
CUTS+: High-Dimensional Causal Discovery from Irregular Time-Series

Yuxiao Cheng1*, Lianglong Li1*, Tingxiong Xiao1, Zongren Li3,
Jinli Suo1,2†, Kunlun He 3†, Qionghai Dai1,2†

1Department of Automation, Tsinghua University
2Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS)

3Chinese PLA General Hospital
{cyx22,li-ll19}@mails.tsinghua.edu.cn

Abstract
Causal discovery in time-series is a fundamental problem
in the machine learning community, enabling causal reason-
ing and decision-making in complex scenarios. Recently, re-
searchers successfully discover causality by combining neu-
ral networks with Granger causality, but their performances
degrade largely when encountering high-dimensional data
because of the highly redundant network design and huge
causal graphs. Moreover, the missing entries in the observa-
tions further hamper the causal structural learning. To over-
come these limitations, we propose CUTS+, which is built on
the Granger-causality-based causal discovery method CUTS
and raises the scalability by introducing a technique called
coarse-to-fine-discovery (C2FD) and leveraging a message-
passing-based graph neural network (MPGNN). Compared to
previous methods on simulated, quasi-real, and real datasets,
we show that CUTS+ largely improves the causal discovery
performance on high-dimensional data with different types of
irregular sampling.

Introduction
Analyzing complex interactions behind the observed time-
series, i.e., time-series analysis, is a fundamental problem in
machine learning and holds great potential in various real-
world applications. However, revealing the complex rela-
tionships buried under massive amounts of variables can be
challenging for algorithm design. Recently, approaches have
been proposed to extract causal relationships from observa-
tional data (Tank et al. 2022; Löwe et al. 2022; Khanna and
Tan 2020; Runge et al. 2019; Cheng et al. 2023; Xu, Huang,
and Yoo 2019). This task is called time-series causal discov-
ery, which serves as a fundamental tool in machine learning
by enabling causal reasoning of time-series.

Although proven to be able to efficiently discover causal
relationships, most of these methods lack the ability to han-
dle high-dimensional time-series. Actually, many causal dis-
covery algorithms are only tested on datasets with fewer than
20 time-series (i.e. N ≤ 20) (Tank et al. 2022; Khanna and
Tan 2020), while the real time-series datasets often contain
dozens or even hundreds of time-series, e.g., gene regula-
tion networks or air quality index. Recently, Cheng et al.
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(2023) proposed CUTS, an iterative approach to jointly per-
form causal graph learning and missing data imputation
for irregular temporal data. Although CUTS is proposed to
boost causal discovery with data imputation and the other
way around, the data prediction module is composed of
component-wise LSTMs and MLPs with redundant struc-
tures and parameters, hampering the scalability when en-
countering high-dimensional datasets. Moreover, the causal
graph in CUTS can be too large to learn with high accuracy.

To overcome these issues, we propose CUTS+, an ex-
tension of CUTS with scalability to high-dimensional time-
series, via proposing two specially designed techniques:
coarse-to-fine causal discovery (C2FD) and message-
passing graph neural network (MPGNN) for data prediction.
Our contributions include:

• We propose CUTS+, upgrading CUTS (Cheng et al.
2023) to largely increase the scalability towards high-
dimensional time-series. Specifically, we leverage two
novel techniques, i.e., Coarse to Fine Causal Discovery
(C2FD), a simple yet efficient technique to facilitate scal-
able causal graph optimization, and message-passing-
based graph neural network (MPGNN) to remove struc-
tural redundancy in CUTS+.

• With extensive experiments, we show that CUTS+
largely increases causal discovery performance and
decreases time cost, especially on high-dimensional
datasets, with either multiple types of irregular sampling
or no missing values.

Related Works
Causal Structural Learning / Causal Discovery. Ex-
isting Causal Structural Learning (or Causal Discovery) ap-
proaches can be categorized into five classes. (i) Constraint-
based approaches, such as PC (Spirtes and Glymour 1991),
FCI (Spirtes et al. 2000), and PCMCI (Runge et al. 2019;
Runge 2020; Gerhardus and Runge 2020), build causal
graphs by conditional independence tests. (ii) Score-based
learning algorithms which include penalized Neural Ordi-
nary Differential Equations and acyclicity constraint(Bellot,
Branson, and van der Schaar 2022) (Pamfil et al. 2020).
(iii) Convergent Cross Mapping (CCM) proposed by Sug-
ihara et al. (2012) that reconstructs nonlinear state space
for nonseparable weakly connected dynamic systems. This
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approach is later extended to situations of synchrony, con-
founding, or sporadic time series (Ye et al. 2015; Benkő
et al. 2020; Brouwer et al. 2021). (iv) Approaches based on
Additive Noise Model (ANM) that infer causal graph based
on additive noise assumption (Shimizu et al. 2006; Hoyer
et al. 2008). ANM is extended by Hoyer et al. (2008) to non-
linear models with almost any nonlinearities. (v) Granger-
causality-based approaches. Granger causality is initially in-
troduced by Granger (1969) who proposed to analyze the
temporal causal relationships by testing the help of a time-
series on predicting another time-series. Recently, Deep
Neural Networks (NNs) are widely applied to infer non-
linear Granger causality since the central idea of Granger
Causality is highly compatible with NNs. Researchers have
successfully use Recurrent Neural Networks (RNNs) or
other NNs for time series analysis to discover causal graphs
(Wu, Singh, and Berger 2022; Tank et al. 2022; Khanna and
Tan 2020; Löwe et al. 2022; Cheng et al. 2023). This work
also incorporates a deep neural network to discover Granger
Causality.

