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Abstract

Invariant representation learning (IRL) encourages the pre-
diction from invariant causal features to labels deconfounded
from the environments, advancing the technical roadmap of
out-of-distribution (OOD) generalization. Despite spotlights
around, recent theoretical result verified that some causal fea-
tures recovered by IRLs merely pretend domain-invariantly
in the training environments but fail in unseen domains. The
fake invariance severely endangers OOD generalization since
the trustful objective can not be diagnosed and existing causal
remedies are invalid to rectify. In this paper, we review a IRL
family (InvRat) under the Partially and Fully Informative In-
variant Feature Structural Causal Models (PIIF SCM /FIIF
SCM) respectively, to certify their weaknesses in represent-
ing fake invariant features, then, unify their causal diagrams
to propose ReStructured SCM (RS-SCM). RS-SCM can ide-
ally rebuild the spurious and the fake invariant features simul-
taneously. Given this, we further develop an approach based
on conditional mutual information with respect to RS-SCM,
then rigorously rectify the spurious and fake invariant effects.
It can be easily implemented by a small feature selection sub-
net introduced in the IRL family, which is alternatively op-
timized to achieve our goal. Experiments verified the superi-
ority of our approach to fight against the fake invariant issue
across a variety of OOD generalization benchmarks.

Introduction
A fundamental pressumption of machine learning widely be-
lieves that models are trained and tested with samples iden-
tically and independently (i.i.d.) drawn from a distribution.
Whereas in practice, the models are inevitably trained and
deployed in ubiquitous scenarios so that they poorly perform
than what was expected, due to the violation of the i.i.d. con-
dition inducing distributional shift across various scenarios.
The failure could be understood from the view of represen-
tation learning, where the i.i.d. condition typically achieves
the feature generalizing in a distribution, but unfortunately,
at the sacrifice of generalization beyond this observed distri-
bution. It is obviously impossible to obtain the domain uni-
verse by collecting data from all scenarios, so how to learn
reprsentation with limited observed domains for chasing the
invariant performance to unseen domains, have gradually

*indicate corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

become the promising trend known as invariant representa-
tion learning (IRL) for out-of-distribution (OOD) general-
ization (Shen et al. 2021; Wang et al. 2022a).

The emergence of IRL dates back to approaches for do-
main adaptation (Ganin et al. 2016; Zhao et al. 2019) where
data drawn from a test domain (so-called target domain) can
be accessed to quantify the distributional shift, thus, invari-
ant representation is spontaneously obtained while minimiz-
ing the domain shift. In the OOD generalization setup, only a
few number of domains are available whereas the goal turns
to learning the invariant representation to unseen domains.
It becomes more challenging since minimizing the observed
domain gaps does not imply the model generalization to un-
seen domains. The recent development of causal inference
(Peters, Bühlmann, and Meinshausen 2016; Mahajan, Tople,
and Sharma 2021) provided a set of innovative principles,
i.e., Invariant Causal Prediction (ICP), of connecting the IRL
and OOD generalization. Most IRL frameworks henceforth
consider data as an endogenous vairable generated through
a Structural Causal Model (SCM) (Pearl 2010), which could
be partitioned into different environment factors where each
one corresponds to a specific intervention action taken in
the SCM. In such regards, IRL aims for the recovery of in-
variant features via the arbitrary environment interventions
for diminishing spurious correlation with the label. Of par-
ticular prominent methods are Invariant Risk Minimization
(IRM) (Arjovsky et al. 2019), Invariant Rationalization (In-
vRat) (Chang et al. 2020; Li et al. 2022), REx (Krueger et al.
2021) and some other approaches in the similar spirit (Zhou
et al. 2022; Ahuja et al. 2020; Li et al. 2022). Their objec-
tives are optimized to prevent the classifier from overfitting
to environment-specific properties.

Fake OOD Invariant Effect
Despite the potential and popularity of IRL, plentiful follow-
up studies unveiled IRLs’ unreliability to learn invariant rep-
resentation (Kamath et al. 2021; Nagarajan, Andreassen, and
Neyshabur 2020; Rosenfeld, Ravikumar, and Risteski 2020),
in which the most notorious problem is probably the fake in-
variant effect . Particularly, given each environment factor to
identify a specific spurious feature in a SCM, if the number
of latent environment factors less than the capacity of spu-
rious features, latent spurious correlation would pretend as
an invarant part of the algorithm-recovered features recov-
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ered by IRL. The problem arouses from the existence of un-
derlying shortcut Φ(⋅) between invariant causal features Zc

and spurious features Zs. It receives the spurious variable to
endow [Zc,Φ(Zs)] with the invariant property across train-
ing environments, where the classifier prefers [Zc,Φ(Zs)]

rather than Zc for IRL. While the OOD generalization easily
fails since Zs depends on environments that allows arbitrary
change during testing.

