
Meta-Inverse Reinforcement Learning for Mean Field Games via Probabilistic
Context Variables

Yang Chen1,2, Xiao Lin3, Bo Yan3, Libo Zhang2, Jiamou Liu2, Neset Özkan Tan1,2, Michael
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Abstract

Designing suitable reward functions for numerous interacting
intelligent agents is challenging in real-world applications.
Inverse reinforcement learning (IRL) in mean field games
(MFGs) offers a practical framework to infer reward func-
tions from expert demonstrations. While promising, the as-
sumption of agent homogeneity limits the capability of ex-
isting methods to handle demonstrations with heterogeneous
and unknown objectives, which are common in practice. To
this end, we propose a deep latent variable MFG model and
an associated IRL method. Critically, our method can infer
rewards from different yet structurally similar tasks without
prior knowledge about underlying contexts or modifying the
MFG model itself. Our experiments, conducted on simulated
scenarios and a real-world spatial taxi-ride pricing problem,
demonstrate the superiority of our approach over state-of-the-
art IRL methods in MFGs.

Introduction
Understanding incentives among interacting agents in real-
world decision-making and control tasks is a fundamen-
tal challenge in multi-agent systems. Inverse reinforcement
learning (IRL) (Ng, Harada, and Russell 1999; Ng and Rus-
sell 2000) addresses this issue by inferring reward functions
from expert demonstrations, offering a succinct representa-
tion of tasks. IRL in multi-agent systems serves two primary
purposes. First, it aids in comprehending and predicting the
objectives of interacting agents, such as determining the des-
tinations of autonomous vehicles (You et al. 2019). Second,
it enables the design of agent environments with known re-
ward signals to guide their behaviour as desired, akin to
mechanism design (Fu et al. 2021).
A prominent challenge with IRL is the “curse of the agent

number”, i.e., an increase in agent number leads to exponen-
tial interaction complexities, resulting in impractical time
and memory expenses. Fortunately, recent advancements in
IRL within mean field games (MFGs) (Yang et al. 2018a;
Chen et al. 2022, 2023) offer a solution. By leveraging
mean-field approximation, these methods simplify interac-
tions among many agents to only two agents (individual-
population), mitigating the computational burden. These
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MFG-based approaches have demonstrated compelling out-
comes across diverse large-scale multi-agent tasks. Applica-
tions include modelling and predicting social media popu-
lation behaviour (Yang et al. 2018a), product pricing in ex-
pansive markets, virus propagation modelling and explain-
ing emerging social norms (Chen et al. 2022, 2023).
While appealing, these existing methods typically rely on

the theoretically powerful yet practically unideal assumption
in MFGs: all agents are homogeneous, i.e., they are identi-
cal in the reward function, state-action space and dynamics.
Real-world scenarios, however, frequently involve demon-
strated behaviour with distinct and unknown rewards. For
example, in spatial pricing for taxi rides, drivers may have
different preferences based on factors such as distance, ori-
gins, and passenger destinations (Ata, Barjesteh, and Kumar
2019). To address this issue, efforts have been made to gen-
eralise mean-field approximation by introducing additional
type variables for each agent to differentiate reward func-
tions (Subramanian andMahajan 2019; Ganapathi Subrama-
nian et al. 2020; Ghosh and Aggarwal 2020). However, this
approach requires prior knowledge of these variables, mak-
ing it unsuitable for handling agents with unknown types or
contexts, as observed in taxi trajectories.
Additionally, incorporating types into mean-field approx-

imation makes the model more complex, necessitating the
reevaluation of important theoretical properties, such as the
existence and uniqueness of an equilibrium (Ghosh and Ag-
garwal 2020), to ensure a well-defined corresponding IRL
problem. Although such generalisations are theoretically
valued, from a machine learning viewpoint, simpler models
with fewer theoretical restrictions are often preferred. Given
the considerations above, the question arises: can we enable
IRL to handle numerous agents with unknown reward func-

tions without altering the mean-field approximation?

On the other hand, an emerging branch of IRL called
meta-IRL (Seyed Ghasemipour, Gu, and Zemel 2019; Yu
et al. 2019; Xu et al. 2019) combines IRL and meta-learning
to address similar reward structures among demonstrations
from different tasks. It introduces a latent probabilistic con-
text variable that influences the reward function and per-
forms context-conditioned reward inference without prior
knowledge of the contexts. Although currently limited only
to single-agent scenarios, this approach inspires the idea
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Figure 1: An overview of the mechanism of PEMMFIRL.
The context variable is unknown to the framework.

of assigning probabilistic context variables (representing
types) externally to a family of MFGs instead of internally
to agents within an MFG. By doing so, each MFG in this
family retains its original theoretical properties, enabling the
development of a meta-IRL method on top of it.
This paper implements this idea into a novel IRL frame-

work called Probabilistic Embedding for Meta Mean Field
IRL (PEMMFIRL) that answers the question we raised
above. It integrates meta-IRL, mean-field approximation,
and latent variable models into a unified framework, as il-
lustrated in Fig. 1. Our contributions are threefold:
1. We extend the notion of MFG by introducing a prob-

abilistic contextual variable, significantly enhancing its
ability to handle heterogeneous agents without introduc-
ing additional assumptions to mean-field approximation.

2. We develop PEMMFIRL, an associated IRL frame-
work for this generalised MFG model, capable of infer-
ring reward functions from demonstrations with differ-
ent context variables. Importantly, PEMMFIRL can in-
fer rewards from structurally similar tasks without prior
knowledge about underlying contexts.

3. Experimental results on simulated tasks and a real-world
spatial taxi-ride pricing problem demonstrate the effec-
tiveness of our approach, achieving an outstanding in-
crease in drivers’ average profit when applied to real-
world passenger demand data.

