stage, we focus
on diversity-constrained optimization until policies exhibit
sufficient behavioral differences. Once the expected re-
turn reaches Rtarget, we transition to the extrinsic-reward-
constrained optimization stage. Here, we maintain a fixed
performance level at Rtarget while maximizing the diver-
sity score. These stages are clearly separated and non-
overlapping.

Conclusions
In conclusion, this paper introduced the Diversity-Guided
Policy Optimization (DGPO) algorithm, which demon-
strates its capability to efficiently uncover diverse strate-
gies that yield high rewards. By framing the training pro-
cess as a pair of constrained optimization problems and
solving them through probabilistic inference, DGPO stands
out as a promising on-policy algorithm. Through experi-
ments, we observed that DGPO strikes a favorable balance
between diversity scores and rewards, all while exhibiting
improved sample efficiency. Moving forward, we envision
delving deeper into its potential to handle challenges such
as exploration, self-play, and robustness.
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