The fake invariance typically rises from the scarcity of en-
vironments that implicitly raises the “degree of freedom” of
invariant representation. The uncontrolled “degree of free-
dom” are observed both in the linear and non-linear cases,
where several recent efforts attempted to recover the true in-
variant features through the lens of causality. However, ex-
isting paradigms fail to incorporate Φ(Zs) as a part of SCM.
It endangers OOD generalization since no knowledge of the
data assumption on the underlying environments may cause
a paradox for IRL (Ahuja et al. 2021).

Contributions
To solve the problem above, our work provides the first rig-
orous investigation of considering the fake variant shortcut
Φ(Zs) as a latent variable across diverse SCM data assump-
tions. Specifically, we firstly investigated two famous SCM
data assumptions (Partially and Fully Informative Invariant
Feature, PIIF SCM and FIIF SCM) commonly employed
by existing IRL frameworks (Ahuja et al. 2021). Under the
backgroundof aIRL family derived from (Chang et al. 2020;
Li et al. 2022), we certify PIIF SCMs impossibly to incorpo-
rate Φ(Zs) whereas the paradigm of FIIF SCM surprisingly
suits the information-theoretic properties behind Φ(Zs). To
obtain the best of both worlds, we propose a novel ReStruc-
tured SCM framework combing PIIF SCM and FIIF SCM to
simultaneously rebuild and isolate the spurious and the fake
invariant charateristics.

Given this, we further proved why the IRL family only re-
covers the label-dependent spurious features but fails to mit-
igate the fake invariant features under the RS-SCM frame-
work, and propose a conditional mutual information objec-
tive to rectify the negative invariant effect caused by Φ(Zs).
It can be easily implemented by a subnetwork to select in-
variant features then merge with the IRL family, which are
alternatively trained to prevent invariant representation from
the fake invariant effects. Diagnostic experiments and five
large-scale real-world benchmarks validates our work.

Related Work
OOD generalization or domain generalization investigate the
principles to extend the empirical risk minimization (ERM)
to suit the data beyond the training distributions (Wang et al.
2022a; Shen et al. 2021). Before IRL becoming the trend,
there have been three famous research lines. Data augmen-
tation increases the diversity of observed domains by tak-
ing complex operations to transform training data, i.e., ran-
domization, mixup, altering location, texture and replicating
the size of objects (Khirodkar, Yoo, and Kitani 2019; Wang,
Li, and Kot 2020; Yu et al. 2023), etc. Meta-learning opti-
mizes a general domain-agnostic model, which turns into a
domain-specific version with a few of the domain-specific

samples for the test adaptation (Shu et al. 2021; Chen et al.
2023). Ensemble approaches integrated submodels with re-
gards to diverse training domains to generalize unseen dis-
tributions (Lee, Kim, and Kwak 2022; Chu et al. 2022).

Massive OOD generalization literatures are deeply related
with IRL. The rationale behind aims to minimize the upper
bounds of the prediction errors in unseen distributionswhich
used to rely upon the covariate shift presumptions, yet (Chen
and Bühlmann 2021; Kuang et al. 2018) implausible when
the spurious correlation occurs. Increasing attentions were
repayed to causality to tackle the issue. Inspired by ICP (Pe-
ters, Bühlmann, and Meinshausen 2016), a plenty of IRLs
treat the predictions as invariant factors across different do-
mains, which recovers the causation from feature to label re-
gardless of environment interventions (Arjovsky et al. 2019;
Ahuja et al. 2020; Chang et al. 2020; Krueger et al. 2021;
Li et al. 2022; Jiang and Veitch 2022). Some causal learn-
ing achieve OOD generalization beyond ICP (Jalaldoust and
Bareinboim 2023; Wang et al. 2022b; Lv et al. 2022).

Recent critics are discussed to this roadmap due to the un-
satisfied recovery of invariant features. IRMs were denouced
since its feasible variant IRMv1 poorly adapts to deep mod-
els (Zhou et al. 2022) and lacks the robustness of environ-
ment diversity (Huh and Baidya 2022; Lin et al. 2022). (Na-
garajan, Andreassen, and Neyshabur 2020) uncovered two
failure modes caused by geometric and statistical skews in
their nature. (Rosenfeld, Ravikumar, and Risteski 2020) rig-
orously exhibited the fake invariance in the linear setting
and empirically reported the issue over a wide range of IRL
methods. Despite Invariant Information Bottleneck (IIB) (Li
et al. 2022) claiming their capability to solve this issue, our
causal diagnosis inspired by (Ahuja et al. 2021) verified that
their solution powerless of the fake invariance.

Our work is closely related with Pearl’s causality, the ad-
vanced knowledge (Pearl 2010, 2009) before reading.

Causal Diagnosis for Fake Invariance
We first review IRL and its fake invariant issue, then propose
a new SCM to reflect the fake invariance in causal diagram.