Related Work
Our work is closely related to the literature on MFGs, ini-
tially introduced in the continuous setting by (Huang et al.
2006) and (Lasry and Lions 2007). Later, MFGs were ex-
tended to the discrete model by (Gomes, Mohr, and Souza
2010), which is commonly adopted in agent learning. Re-
cently, learning MFGs has garnered significant attention
(Cardaliaguet and Hadikhanloo 2017), with existing meth-
ods relying on reinforcement learning techniques (Yang
et al. 2018b; Guo et al. 2019; Subramanian and Mahajan
2019; Cui and Koeppl 2021). Our method stands out by
directly recovering the reward function from observed be-
haviour, eliminating the need for manual reward design.
IRL was introduced by (Ng and Russell 2000) for single-

agent settings. Early IRL methods based on margin opti-
mization (Ratliff, Bagnell, and Zinkevich 2006) were ill-
defined. To resolve this, Maximum Entropy IRL (MaxEnt

IRL) was proposed by (Ziebart et al. 2008; Ziebart, Bag-
nell, and Dey 2010). However, MaxEnt IRL is limited to
small, discrete problems due to its iterative nature in reward
function tuning. To extend MaxEnt IRL to high-dimensional
or continuous domains, (Fu, Luo, and Levine 2018) intro-
duced Adversarial IRL (AIRL). It utilises a sampling-based
approximation by relating MaxEnt IRL to generative adver-
sarial networks (Goodfellow et al. 2014), enabling effective
reward tuning for complex scenarios. Some recent work ex-
tends AIRL to the multi-agent setting (Yu, Song, and Ermon
2019; Fu et al. 2021) and the mean-field setting (Yang et al.
2018a; Chen et al. 2023). However, they are limited to either
the countable-agent or the homogeneous many-agent cases.
We build our approach on the problem of meta-learning,

also known as “learning to learn” (Thrun and Pratt 2012),
which aims to train models to adapt quickly to new tasks.
Many methods have been proposed including the memory-
based methods (Duan et al. 2016; Santoro et al. 2016; Wang
et al. 2016; Mishra et al. 2017), methods that learn an opti-
miser and/or initialisation (Andrychowicz et al. 2016; Ravi
and Larochelle 2016; Finn, Abbeel, and Levine 2017; Sun
et al. 2018). Our method resembles (Rakelly et al. 2019) that
differentiates different tasks through a deep latent variable.
Notably, meta-IRL (Xu et al. 2019; Yu et al. 2019) incor-
porates meta-learning into IRL in order to rapidly adapt to
new tasks or domains. While these methods show promise
in both tabular and high-dimensional/continuous tasks, they
can only deal with a handful of agents. Unlike these prior
work, with the help of MFG, our approach is capable of han-
dling super large-scale tasks. In this sense, our work can be
seen as a significant extension of IRL to address many-agent
problems with multi-task demonstrations.

Preliminaries
Mean Field Games
Consider a population of homogeneous agents sharing the
same finite (local) state space S and action space A. Let
{1, 2, . . . , N} be an enumeration of agents. MFGs reduce
the all-agent interactions to two-party interactions between
a single representative agent and the population, wherein the
population is embodied by an empirical distribution of states
of the system, called a mean field, given by

µ 2 �(S) such that µ(s) , lim
N!1

1

N

NX

i=1

1{si=s},

where 1 denotes the indicator function, i.e., 1x = 1 if x is
true and 0 otherwise. The reward function r : S ⇥ A ⇥
�(S) ! R and state transition dynamics P : S ⇥ A ⇥
�(S) ⇥ S ! [0, 1] of the representative agent thus depend
on the current state, action and the additional mean field.
Let T > 0 be a finite horizon and the initial mean field µ0

be given, the sequence of mean fields µ = µ0, µ1, . . . , µT

is called a mean-field flow. Likewise, a policy follow ⇡ =
⇡0,⇡1, . . . ,⇡t determines the agent’s strategy, where ⇡t :
S ! �(A) maps from states to a distribution over actions.
A mean-field flow µ is said to be consistent with a policy

flow ⇡ if for all t < T , µt+1 matches an individual’s state
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marginal distribution when executing ⇡t. This can be for-
mally written by the discrete-time McKean-Vlasov (MKV)
equation (Carmona, Delarue, and Lachapelle 2013):

µt+1(s0) =
X

s2S
µt(s)

X

a2A
⇡t(a|s) P (s0|s, a, µt). (1)

Let ⌧ = s0, a0, . . . , sT , aT denote a state-action trajectory
of an individual. The trajectory distribution induced by a pair
of mean field flow and policy flow can be written as:

pµ,⇡(⌧) = µ0(s0)
TY

t=0

⇡t(at|st)P (st+1|st, at, µt).

In particular, if µ is consistent with ⇡, we can rewrite
pµ,⇡(⌧) as pµ,⇡(⌧) =

QT
t=0 µ

t(st)⇡t(at|st).
A policy flow⇡ is said to be optimal to a givenµ if it max-

imises the expected return E⌧⇠pµ,⇡(⌧)[
PT

t=0 r(s
t, at, µt)].1

While, an optimal policy flow may not be unique. Entropy-
regularised MFG (Cui and Koeppl 2021) resolves this am-
biguity by augmenting the reward with the policy entropy
Ea⇠⇡[� log ⇡(a|s)], resulting in the following objective:

max
⇡

E⌧⇠pµ,⇡(⌧)

"
TX

t=0

r(st, at, µt)� log ⇡t(at|st)
#
. (2)

The solution concept is called the entropy-regularised mean
field Nash equilibrium (ERMFNE) which is a pair of mean
field flow and policy flow (µ,⇡) such that ⇡ is optimal to µ
and, in turn, µ is consistent with ⇡, i.e., it fulfils the condi-
tion in Eq. (1) and maximises the objective in Eq. (2). Shown
by (Cui and Koeppl 2021, Theorem 3), an ERMFNE exists
uniquely under certain conditions.

Inverse Reinforcement Learning for MFGs
Suppose we have no access to the reward function r(s, a, µ)
but have a set of expert demonstrated trajectories D =
{⌧j}Mj=1 sampled from an ERMFNE (µE ,⇡E) via s0 ⇠
µ0, at ⇠ ⇡t

E(a|st), st+1 ⇠ P (s|st, at, µt
E). Mean field Ad-

versarial IRL (MF-AIRL) (Chen et al. 2023) aims to recover
the underlying reward function from demonstrations, which
can be interpreted as the following optimisation problem:

min
!