Preliminary
OOD Generalization & IRL setup. Suppose we are given
datasets D={De} for training, where each one refers to the
training environment e ∈ Etr collected from the environment
universe E (Etr⊂E). For a training setDe = {x

e
i ,y

e
i}

ne

i=1, each
sample with its label was i.i.d drawn from the underlying
joint distribution Pe. The purpose of OOD generalization is
to learn a model f withD = {De}e∈Etr for enabling the label
prediction to the samples drawn from arbitrary environments
in E , thus, minimizing the population risk as follows:

RE(f) =max
e∼E
[R

e
(f)] =max

e∼E
[EPe(x,y)[L(f(x),y)]], (1)

where L(⋅, ⋅) denotes the loss function with regards to a task;
f(x)=ρ(h(x)) in which h(x) denotes the feature extracted
from x by encoder h and ρ receives h(x) to predict the label.

Obviously the population risk in Eq.1 is impossible to di-
rectly approximate since we have distributions of Etr instead
of E during training. IRLs resort to training the model f over
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Figure 1: SCMs for InvRat and IIB in distribution shifts:(a).
SCM with the PIIF condition (Y ⊥̸E,Zs∣Zc); (b). SCM with
the FIIF condition (Y ⊥ E,Zs∣Zc) where fake invariant fea-
tures ZF =Φ(Zs) hide; (c).RS-SCM incorporates the FIIF
and PIIF with the fake invariant variable ZF .

D to find the representation with the domain-invariant prop-
erties. For instance, InvRat and its derivation IIB (Li et al.
2022) achieve this goal by maximizing the mutual informa-
tion (MI) in the usage of the invariance contraint:

max
ρ,h

I[Y ;h(X)] s.t. Y ⊥ E ∣ h(X), (2)

where the capital letters denote variables and ⊥ denotes their
probabilistic independence. I[Y ;h(X)] denotes the MI be-
tween Y (label variable) and h(X) (feature variable) ex-
tracted from X (data variable). The invariance contraint
equals to minimze the Conditional MI (CMI) I[Y ;E∣h(X)]
between Y and E (environment variable) under the condi-
tion h(X). They could be jointly formulated and optimized
through their variational upper bounds (Alemi et al. 2016).

Existing work mostly investigates IRL from the IRM per-
spective, while our paper focuses on the IRL paradigms de-
rived from InvRat or IIB. It helps to avoid many optimization
issues that conventionally occur in IRM and its variants.

Causal Rationales behind IRLs. It is known that OOD
generalization is possible under practical causal assump-
tions, representing the data generation process with different
types of distributional shifts with regards to different envi-
ronment interventions (Ahuja et al. 2021). Resembling the
similar principles, we provide a latent-variable SCM per-
spective to observe how InvRat / IIB generates X from the
latent variable Z. It is concatenated by the invariant fea-
tures Zc and the variant counterpart Zs with respect to the
environment drawn from E. In the regards of latent inter-
action between Zc and Zs, we may further categorize the
SCMs into the types Fully Informative Invariant Features
(FIIF) and Partially Informative Invariant Features (PIIF),
depending upon whether Zc is fully informed by Y , i.e.,
Y ⊥ E,Zs ∣ Zc. Formal definitions are provided without
additive noise for simplicity:
Assumption 1 (PIIF Structural Causal Model (SCM)).

Y ∶=finv(Zc), Zc ∶= fenv(E),

Zs ∶=fspu(E,Y ), X ∶= fgen(Zc, Zs);

Assumption 2 (FIIF Structural Causal Model (SCM)).

Y ∶=finv(Zc), Zc ∶= fenv(Zs,E),

Zs ∶=fspu(Zc,E), X ∶= fgen(Zc, Zs).

Figure.1.(a-b) visualize the causal diagrams under the as-
sumptions for InvRat and IIB. Despite representing different
classes of distributional shifts, PIIF and FIIF SCMs simulta-
neously consider Zs as the spurious correlation of the causal
routine from data X to label Y , then, seeking to deconfound
the spurious factors from E. Their common goal is to learn
the feature encoder h(⋅) for recovering Zc, then facilitate the

invarint causal prediction Zc
finv
→ Y . It is highlighted that the

previous work discussed for InvRat /IIB were almost derived
from the PIIF Assumption (Figure.1.(a)). However, the FIIF
Assumption (Figure.1.(b)) was seldom investigated because
spurious correlations mostly live in the situations where Zs

is partially informed by Y (Y /⊥ E,Zs∣Zc), e.g., the spurious
features refer to visual background information in an image.
In contrast, our work prefers to the necessity of incorporat-
ing the FIIF SCM Assumption since the fake invariant ef-
fects are probably hidden in the FIIF-SCM Assumption.

Fake Invariance from A Causal Lens
To verfiy our claim, we need to overview the concept of fake
invarian features. As demonstrated by (Li et al. 2022), they
are some spurious features Zs that pretend to be the domain-
invariant part of Z by the shortcut Φ(⋅) from two viewpoints

• Y ⊥E∣ Zc,Φ(Zs) (Fake invariance): Combining Zc and
Φ(Zs) can produce the lower empirical risk than the in-
variant risk, implying the domain-invariant property.

• Y /⊥E∣ Φ(Zs) (Spuriousness): For arbitrary Zs,Y ,E un-
der the SCM Assumptions aforementioned, we discover
Y /⊥E∣ Zs↔I[Y ;E∣Zs]>0. Consider the shortcut Φ() ef-
fect on I[Y ;E∣Zs] reduced to

I[Y ;E∣Φ(Zs)]

=I[Y ;E] − (I[Y ;Φ(Zs)] − I[Y ;Φ(Zs)∣E])

≥I[Y ;E] − (I[Y ;Zs] − I[Y ;Zs∣E])

=I[Y ;E∣Zs] > 0,

which leads to such property.

Given these, we reconsider the environment interventions in
the PIIF and FIIF SCM Assumptions, respectively, then dis-
cuss whether Φ(Zs) embedded in their frameworks. Notice
that Φ(⋅) is solely the pathway algorithmic-recovered from
the feature encoder h(⋅). It does not refer to any dependency
under SCM assumptions.

PIIF SCM Fail to Identify the Fake Invariance. In the
PIIF SCM Assumption, some evidences in Figure.1(b) can
be readouted through the d-seperation rules (Pearl 2010):

• Y /⊥ E implies the label marginal alters according to the
environment interventions (the non i.i.d. property);

• Y ⊥ E ∣Zc demonstrates the independence between the
label and the environment intervention provided with Zc.
So h(⋅) recovers the invariant features from Zc and may
achieve OOD generalization regardless of E;
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• Y /⊥E ∣Zs and Y /⊥E∣Zc,Zs respectively demonstrate that
(1). Zs indicates the non-invariant property that we men-
tioned; (2). If h(⋅) recovers Zc, Zs simultaneously, the
independence between Zc and Y will not hold since Zs

works for a collider between E and Y .

The observations explain a broad range of questions of IRLs
except for the fake invariant phenomenon. Specifically, such
issue is typically caused by the spurious features Zs via the
shortcut Φ(Zs), whereas Φ(Zs) can not be reflected by Zs

in the PIIF SCM since evidences Y /⊥E ∣Zs and Y /⊥E∣Zc,Zs

prevent the encoder h(⋅) from recovering features in Zs. But
what if Φ(Zs) indicates a part of Zc? This conjecture is also
impossible in the PIIF SCM setup due to the spuriousness of
Φ(Zs): Y /⊥E∣ Φ(Zs) obviously conflicted with the domain-
invariant property required for the features in Zc.

FIIF SCM Implies the Fake Invariance. Provided with
the failure witnessed in the PIIF SCM Assumption, we turn
to the FIIF SCM Assumption and verify why the fake invari-
ant features could be distinctly denoted as Zs in Figure.1(b).
We analyze the causal independences behind the FIIF SCM
Assumption by following the same routine of the PIIF SCM
Assumption. Such data distribution satisfies

• Y /⊥ E and Y ⊥ E ∣Zc both hold as the FIIF SCM does;
• Y /⊥ E ∣Zs indicates Zs’s the spurious nature;
• Y ⊥E ∣Zc,Zs demonstrates that combing Zc and Zs leads

to the invariant representation, however, Zs should not be
included since it implies spurisous correlations.

Observe that the second property suggests Zs being domain-
specific for the label prediction, whereas combining Zc and
Zs results in the domain-invariant property that intervents the

causal prediction over Zc,Zs
finv
→ Y , which should have been

Zc
finv
→ Y instead. In this case, the second and the third obser-

vations for Zs in the FIIF SCM setup do exactly refer to the
fake invariance and the spuriousness behind Φ(Zs).

ReStructued SCM. Despite incorporating the fake in-
variance, Zs in the FIIF SCM Assumption contradicts the
PIIF-SCM spurious correlation commonly found in practice.
To obtain the best of both worlds, we restructure their SCMs
and propose a new data generation regime that unify the PIIF
and FIIF spurious correlations:

Assumption 3 (ReStructured SCM (RS-SCM, Figure.1(c))).

Y ∶=finv(Zc), Zc ∶= fenv(E,ZF ), Zs ∶= fspu(E,Y ),

ZF ∶=ffake(E,Zc), X ∶= fgen(Zc, Zs);

The RS-SCM extends the previous PIIF SCM by branch-
ing the Zs-based spurious features to embrace the ZF as our
fake invariant features i.e., ZF=Φ(Zs). The independencies
between ZF and the other variables keep consistent with the
spurious features Zs used in the FIIF SCM Assumption. No-
tably, the fake invariant effect only happens while the train-
ing environments overloaded with all spurious factors, there-
fore the causal subgraph with respect to ZF in the RS-SCM
should be adaptively deactivated beyond this situation. The
switchable SCM mechanism is inspired from the heteroge-
neous causal graph (Watson et al. 2023), where we highlight
the switchable parts by purple in Figure.1(c).