DKL (pµE ,⇡E (⌧) k p!(⌧)) (3)

p!(⌧) =
1

Z(!)

"
TY

t=0

µt
!(s

t)

#
· exp

 
TX

t=0

r!
�
st, at, µt

!

�
!

Here, r! is the !-parameterised reward function, p! denotes
the probability that a trajectory is generated under the r!-
induced ERMFNE denoted by (µ!,⇡!). The summation
Z(!) denotes the partition function, i.e., the sum over all
trajectories. Directly optimising the objective above is in-
tractable as we have no access to the analytical form of µt

! ,
which is a result of the entanglement between the mean field

1The reward at the last step is zero (Elie et al. 2020).

and the policy in MFGs. Fortunately, we can bypass such
entanglement by establishing an unbiased estimate of µt

E :

µ̂t
E(s) =

1

M

MX

j=1

1stj=s. (4)

Proven in (Chen et al. 2023, Theorem 2), with µt
! being sub-

stituted with µ̂t
E , the solution to the above optimisation prob-

lem approaches the optimal reward parameter if the number
of demonstrated trajectories is sufficiently large.
However, computing Z! is intractable if the state-action

space is large. To address this issue, MF-AIRL takes
the mechanism of adversarial IRL (Fu, Luo, and Levine
2018) and reframes Eq. (3) as optimising a generative

adversarial network (Goodfellow et al. 2014). It uses a
discriminator D! (a binary classifier) and a sequence of
adaptive samplers ⇡✓ (a policy flow) whose update is
equivalent to improving a sampling-based approximation
to Z! . Particularly, D! takes the form of D!(s, a, µ̂t

E) =
exp (f!(s, a, µ̂t

E)) /(exp (f!(s, a, µ̂
t
E)) + ⇡t

✓(a|s)), where
f! serves as the parameterised reward function. The update
of D! is interleaved with the update of ⇡✓: D! is trained to
update the reward function by distinguishing between the
trajectories sampled from the expert and the adaptive sam-
plers, i.e., to maximise EµE ,⇡E [logD!]+E⇡✓ [log(1�D!)];
while ⇡✓ is trained to maximise the entropy-augmented
cumulative rewards E⇡✓ [logD! � log (1�D!)] =
E⇡✓ [f!(s

t, at, µ̂t
E)� log ⇡t

✓(a
t|st)] . Under certain con-

ditions, f! will recover the underlying reward function
r(s, a, µ) (Chen et al. 2023).

Meta-Mean Field IRL with Probabilistic
Context Variables

MFGs with Probabilistic Context Variables
We extend the concept of MFGs by introducing a probabilis-
tic contextual variable m 2 M, which follows a prior dis-
tribution p(m). Here, M represents a discrete value space.
MFGs with different values of m can be viewed as multiple
large-scale multi-agent tasks with a shared structure. A real-
world example is taxi hailing, where each taxi is associated
with a specific m representing the driver’s trip preferences.
As a result, the policy, mean field, and reward function now
have dependencies onm, denoted as ⇡t : S ⇥M ! �(A),
µt : M ! �(S), and r : S ⇥ A ⇥ �(S) ⇥ M !
R, respectively. We assume independence among the state-
action space, transition function (Finn, Abbeel, and Levine
2017; Rakelly et al. 2019), and initial mean field w.r.t. m,
which leads to the following expression for the trajectory
distribution conditioned on the additional context variable:
pµ,⇡(⌧ |m) =

µ0(s0)
TY

t=0

⇡(at|st,m)P (st+1|st, at, µt(·|m)).

Given the insights above and following the spirit of
entropy-regularised MFG, our objective is to maximise the
expected return over the additional probabilistic contex-
tual variable while maintaining the consistency between the
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<latexit sha1_base64="E6LxdRTu8/og73TpKiHBCaiFKdI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoioh6LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN2kO2vpg4PHeDDPzgpgzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyKa6L82G15jbcHGiVeAWpQYHWsPo1GEUkEVQawrHWfc+NjZ9iZRjhdF4ZJJrGmEzxmPYtlVhQ7af5rXN0ZpURCiNlSxqUq78nUiy0nonAdgpsJnrZy8T/vH5iwhs/ZTJODJVksShMODIRyh5HI6YoMXxmCSaK2VsRmWCFibHxVGwI3vLLq6Rz0fCuGt7DZa15W8RRhhM4hTp4cA1NuIcWtIHABJ7hFd4c4bw4787HorXkFDPH8AfO5w9s5o3W</latexit>

p(m)

<latexit sha1_base64="+nYwkx03KX/NiDzbIJkrWLwbiI8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtuv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwSGjaA=</latexit>s0

<latexit sha1_base64="Ag82/qU1kWVt2t8PEXmCAOkx/qM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oUy2m3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5aCYJ8yMcSh5yisZKD9h3++WKW3XnIKvEy0kFcjT65a/eIKZpxKShArXuem5i/AyV4VSwaamXapYgHeOQdS2VGDHtZ/NTp+TMKgMSxsqWNGSu/p7IMNJ6EgW2M0Iz0sveTPzP66YmvPYzLpPUMEkXi8JUEBOT2d9kwBWjRkwsQaq4vZXQESqkxqZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBApDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP+kLjY4=</latexit>a0
<latexit sha1_base64="jwC4LrnZNy1I1Fy6MYfLbluNvmA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9P3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwYKjaE=</latexit>s1

<latexit sha1_base64="c0iPT0lKudnsXtu1p6ZFzcKE0ng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busevcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAHjo2i</latexit>s2 <latexit sha1_base64="etxfFIAobHk9bAbwnYGzOMhDeno=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rPn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBsE+PNQ==</latexit>· · ·
<latexit sha1_base64="etxfFIAobHk9bAbwnYGzOMhDeno=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rPn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBsE+PNQ==</latexit>· · ·

<latexit sha1_base64="dC4p2HYwDGSU0zwogelvBquguUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY9kwkwT9iA4lDzmjxkqPut/olytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzU+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM/iYDrpAZMbGEMsXtrYSNqKLM2HRKNgRv+eVV0rqoeldV7+GyUrvN4yjCCZzCOXhwDTW4hzo0gcEQnuEV3hzhvDjvzseiteDkM8fwB87nDzsWjcQ=</latexit>sT