Remark 1. The RS-SCM Assumption concurrently embeds
spurious features and fake invariant features.

Methodology
In this section, we elaborate our methodology derived from
the restructured causality. We first review the strategies in In-
vRat and IIB, then, showing how they fail to rectify Φ(Zs).
Then we formulate our rectification objective to calibrate In-
vRat and IIB in an invariant learning manner.

InvRat Family Does Not Rectify Φ(Zs)

In the InvRat family, the vanilla InvRat obviously fails due to
no effort paid to rectify Φ(Zs) by Eq.2. Its derivation IIB ad-
vocates the minmal information between X and h(X), i.e.,
minh I[X;h(X)]. The constraint pernalizes the capacity of
invariant feature recovery in h(X), then combined with the
invariant constraint minh I[Y ;E∣h(X)]. It was deemed to
remove Φ(Zs) hidden in the recovered feature h(X), which
is unreliable since their analysis is built upon the PIIP SCM
Assumption where Φ(Zs) can not be reflected by their la-
tent variables. But under our RS-SCM Assumption, whether
the constraint minh I[X;h(X)] enables the fake invariance
elimination? Our theoretic result also denies such guess:

Proposition 1. In the RS-SCM Assumption, given invariant
feature Zc∈Rnc and fake invariant features Φ(Zs)∈RnF as
a feature subset of fake invariant variable ZF : Φ(Zs)⊂ZF ,
we can find Z∈Rnc with Z∩Φ(Zs)≠∅ that satisfies

λI[Y ;E∣Z] + βI[X;Z]

≤ λI[Y ;E∣Zc ∪Φ(Zs)]+βI[X;Zc ∪Φ(Zs)],

s.t. ∀λ,β ∈ R+.
(3)

The justification elaborates that for each invariant feature Zc

recovered by h(), the FIIP SCM may search the feature Z in
the identical latent space of Zc to bound the invariant con-
traint of the IIB strategy, however, Z satisfies Z∩Φ(Zs)≠∅

wherein the fake invariant features might be included by this
reprsentation. IRLs conventionally optimize their models by
way of non-convex variational bounds, thus hardly to certify
whether training h(⋅) may result in the recovery of Z or Zc.
In terms of Proposition.1 and what we previously discussed,
the conlusion is drawn to the InvRat family in RS-SCM:

Remark 2. Under the RS-SCM Assumption, InvRat and IIB
strategies distinguish the spurious features Zs whereas fail
to elimiate the fake invariant features ZF = Φ(Zs).

Remark.2 illustrates the bright side of the InvRat familiy: the

ability to debias Zc,ZF
finv
→ Y from the spurious factors Zs by

the invariant independence contraint (i.e., Y ⊥E ∣h(X)). To
achieve OOD generalization, we are required to prevent ex-
isting InvRat variants from the unexpected recovery of ZF .

Rectification Approach by RS-SCM
We move foward our discussion of how to wipe out ZF from
Zc∪ZF . Under the RS-SCM Assumption, we reconsider the
Markov dependency across Zc and ZF then distinguish them
according to their different behaviors for the label prediction
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conditioned with each other and Zs. Specifically, when pro-
vided with ZF and Zs, the d-seperation principle judges the

causal prediction Zc
finv
→ Y with Y /⊥Zc∣ ZF ,Zs. It implies the

causal path activated to maximize the CMI:

max
Zc

I[Y ;Zc∣ZF , Zs] =max
Zc

I[Y ;Zc∣h(X)/Zc], (4)

which is optimized for recovering Zc from invariant encoder
h(X) learned by InvRat or IIB.

Similarly, we observe the causal dependency across Y and

ZF , then analyze the label prediction ZF
fenv
→ Zc

finv
→ Y given

Zs,Zc as the condition. It refers to Y ⊥ZF ∣ Zc,Zs that equiv-
alently minimizes the CMI constraint:

min
ZF

I[Y ;ZF ∣Zc, Zs] =min
ZF

I[Y ;ZF ∣h(X)/ZF ]. (5)

The contraint above helps us to identify ZF from h(X).
Note that when h(X) has been well trained by the InvRat

or the IIB, their models encourage h∗(X)=ZF∪Zc. The nice
property unifies Eq.4 and Eq.5 into the same objective, i.e.,

min
Zc,ZF

I[Y ;ZF ∣h
∗

(X)/ZF ] − λI[Y ;Zc∣h
∗

(X)/Zc]

=min
Zc

I[Y ;h∗(X)/Zc∣Zc] − λI[Y ;Zc∣h
∗

(X)/Zc].
(6)

where λ indicates the trade-off co-efficient. Maximizing and
minimizing CMI are intractable while thanks to the symme-
try between Eq.4 and Eq.5, the CMI decomposition holds as

I[Y ;h∗(X)/Zc∣Zc] = −H(Y ∣h
∗

(X)) +H(Y ∣Zc);

I[Y ;Zc∣h
∗

(X)/Zc] = −H(Y ∣h
∗

(X)) +H(Y ∣h∗(X)/Zc),

so that we simplify Eq.6 for the Zc recovery from h∗(X):

min
Zc

I[Y ;h∗(X)/Zc∣Zc] − λI[Y ;Zc∣h
∗

(X)/Zc]

=min
Zc

H(Y ∣Zc) − λH(Y ∣h
∗

(X)/Zc) + (λ − 1)H(Y ∣h
∗

(X))

(7)
where (λ − 1)H(Y ∣h∗(X)) is constant in the optimization.
The objective implies that rectification only needs to select
features from h∗(X) to improve the causal invariant predic-

tion Zc
finv
→ Y (the first term) and discourage the fake invari-

ant prediction ZF
fenv
→ Zc

finv
→ Y (the second term). The joint

CMI nature behind Eq.7 holds the theoretical ganrantee as
Proposition 2. Suppose that h∗(X)=ZF∪Zc under the RS-
SCM Assumption. If feature Z recovered from h∗(X) satis-
fies I[Y ;h∗(X)/Z ∣Z]=0 and I[Y ;Z ∣h∗(X)/Z]>0, it holds
Z = Zc or Z = Zc ∪ZF .

The proposition implies the rectification may lead to the
ideal Z=Zc or the trivial result that collapses into Zc∪ZF . To
prevent the trivial solution, we encourage the joint CMI ob-
jective optimized along with maxZ I(Z;h∗(X)/Z), where
I(Z;h ∗ (X)/Z)>0 helps to get rid of the collapse.

Interplay Invariant Learning
Given the rectification approach by Eq.7, we propose a novel
framework for OOD generalization.

Neural Soft-Feature Selector. Eq.7 demands a small net-
work that selectsfeaturesfrom h(X) to recoverZc.We take a

Figure 2: Our interplay invariant learning (IIL) framework.
The transparency implies the network frozen or the variables
not activated in this alternative phase (Best viewed in color).

simple two-layer architecture then adjust the scale complex-
ity according to the tasks involved. The sub-network s(⋅)
receives the latent layer’s output from h(X) to make the
soft feature selection on h(X). Specifically, s(h(X)) goes
through a series of sigmoid activation functions to yield a
vector with the same dimension of h(X), where each pos-
itive output means that the feature is selected as Zc. So
s(h(X))⊙h(X) corresponds to the soft-feature selection
for Zc and (1 − s(h(X)))⊙h(X) corresponds to the soft-
feature selection for ZF (⊙ indicates the entry-wise prod-
uct). The objective Eq.7 turns into
min
s

E[L(Y, s(h(X))⊙ h(X))]

−λE[L(Y, (1 − s(h(X)))⊙ h(X))]
(8)

where we take the task-specific loss to approximate the con-
ditional entropy,i.e., E[L(Y,Z)]→H(Y ∣Z).

Framework. We show how to combine Eq.8 with InvRat
to learn invariant representation alternatively. Derived from
the variational upper bounds of Eq.2, the InvRat family plays
an adversarial game to jointly train three sub-networks, i.e.,
feature encoder h(⋅), invariant predictor gi(⋅), domain-aware
predictor gd(⋅):
min
h,gi

max
gd

E[L(Y ; gi(h(X)))]

+ β(E[L(Y ; gi(h(X)))] − E[L(Y ; gd(h(X)))])

(9)
Given subnetworks pre-trained by Eq.9, our invariant learn-
ing framework alternatively performs to (1). train the feature
selector s(⋅) with respect to Eq.8 in the outer loop; (2). fine-
tune the InvRat subnetworks by Eq.9 in the inner loop. It is
illustrated in Figure.2.

Experiments
In this section, we firstly conduct the diagnostic experiments
on the benchmarks derived from recent studies (Arjovsky
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et al. 2019; Ahmed et al. 2020) broadly applied in IRL for
OOD generalization. It aims to validate whether our IIL can
(1). rectify the fake invariant effect as demonstraed by our
theoretical analysis; (2). remain the capability of InvRat and
IIB to learn invariant representation. Afterwards, we evalu-
ate our IIL framework in five competitive benchmarks for
domain generalization in the wild, in order to verify IIL’s
feasibility in complex scenarios. Notice that InvRat is orig-
inally proposed for rationalization but IIB exactly share the
most of its optimization pipelines beyond the MI constraint
I[X;h(X)]. In this regards, our experiments consider In-
vRat as the IIB without this regularization.