<latexit sha1_base64="/uaIVj1mnJ+l5tH0zZNtdy0ApC8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY9kwkwT9iA4lDzmjxkqPtN/olytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzU+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM/iYDrpAZMbGEMsXtrYSNqKLM2HRKNgRv+eVV0rqoeldV7+GyUrvN4yjCCZzCOXhwDTW4hzo0gcEQnuEV3hzhvDjvzseiteDkM8fwB87nDx+qjbI=</latexit>aT
<latexit sha1_base64="oFbcnK5tG4bY//d4inS/vPD3Kec=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9r3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP+qPjY8=</latexit>a1

<latexit sha1_base64="+nYwkx03KX/NiDzbIJkrWLwbiI8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtuv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwSGjaA=</latexit>s0
<latexit sha1_base64="jwC4LrnZNy1I1Fy6MYfLbluNvmA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9P3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwYKjaE=</latexit>s1

<latexit sha1_base64="c0iPT0lKudnsXtu1p6ZFzcKE0ng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busevcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAHjo2i</latexit>s2
<latexit sha1_base64="dC4p2HYwDGSU0zwogelvBquguUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY9kwkwT9iA4lDzmjxkqPut/olytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzU+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM/iYDrpAZMbGEMsXtrYSNqKLM2HRKNgRv+eVV0rqoeldV7+GyUrvN4yjCCZzCOXhwDTW4hzo0gcEQnuEV3hzhvDjvzseiteDkM8fwB87nDzsWjcQ=</latexit>sT<latexit sha1_base64="etxfFIAobHk9bAbwnYGzOMhDeno=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eKxgP6ANZbPZtGs3u2F3IpTQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFqeAGPe/bWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxzdTv32E9OGK/mA45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgUa/cpXL1I0S5hEKogxXd9LMciJRk4Fm5R7mWEpoSMyYF1LJUmYCfLZtRP31CqRGyttS6I7U39P5CQxZpyEtjMhODSL3lT8z+tmGF8HOZdphkzS+aI4Ey4qd/q6G3HNKIqxJYRqbm916ZBoQtEGVLYh+IsvL5PWec2/rPn3F9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNUc6L8+58zFtXnGLmCP7A+fwBsE+PNQ==</latexit>· · ·

<latexit sha1_base64="qoN/HomgSyXMF0R0PT0Dvn9maSc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbTbt0swm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZpwP6IjJULBKOZSH2k6qNbcujsHWSVeQWpQoDmofvWHMUsjrpBJakzPcxP0M6pRMMlnlX5qeELZhI54z1JFI278bH7rjJxZZUjCWNtSSObq74mMRsZMo8B2RhTHZtnLxf+8XorhjZ8JlaTIFVssClNJMCb542QoNGcop5ZQpoW9lbAx1ZShjadiQ/CWX14l7Yu6d1X3Hi5rjdsijjKcwCmcgwfX0IB7aEILGIzhGV7hzYmcF+fd+Vi0lpxi5hj+wPn8ASMljk4=</latexit>⌧
<latexit sha1_base64="+4NytP0Sxgx6a8l8X/PDbgUbDRM=">AAACGXicbVDLSsNAFJ34rPUVdelmsAgVpCQi6rIogssK9gFNCJPJpB06mYSZiVBCfsONv+LGhSIudeXfOGmzsK0Hhjmccy/33uMnjEplWT/G0vLK6tp6ZaO6ubW9s2vu7XdknApM2jhmsej5SBJGOWkrqhjpJYKgyGek649uCr/7SISkMX9Q44S4ERpwGlKMlJY800q8zPFjFshxpL/MidLcuz2FM1pCtZbXHYXSE8+sWQ1rArhI7JLUQImWZ345QYzTiHCFGZKyb1uJcjMkFMWM5FUnlSRBeIQGpK8pRxGRbja5LIfHWglgGAv9uIIT9W9HhiJZbKkrI6SGct4rxP+8fqrCKzejPEkV4Xg6KEwZVDEsYoIBFQQrNtYEYUH1rhAPkUBY6TCrOgR7/uRF0jlr2BcN+/681rwu46iAQ3AE6sAGl6AJ7kALtAEGT+AFvIF349l4NT6Mz2npklH2HIAZGN+/2DOhbA==</latexit>

pµE ,⇡E (⌧)

<latexit sha1_base64="LpuH1QVIWSjWSZhuk0Co0moyAHI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZRERF0W3bisYB/QhDCZTtuhk0mcuRFqKP6KGxeKuPU/3Pk3TtsstPXAwOGcc7l3TpgIrsFxvq3C0vLK6lpxvbSxubW9Y+/uNXWcKsoaNBaxaodEM8ElawAHwdqJYiQKBWuFw+uJ33pgSvNY3sEoYX5E+pL3OCVgpMA+uA+8RPNKhD0TA+wBSU8Cu+xUnSnwInFzUkY56oH95XVjmkZMAhVE647rJOBnRAGngo1LXqpZQuiQ9FnHUEkipv1sev0YHxuli3uxMk8Cnqq/JzISaT2KQpOMCAz0vDcR//M6KfQu/YzLJAUm6WxRLxUYYjypAne5YhTEyBBCFTe3YjogilAwhZVMCe78lxdJ87Tqnlfd27Ny7Sqvo4gO0RGqIBddoBq6QXXUQBQ9omf0it6sJ+vFerc+ZtGClc/soz+wPn8AoqSUsg==</latexit>

q (m|⌧)
<latexit sha1_base64="3oqpgBOFwu7UY1w1hC79narbR9Y=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRBI8V7Ae0sWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6wHHC/YgOlAgFo2ilVjcRvdtH7JUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7d0JOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm099JX2jOUI4toUwLeythQ6opQ5tQyYbgLb68TJpnVe+i6t2fV2rXeRxFOIJjOAUPLqEGd1CHBjAYwTO8wpuTOC/Ou/Mxby04+cwh/IHz+QMjP49x</latexit>