Benchmarks. The diagnostic study provides the forensic
of IRL baselines under the RS-SCM Assumption. It requires
the datasets generated by the same causal mechanism, how-
ever, existing diagnostic benchmarks are generated by either
FIIF or PIIF SCM, hardly fullfiling our demand (Arjovsky
et al. 2019; Ahmed et al. 2020). We observe that RS-SCM
consists of FIIF and PIIF SCM Assumptions so that combine
their generation recipes to build our diagnostic benchmark to
evaluate the invariant learning quality.

Dataset Zc Zs ZF Training/Test Samples

CS-MNIST-CIFAR Digit CIFAR Color

CS-MNIST-COCO Digit Object Color

Table 1: The summary of our diagnostic benchmarks.

Specifically, we consider the ten-class digit classification
mission derived from the CS-MNIST (FIIF) benchmark in
(Ahuja et al. 2021). It consists of two environments for train-
ing with 20,000 samples each and one environment for eval-
uation with the same number of data. In this setup, Zc would
refer to the shape of digit and ten digit classes would be as-
sociated with ten colors respectively, with an environment-
specific probability pe. The color indicates the fake invariant
variable ZF and the association indicates the Markov depen-
dency between Zc and ZF , and pe implies the environment
dependences from E to latent variables ZF and Zc: pe in-
dicates their association activated otherwise the digit would
randomly associated with the ten colors.

The generated digits can not represent the RS-SCM since
the spurious factor Zs has not been included. In this case,
we resemble the composition rule in CIFAR-MNIST (Zhou
et al. 2022) whereas we classify MNIST instead of CIFAR.
So given each colored digit generated by the previous strat-
egy, we combine it with a CIFAR image drawn from the gen-
erative process following the PIIF SCM Assumption (Ar-
jovsky et al. 2019). Specifically, given a digit generated by
the previous process, we take a random flip with 25% chance
to randomly change its label; then we associate this digit-
class label with a CIFAR class with environment-dependent
probability p̂e. So we have the CS-MNIST-CIFAR to rep-
resent the RS-SCM Assumption where the spurious vairable
Zs is indicated by the CIFAR classes. We replay this process
with Color-COCO then get the second RS-SCM benchmark

Methods ID Acc (↑) OOD Generalization Acc (↑)
No shift Z/Zs Z/ZF Z/(Zs, ZF )

ERM 93.22 11.87 13.76 10.13
IRM 94.49 59.58 53.43 50.06

IRM+IB 96.14 66.98 70.42 59.71
InRav 89.25 63.39 65.75 60.89

IIB 96.76 70.98 69.42 66.23
InvRav(+ours) 91.72 ↑ 64.47↑ 69.23 ↑ 64.40 ↑

IIB(+ours) 95.17↓ 70.19↓ 70.54 ↑ 68.37 ↑

Table 2: ID / OOD generalization accuracies on CS-MNIST-
CIFAR. Z/Zs, Z/Zc, and Z/(Zs, Zc) indicate different dis-
tributional shifts between training and test (without spurious
factor, without fake invariant, without the both).

Methods ID Acc (↑) OOD Generalization Acc (↑)
No shift Z/Zs Z/ZF Z/(Zs, ZF )

ERM 92.63 10.24 11.47 9.67
IRM 94.49 49.67 54.26 47.19

IRM+IB 96.14 56.91 63.92 55.27
InRav 89.25 53.07 61.75 51.33

IIB 92.44 61.14 66.38 57.62
InvRav(+ours) 91.72 ↑ 58.86 ↑ 66.42 ↑ 56.16 ↑

IIB(+ours) 93.17 ↑ 63.72 ↑ 69.59 ↑ 62.35 ↑

Table 3: ID / OOD generalization accuracies on CS-MNIST-
COCO. Z/Zs, Z/Zc, and Z/(Zs, Zc) indicate different dis-
tributional shifts between training and test (without spurious
factor, without fake invariant, without the both).

CS-MNIST-COCO (see Table.1). pe = 1,0.9 and p̂e = 1,0.9
are set up for two training environments, respectively.

Beyond the diagnostic datasets, we also conduct the ex-
periments on VLCS, PACS, Office-HOME, Terra-Incognita
and DomainNet, which refer to DomainBed (Gulrajani and
Lopez-Paz 2020) for real-world OOD generalization.

Experimental setup. In terms of the feature encoder, in-
variant predictor and domain-aware predictor, we employs
the architecutres applied in (Li et al. 2022). We take a sim-
ple two-layer network for CS-MNIST and a transformer-like
subnetwork for DomainBed as our neural feature selectors.

Diagnostic OOD Generalzation
Baselines. Beyond InvRat and IIB, we take IRM (Arjovsky
et al. 2019) and IRM+IB (Ahuja et al. 2021) implemented
by IRMv1 variants as our IRL baselines. We also employed
ERM as the borderline to judge the IRL performance.
Results. 20% training data are split into the validation set for
CS-MNIST-CIFAR and CS-MNIST-COCO, where all base-
lines are evaluated to produce their in-distribution (ID) per-
formances. Our evaluation is interested in OOD generaliza-
tion across diverse distributional shifts: (1).Z/Zs indicates
the test environment with the spurious covariate shift (each
test digit was randomly matched with an image drawn from
CIFAR or ColorCOCO regardless of the image label); Z/ZF

indicates the test environment with the fake invariant distri-
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ERM 77.2 83.0 65.7 41.4 40.6 61.6
IRM 78.5 83.5 64.3 47.6 33.9 61.6

VREx 78.3 84.9 66.4 46.4 33.6 61.9
CausalIRL 77.6 84.0 65.7 46.3 40.3 62.8

InRav 77.3 83.5 66.2 44.6 35.1 61.3
IIB 77.2 83.9 68.6 45.8 41.5 63.4

InvRav(+ours) 77.3 84.6 66.3 46.1 40.1 62.9
IIB(+ours) 77.6 85.8 68.8 47.6 42.5 64.4

Table 4: OOD generalization accuracy on DomainBed.

butional shift (each test digit was randomly matched with
a color); Z/(Zs, ZF ) denotes the test environment contain-
ing the spurious and fake invariant distribution shifts con-
currently (a test digit takes the both actions simultaneously).
The accuracies across all baselines are evidenced in Table.2
(CS-MNIST-CIFAR) and Table.3 (CS-MNIST-COCO).

Our diagnostic experiment was conducted to address two
major concerns to our approach. 1.(identification concern):
if the fake invariance happens (i.e., ZF has been activated in
the RS-SCM), why IRL needs to identify the fake invariant
variable Zz? 2.(rectification concern): whether our approach
rectify the negative effect caused by the fake invariant fea-
tures Zz instead of other spurious covariates?

In view of the diagnosis concern, we investigate the com-
parison among diverse testbed scenarios. We first note that
the ERM almost perform to approximate the random guess
in arbitrary OOD situations, implying our diagnostic bench-
mark with diverse and significant distributional shifts. Be-
yond this, Z/Zs arouses more severe accuracy drop com-
pared with Z/ZF . It makes sense since the introduced im-
age contains spurious covariates with the higher dimension-
ality than the colorized pixels. But even so, the accuracies of
Z/(Zs, ZF ) in the majority of baselines almost underper-
form their Z/Zs counterparts. It verified that the covariate
shift caused by the fake invariant variable ZF could not be
conveniently eliminated by addressing the shift caused by
Zs. It justifies the superiority of our approach, which identi-
fies the covariate shift caused by ZF to prevent the invariant
prediction from the biased representaion (Zs, ZF ).

Given this, we compare our approach with other baselines
particularly, InvRat and IIB, to verify its rectification ability
to the fake invariant factors ZF . In Table.2, the performances
of InvRat and IIB boosted by our IIL are inconspicuous in
the ID scenarios and OOD scenario Z/Zs (+2.48 in ID and
+1.09 in Z/Zs for InvRat, respectively; and receives nega-
tive transfer in ID and Z/Zs for IIB), yet its accuracy boost
significantly when comes to Z/ZF and Z/(Zs, ZF ) scenar-
ios e.g., +3.48 in Z/ZF and +3.51 in Z/(Zs, ZF ) for InvRat.
In Table.3, the performance boost has been observed more
sigficantly. The ablation evidences demonstrate that our rec-
tification approach mainly works for eliminating the nega-
tive covariate shift caused by ZF while thanks to the inter-
play learning manner, the overall performance get benefited.

Real-world OOD Generalization
Baselines. We follow the evaluation setup and testify all IRL
baselines including ERM, IRM, VREx (Krueger et al. 2021),
and the recent approach CausalIRL (Chevalley et al. 2022),
which all belong to competitive IRL baselines. We also eval-
uated other 15 baselines apart from IRL approaches in Ap-
pendix.C. We employ the model selection strategy by leave-
one-domain-out cross validation.
Results. In Table.4, we evaluate our approach by combining
it with InvRat and IIB. In general, our approach improved
InvRav by +1.6% and IIB by +1.0%. In terms of our theo-
retical finding and evidences shown in the diagnostic eval-
uation, we figure the improvement probably due to the fake
variant factors eliminated by our approach. It verified that
our approach is compatible with the information bottleneck
regularization. Whereas we also observe that the increase in
VLCS is very limited (+0.0 for InvRat and +0.4 for IIB in
VLCS). It is probably due to VLCS composed by 5 classes
across 4 datasets, thus, insufficient to capture the domain-
specific complexity. Beyond this, our approach significantly
outperform the other baselines.

Ablation
The ablation study has been provided in our ArXiv version.

Conclusion
This paper attempts to resolve the fake invariance problem
for IRL, which undermines the OOD generalization perfor-
mance. We proposes a novel structural causal model, Re-
Structured SCM (RS-SCM) to reconstruct both spurious and
fake invariant features from the data. It inspires a new ap-
proach to eliminate the spurious and fake invariant effects.
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