⇡t
E

<latexit sha1_base64="FLmIyDLkKBJGMSCZJa29LRHj2Qs=">AAAB6HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy5bsA9oB8mkd9rYTGZIMkIZ+gVuXCji1k9y59+YtrPQ1gOBwznnkntPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8H4duZ3nlBpHst7M0nQj+hQ8pAzaqzUbDyUK27VnYOsEi8nFchh81/9QczSCKVhgmrd89zE+BlVhjOB01I/1ZhQNqZD7FkqaYTaz+aLTsmZVQYkjJV90pC5+nsio5HWkyiwyYiakV72ZuJ/Xi814bWfcZmkBiVbfBSmgpiYzK4mA66QGTGxhDLF7a6EjaiizNhuSrYEb/nkVdK+qHq1qte8rNRv8jqKcAKncA4eXEEd7qABLWCA8Ayv8OY8Oi/Ou/OxiBacfOYY/sD5/AGrkYza</latexit>

P

<latexit sha1_base64="WamiPRb8mCZpFpIVwhLUgHi3MEg=">AAAB83icbVBNS8NAFNzUr1q/qh69LBbBU0lE1GPRi8cKthaaUDbbl3bpZhN2X8QS+je8eFDEq3/Gm//GbZuDtg4sDDPv8WYnTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HR9BGJOoexykEMRsoEQnO0Eq+j/CEecyQDye9as2tuzPQZeIVpEYKNHvVL7+f8CwGhVwyY7qem2KQM42CS5hU/MxAyviIDaBrqWIxmCCfZZ7QE6v0aZRo+xTSmfp7I2exMeM4tJM23tAselPxP6+bYXQV5EKlGYLi80NRJikmdFoA7QsNHOXYEsa1sFkpHzLNONqaKrYEb/HLy6R9Vvcu6t7dea1xXdRRJkfkmJwSj1ySBrklTdIinKTkmbySNydzXpx352M+WnKKnUPyB87nD7Kwkh4=</latexit>
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µE(s0:T )

Figure 2: The graphic model of the meta-MFIRL problem.
Note that the mean field (population’s state density) matches
an individual’s state marginal when executing⇡E underµE .

mean field flow and policy flow. This can be formulated as
the following constrained optimisation problem:

max
µ,⇡

Em,⌧

"
TX

t=0

r(st, at, µt,m)� log ⇡t(at|st,m)

#

wherem ⇠ p(m), ⌧ ⇠ pµ,⇡(⌧ |m)

s.t. µ(s|m)is consistent with ⇡(a|s,m), 8m 2 M.

(5)

Intuitively, for allm 2 M, (µ(s|m),⇡(a|s,m)) constitutes
the ERMFNE of the MFG specified by m.

Problem Setup
We now introduce the problem of meta-mean field IRL
(meta-MFIRL) with multi-task demonstrations. Let us
consider the existence of a ground-truth reward func-
tion r(s, a, µ,m), a prior distribution p(m), and a
pair of m-conditioned mean field flow and policy flow
(µE(·|m),⇡E(·|m)) that solves the constrained opti-
misation problem in Eq. (5). Given a collection of
demonstrated trajectories that are i.i.d. samples drawn
from the resulting marginal distribution pµE ,⇡E (⌧) =P

m2M p(m)pµE ,⇡E (⌧ |m), our objective is to meta-
learn an inference model q(m|⌧) and a reward function
f(s, a, µ,m). The aim is to ensure that when presented with
a new trajectory ⌧E generated by sampling m0 ⇠ p(m)
and ⌧E ⇠ pµE ,⇡E (⌧ |m0), and with m̂ being inferred as
m̂ ⇠ q(m|⌧E), both r(s, a, µ, m̂) and f(s, a, µ, m̂) yield
the same solution to the problem in Eq. (5). To illustrate de-
pendencies between variables, we depict the graphic model
underlying the meta-MFIRL problem in Fig. 2.
It is important to note that we assume no access to the

prior task distribution p(m), the underlyingm value for each
trajectory, nor the transition dynamics P (s0|s, a, µ). Addi-
tionally, we suppose that the entire supervision comes solely
from the demonstrated data, meaning that requesting addi-
tional demonstrations is not allowed.

Mutual Information Regularisation over Context
Variables and the Reward Function
Under MF-AIRL, we use a  -parameterised context variable
inference model q (m|⌧), an !-parameterised reward func-
tion f!(s, a, µ,m). With m being inferred by q (m|⌧), let
(µ!(·|m),⇡!(·|s,m)) denote the ERMFNE induced by f! .

The trajectory distribution under (µ!,⇡!) is given by:

p!(⌧ |m) =
1

Z(!)

"
TY

t=0

µt
!(s

t)

#
·e

PT
t=0 f!(st,at,µt

!,m), (6)

where µ! denotes the induced mean field flow consistent
with ⇡! , and Z(!) is the partition function.

Directly applying MF-AIRL without further constraints
on the context variable m would result in the pre-inferred
m by q being treated as a constant in each component of
MF-AIRL. As a result, maximising the likelihood with re-
spect to the conditional distribution defined in Eq. (6) would
lead to m being ignored, making the learned reward func-
tion f! independent of m. Consequently, the learned re-
ward function would be indistinguishable among different
tasks. To establish a connection between the reward function
and the context variable, it is essential to consider the mu-
tual information between m and the trajectories ⌧ sampled
from the reward-induced distribution. This measure quanti-
fies the amount of information gained about the context vari-
able by observing the trajectories, serving as an ideal mea-
sure, as done in (Zhao, Song, and Ermon 2018; Yu et al.
2019) from the perspective of information theory. The mu-
tual information between m and ⌧ under the joint distribu-
tion p!(m, ⌧) = p(m)p!(⌧ |m) is given by:

Ip! (m; ⌧) = Em⇠p(m),⌧⇠p!(⌧ |m) [log p!(m|⌧)� log p(m)] ,

where p!(m|⌧) is the posterior distribution corresponding to
the conditional distribution p!(⌧ |m) as defined in Eq. (6).

Optimising the mutual information is intractable as we
have no access to the prior distribution p(m), the posterior
p(m|⌧), nor the !-induced conditional mean field µt

!(·|m).
To address this, we employ several approximations based
on sampling and estimation. First, we replace µt

!(·|m) with
an empirical value estimated from demonstrations using
q (m|⌧), shifting its dependency from ! to  . Second, we
use q (m|⌧) as a variational approximation to p!(m|⌧), al-
lowing for approximate sampling from p(m). These approx-
imations will be further explained in the next section. Now,
our final goal in meta-MFIRL is to learn a reward function
and an inference model for the task type. Formally, this can
be interpreted as the pursuit of the following two desiderata:
1. Reward desideratum.Match conditional distributions:

Em⇠p(m)[DKL (pµE ,⇡E (⌧ |m)||p!(⌧ |m))] = 0;

2. Context desideratum.Match posterior distributions:

E⌧⇠p!(⌧)[DKL (p!(m|⌧)||q (m|⌧))] = 0.

The reward desideratum aligns with the objective in MF-
AIRL, encouraging the trajectory distribution induced by the
learned reward function to match the distribution of demon-
strations. The context desideratum ensures a match between
the context variable inference model and the posterior distri-
bution induced by the learned reward function, facilitating
q (m|⌧) to serve as a suitable variational approximation to
the unknown p!(m|⌧). This allows correct inference of the
context variable from a new demonstrated trajectory. Com-
bining mutual information as the optimisation objective and
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the two aforementioned desiderata as constraints, we arrive
at the final formula for our target optimization problem, with
its Lagrangian dual function being:
min
!, 

↵ · Em⇠p(m)[DKL (pµE ,⇡E (⌧ |m)||p!(⌧ |m))]+

� · E⌧⇠p!(⌧)[DKL (p!(m|⌧)||q (m|⌧))]� Ip!(m;⌧).

By fixing Lagrangian multipliers to specific values (↵ =
� = 1) that confirm the incentive to maximise the mutual
information (Zhao, Song, and Ermon 2018; Yu et al. 2019),
we can rewrite the above Lagrangian dual function as

min
!, 

Em⇠p(m)[DKL (pµE ,⇡E (⌧ |m)||p!(⌧ |m))]�

Em⇠p(m),⌧⇠p!(⌧ |m)[log q (m|⌧)].
(7)

The detailed derivation is given in Appendix A.

Probabilistic Embeddings for Meta-MFIRL
To optimise the objective in Eq. (7) tractably, we need to re-
place the unknown µt

!(·|m) (part of p!(⌧ |m)) with a known
value that retains optimality in ideal conditions. One ap-
proach is to imitate the operation in MF-AIRL, using an
estimate µ̂t

E(·|m) and substituting it for µt
!(·|m) (Eq.(4)).

However, the dependency of µt
!(·|m) on m prevents this

substitution, as we lack access to the posterior distribution
p(m|⌧). Fortunately, we can use q (m|⌧) as a variational
approximation to p(m|⌧) to account for the uncertainty over
tasks. Using this approximation, we construct an estimate of
µt
E(·|m) according to the following rule:

µ̂t
 (s|m) = E⌧E⇠pµE,⇡E

(⌧) [q (m|⌧E) · 1st=s] , (8)
which is unbiased when  is trained to the optimality. Note
that the replacement of µt

!(·|m) with µ̂t
 (s|m) will make

p!(⌧ |m) additionally depend on  . We rewrite the resulting
conditional distribution as

p!, (⌧ |m) =
1

Z(!, )

"
TY

t=0

µ̂t
 (s

t)

#
·e

PT
t=0 f!(st,at,µ̂t

 ,m).

Accordingly, our original target problem in Eq. (7) now
takes the following form:

min
!, 

K(!, )� L(!, ) (9)

K(!, ) = Em⇠p(m)[DKL (pµE ,⇡E (⌧ |m)||p!, (⌧ |m))],

L(!, ) = Em⇠p(m),⌧⇠p!, (⌧ |m)[log q (m|⌧)].
We next introduce how to approximately optimise the ob-

jective in Eq. (9) with sampling-based gradient estimation.
First, we observe that K(!, ) with fixed  can be max-
imised using the adversarial framework in MF-AIRL, where
the adaptive sampler (policy) takes the forms of ⇡✓(a|s,m).
This observation can be formally stated in the following
lemma that will be useful to derive the gradients of L(!, ).
Lemma 1. Let the adversarial framework of MF-AIRL take

the adaptive samplers ⇡t
✓(a|s,m) and the discriminator

D!(s, a, µ̂t
 ,m) =

exp(f!(s,a,µ̂t
 ))

exp(f!(s,a,µ̂t
 )+⇡✓(a|s,m))

. If the adap-

tive samplers are trained to the optimility ⇡⇤
✓ w.r.t. the re-

ward signal logD! � log(1�D!), then the trajectory dis-

tribution induced by (µ̂ ,⇡⇤
✓) matches the conditional dis-

tribution p!, (⌧ |m), i.e., pµ̂ ,⇡⇤
✓
(⌧ |m) = p!, (⌧ |m).

Algorithm 1: PEMMFIRL Meta-Training

1: Input: Expert trajectories DE = {⌧j}Mj=1.
2: Initialisation: Parameters f! , q , ⇡✓.
3: for each iteration do
4: Sample two set of trajectories ⌧E , ⌧ 0E ⇠ DE .
5: Infer a batch of context variables m̃ ⇠ q (m|⌧E).
6: Estimate a batch of mean fields µ̂ (s|m̃)with Eq. (8).
7: Generate a set of trajectories D using ⇡✓(a|s, m̃) and

µ̂ (s|m̃) with the fixed m̃ for each trajectory.
8: Update  to decrease K(!, )� L(!, ) with gradi-

ents @K
@ � @L

@ estimated on D.
9: Update ! to increase L(!, ) with @L

@! estimated on
D.

10: Update ! to increase following objective:
Em̃,⌧ 0

E
[
PT

t=0 logD!]+Em̃,⌧⇠D[
PT

t=0 log(1�D!)].
11: Update ✓ with RL to increase the following objective:

Em̃,⌧ 0
E
[
PT

t=0 f! � log ⇡t
✓(a

t|st, m̃)].
12: end for
13: Output: Reward function f! and inference model q .

Lemma 1 tells us we can instead use⇡⇤
✓ to generate trajec-

tory samples from the energy-based model p!, (⌧ |m) that
is difficult to directly sample. Now we are ready to estimate
the gradients of L(!, ) w.r.t. ! and  .
Proposition 1. With m ⇠ p(m), ⌧̂ and ⌧̂ 0 ⇠ pµ̂ ,⇡⇤

✓
(⌧ |m)

and f! denoting f!(st, at, µ̂t
 ,m) for short, the gradients

of L(!, ) w.r.t. ! and  can be estimated with:

Em,⌧̂

"
log q (m|⌧̂)

"
TX

t=0

@f!
@!

� E⌧̂ 0
"

TX

t=0

@f!
@!

###
and Em,⌧̂

h

log q (m|⌧̂)((⌧̂ ,m)� E⌧̂ 0 [(⌧̂ 0,m)]) +
@ log q (m|⌧̂)

@ 

i
,

where (⌧,m) =
TX

t=0

" 
@f!
@µ̂t

 

+
1

µ̂t
 (s

t|m)

!
@µ̂t

 (s
t|m)

@ 

#

Proof. See Appendix B.

Note that @f!
@µ̂t

 
is a function of ! and depends on the model

(e.g., neural networks) for f! , and calculating @µ̂t
 (st|m)

@ is
straightforward according to its definition in Eq. (8). Also
note that the expectations in both estimates above are taken
over the prior p(m). Since we have no access to p(m) but
have a set of demonstrated trajectories, we can generate syn-
thetic samples form using the following generative process

⌧E ⇠ pµE ,⇡E (⌧), m̃ ⇠ q (m|⌧E), (10)

which matches p(m)when ! and  are trained to optimality.
We are left to estimate the gradient of K(!, ) w.r.t.  .
Proposition 2. With ⌧̃ ⇠ pµ̂ ,⇡⇤

✓
(⌧ |m̃) and m̃ by Eq. (10),

the gradient of K(!, ) w.r.t.  can be estimated with:

E⌧E ,m̃[E⌧̃ [(⌧̃ , m̃)]� (⌧E , m̃)],

Proof. See Appendix C.
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Now we are ready to introduce our proposed frame-
work termed Probabilistic Embeddings for Meta-Mean Field
IRL (PEMMFIRL) where we alternatively update an !-
parameterised reward function f!(s, a, µ,m) and a  -
parameterised context variable inference model q (m|⌧).
We update ! by @

@!L(!, ) and invoking MF-AIRL to solve
K(!, ) given the current  , where we train a discriminator
D! given in Lemma 1 and adaptive samplers ⇡✓ as

max
!

E⌧E ,m̃

"
TX

t=0

logD!

#
+ Em̃,⌧̂

"
TX

t=0

log(1�D!)

#

and max
✓

Em̃,⌧̂

"
TX

t=0

f! � log ⇡t
✓(a

t|st, m̃)

#
.

The update of  is according to @
@ K(!, ) and @

@ L(!, ).
As a summary, we present the pseudocode of PEMMIRL
meta-training in Alg. 1. The pseudocode of the meta-test is
deferred until Appendix D.

Experiments
We experimentally seek answers to two critical questions:
(1) Can PEMMFIRL accurately recover task type and re-

ward function from demonstrated trajectories of multiple

tasks? (2) Can PEMMFIRL effectively learn good policies

for each task type? We evaluate our algorithm on simulated
MFG environments and a real-world spatial pricing problem
for taxi rides. Detailed task descriptions are provided in Ap-
pendix E, while specific settings for dataset preprocessing,
hyper-parameters, network architectures, and hardware en-
vironments can be found in Appendix F.

Simulated Tasks
Task Descriptions. There are three simulated MFG envi-
ronments ordered in increasing complexity: (1) Virus in-
fection (VIRUS) (Cui and Koeppl 2021): Agents choose
between “social distancing” or “going out”, affecting sus-
ceptible, infection and recovery probabilities. (2) Malware
spread (MALWARE) (Huang and Ma 2017): This model is
representative of several problems with positive externali-
ties, such as flu vaccination and economic models involv-
ing the entry and exit of firms. (3) Investment in product
quality (INVEST) (Subramanian and Mahajan 2019): This
model captures investment decisions in a fragmented market
with multiple competing firms producing the same product.
Settings. For each task, we define different reward functions
r(s, a, µ,m) based on context variables m. As in (Chen
et al. 2022), for each m, the expert training process in-
volves iteratively updating µE(·|m) and ⇡E(·|m) until con-
vergence: ⇡E is updated using backward induction, while
µE is updated using the MKV equation (Eq. (1)). Demon-
strated trajectories (each with a length of 50) are generated
using (µE(·|m),⇡E(·|m)) with m drawn from a uniform
distribution p(m). The IRL algorithms have no access to
r(s, a, µ,m), m, or p(m).
Baselines. Two state-of-the-art methods are compared: (1)
Population-level IRL (PLIRL) (Yang et al. 2018a): A cen-
tralised method that converts MFG to MDP and performs

Figure 3: Results for simulated tasks. The curves and bars
are the median and variance over ten independent runs.

IRL on this MDP. It assumes cooperation among agents
to maximise the population’s average rewards. (2) Mean
Field Adversarial IRL (MF-AIRL) (Chen et al. 2023):
This method leverages adversarial learning to efficiently in-
fer rewards for entropy-regularised MFGs.
Performance Metrics. The quality of a learned reward
function f! is evaluated by comparing its induced ⇡! with
the expert policy ⇡E . Two metrics are used to measure this
difference – statistical distance and cumulative rewards:

1. Policy deviation. The expectation over KL-divergence:
Em⇠p(m)[

PT
t=0

P
s2S DKL(⇡t

E(·|s,m) k ⇡t
!(·|s,m))]

measures the statistical distance between two policies.
2. Expected return. The difference between two expected

returns of (µ!,⇡!) and (µE ,⇡E) under the ground-
truth reward function r(s, a, µ,m) and the prior p(m).

Results.As depicted in Fig. 3, the learned policy by PEMM-
FIRL shows a minor deviation from the expert policy, lead-
ing to a slight difference in expected return under the
ground-truth reward function. Since PLIRL and MF-AIRL
cannot handle different context variables, they both exhibit
large deviations. Moreover, PLIRL shows the largest de-
viation as it is not suitable for non-fully cooperative en-
vironments. PEMMFIRL experiences a slight decrease in
time performance due to the additional input parameters
required for the context inference model q(m|⌧). How-
ever, this performance decrease remains acceptable. Overall,
PEMMFIRL performs well in various numerical experimen-
tal tasks, producing accurate results similar to expert perfor-
mance. It demonstrates good stability during iterations, with
a significantly lower average variance (32%) in expected re-
turns and policy deviations than other algorithms, indicating
low fluctuations during the iterations.

Spatial Pricing for Taxi Rides
Task Description. Spatial pricing for taxi rides aims to im-
plement different pricing strategies in diverse areas to ad-
dress the mismatched supply and demand in taxi services.
By applying higher pricing in areas with high demand and
low supply, taxis are encouraged to move to those regions
when empty, increasing availability. The problem can be ad-
dressed using mean-field games, where drivers make deci-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11412



Figure 4: Illustration of the initial setup. From left to right:
distribution of passengers, distribution of taxis, and distribu-
tion of passengers’ travelling distances.

Figure 5: Illustration for the underlying price multipliers and
the learned policies (with different context variables) at the
initial step for drivers at the starred location. A driver takes
passengers in a darker area with a higher probability.

sions based on passenger density (Ata, Barjesteh, and Ku-
mar 2019). By taking the value of PEMMIRL in the sense
of pricing by differentiating drivers’ personal preferences,
we seek to improve drivers’ profits further.
Settings. Real-world taxi operation records, including pas-
senger travel time, departure locations, and destinations, are
used as experimental data for passenger travel demand. This
data is extracted from the New York Yellow Taxi Dataset
(Ata, Barjesteh, and Kumar 2019). To ensure sufficient data
in each segmented node, we select a subset of the data with
one-month records that fall within part of Queens borough
of New York City (see Fig. 4) and divide it into a 10 ⇥ 10
grid using a boundary of 0.01� for longitude and latitude.
Ata, Barjesteh, and Kumar (2019) developed an empir-

ical MFG model that fits the dataset. The driver’s reward
function calculates revenue considering destinations and
deducts movement-related losses, such as fuel consumption
and vehicle depreciation. It applies a surcharge based on the
driver’s origin. The origin-only reward function reported in
(Ata, Barjesteh, and Kumar 2019) is expressed as follows:

r(s = i, a = j, µ) = (⌘0.5265 � ⌘0.5265s ) · f(i, j, µ),

where i and j represent the driver’s origin area and the pas-
senger’s location, respectively; µ denotes the current density
of empty taxis; f is a fixed function to calculate the stan-
dard profit based on the passenger demand and passengers’
travelling distances; ⌘ is a constant upper limit for the price
passengers are not willing to pay more than; ⌘s is referred to
as the price multiplier, varying across regions to determine
the surcharge scale of each area. As in (Ata, Barjesteh, and
Kumar 2019), we set ⌘ = 2.33 and adopt ⌘s shown in Fig. 5.
To additionally consider the dependency of the reward

function on the context variable, we assume a context-
conditioned profit f(i, j, µ,m) (modelled by a neural net-

Value Decay rate of Increase rate of Increased fare
of ⌘ served passengers average profit per ride

5 - 0.4% +2.8% +$0.1308
10 - 0.5% +2.3% +$0.1074
15 - 0.6% +3.4% +$0.1589
20 - 0.7% +3.1% +$0.1448

Table 1: Increase rate of the average profit and increased fare
per ride under different decay rates of served passengers.

work) with a discrete context variable m 2 {1, 2}. Intu-
itively, we believe m captures the impact of drivers’ pref-
erences, e.g., trip distances, over profits. A trajectory has a
total of 120 steps, and each step simulates five minutes. The
initial setup for trajectory sampling and reward (profit) cal-
culation in terms of distributions of the passengers, the taxis
and passengers’ travelling distances is illustrated in Fig. 4.

Baseline.We compare all drivers’ average profit induced by
the learned policy of PEMMFIRL with that induced by the
optimal policy of the empirical MFG model (Ata, Barjesteh,
and Kumar 2019), under the context-conditioned profit.

Results. Fig. 5 demonstrates the learned policy by PEMM-
FIRL based on the inferred rewards functions. Applying this
new pricing strategy and the corresponding policy to actual
passenger demand data decreases served passengers com-
pared to the original data. This is expected because no addi-
tional passenger demands are introduced beyond the dataset.
By adjusting the upper limit of price ⌘, different decay rates
of passengers and increased rates (compared to the profits
under the empirical MFG model in (Ata, Barjesteh, and Ku-
mar 2019)) of drivers’ average profit are obtained. Note that
changing ⌘ does not affect the optimal policy, as it is a con-
stant. The results in Tab. 1 indicate that for a relatively small
decay proportion, the model increases the average profit of
all drivers by 2.8% ($0.1308 per ride) with a 0.4% reduction
in passenger numbers. Further analysis reveals that most re-
duced passengers are those on short trips. For a higher de-
cay proportion, the model increases the average profit of all
drivers by 3.1% ($0.1448 per ride) with a 0.7% reduction
in passenger numbers. Overall, this suggests that the learned
policy effectively raises the profit of taxi drivers.

Conclusions

This paper addresses the incapacity of IRL in the face of
a large number of agents with distinct and unknown re-
wards. By introducing probabilistic contextual variables, we
extend MFGs to handle heterogeneous agents without alter-
ing mean-field approximation. Based on this generalisation,
we develop the Probabilistic Embeddings for Meta-Mean
Field IRL (PEMMFIRL), allowing inferring reward func-
tions from mixed-type demonstrations without prior knowl-
edge of types. Experiments on simulated tasks and a real-
world taxi-ride pricing problem reveal improvements over
state-of-the-art IRL methods in MFGs.
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