Scalable / High-dimensional Causal Discovery. Scal-
ability can be a serious problem when applying causal dis-
covery algorithms to real data. With hundreds of time-series
(or hundreds of static nodes), the potential possibility for
causal relations grows exponentially. Existing approaches
may fail because they involve either massive conditional
independence tests (Runge et al. 2019), too many vari-
ables to be conditioned on (Hong, Liu, and Mai 2017), or
large quantities of parameters to be optimized (Tank et al.
2022; Cheng et al. 2023). To solve this problem, scalable
or high-dimensional causal discovery approaches are pro-
posed. In static settings, Hong, Liu, and Mai (2017) and
Morales-Alvarez et al. (2022) propose to boost scalability
via divide-and-conquer technique, Lopez et al. (2022) limit
the search space to low-rank factor graphs, Cundy, Grover,
and Ermon (2021) instead leverages variational framework.
In time-series settings like ours, the scalability issue is less
explored. The most related work to ours is Xu, Huang, and
Yoo (2019)’s which also uses Granger causality and simpli-
fies the high-dimensional adjacency matrix with low-rank
approximation. However, the low-rank assumption may not
be satisfied in real scenarios. Our CUTS+ is an extension of
Granger-causality-based approaches by alleviating the scal-
ability issue without low-rank approximation.

Background
Time Series and Granger Causality
We inherit the notation in (Cheng et al. 2023) and denote
a uniformly sampled observation of a dynamic system as
X = {xi,1:T }Ni=1 , where xi,t represents the ith time-series
sampled at time point t, and t ∈ {1, ..., T}, i ∈ {1, ..., N},
with T and N being the length and number of the time-
series. Each sampled variable xi,t is assumed to be gener-
ated by the following Structural Causal Model (SCM) with
additive noise:

xi,t = fi(x1,t−τ :t−1,x2,t−τ :t−1, ...,xN,t−τ :t−1)+ei,t (1)

in which τ denotes the maximal time lag and i = 1, 2, ..., N .
Our CUTS+ can also handle irregular time-series by jointly

performing imputation and causal discovery. So to model the
irregular time-series, a bi-value observation mask ot,i is used
to label the missing entries, i.e., the observed point equals
the generated xi,t when ot,i equals to 1. In this paper, we
adopt the protocols of previous works (Yi et al. 2016; Cini,
Marisca, and Alippi 2022) and consider two types of data
missing that often occur in practical observations:

• Random Missing (RM). The data entries in the observa-
tions are missing with a certain probability p, here in our
experiments the missing probability follows Bernoulli dis-
tribution ot,i ∼ Ber(1− p).

• Random Block Missing (RBM). Under a relatively small
p for RM, we set a block failure probability pblk and block
length Lblk ∼ Uniform(Lmin, Lmax), i.e. there exist pblk ·
N · T missing blocks on average and each with length
uniformly distributed in [Lmin, Lmax].

Note that these two types can both be categorized into
Missing Complete at Random (MCAR), a most common
type of data missing (Geffner et al. 2022). In this work, we
build on the Granger causality. Actually, Granger causal-
ity is not necessarily SCM-based causality, since the latter
one often considers acyclicity. Under the assumptions of no
unobserved variables and no instantaneous effects, Peters,
Janzing, and Schölkopf (2017) shows identifiablility of time-
invariant Granger causality (Löwe et al. 2022; Vowels, Cam-
goz, and Bowden 2021). For a dynamic system, time-series
i Granger causes time-series j when the past values of time-
series xi aid in the prediction of the current and future status
of time-series xj . Specifically, we adapt the definition from
(Tank et al. 2022) that time-series i is Granger non-causal of
j if there exists x′

i,t−τ :t−1 ̸= xi,t−τ :t−1 satisfying

fj(x1,t−τ :t−1, ...,x
′
i,t−τ :t−1, ...,xN,t−τ :t−1) =

fj(x1,t−τ :t−1, ...,xi,t−τ :t−1, ...,xN,t−τ :t−1)
(2)

i.e., the past data points of time-series i influence the predic-
tion of xj,t. For simplicity, we use xi to denote xi,t−τ :t−1 in
the following. The discovered pair-wise Granger causal re-
lationship is a directed graph, which is then represented with
an adjacency matrix A = {aij}Ni,j=1, where aij = 1 denotes
time-series iGranger causes j and aij = 0 means otherwise.
The idea of Granger causality is highly compatible with the
basic idea of neural networks (NNs) since NNs can serve as
powerful predictors. In previous works, (Cheng et al. 2023)
prove that causal graph discovery in their CUTS converges
to the true graphs under the Additive Noise Model and Uni-
versal Approximation Theorem, which again validates the
successful combination of Granger causality and NNs.

Difficulties with High Dimensional Time-series
In real scenarios, it is common to face hundreds of long time-
series with complex causal graphs. We now proceed to show
difficulties when CUTS or other causal discovery algorithms
handle such data.

Large Adjacency Matrix. The pairwise GC relation-
ship, denoted as matrix AN×N , can become very large as
N increases. Prior works mainly focus on the settings when
N ≤ 20 (Tank et al. 2022; Khanna and Tan 2020; Cheng
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CPG Causal Probability Graph M
GCPG Group CPG Q
BCG Binary Causal Graph S
MPNN Message-Passing NN
MPGNN Message-Passing GNN
C2FD Coarse-to-fine Causal Discovery

Table 1: List of abbreviations.

et al. 2023), and we show in the experiments that their per-
formances degrade greatly whenN > 20. Alternatively, Xu,
Huang, and Yoo (2019) addresses the scalability issue at in-
creasing data dimension via conducting low-rank approxi-
mation to the adjacency matrix, but the strong low-rank as-
sumption of AN×N does not hold in many scenarios.

Redundancy of cMLP / cLSTM. To uncover the black-
box of NNs, Cheng et al. (2023); Tank et al. (2022) disen-
tangle causal effects from causal parents to individual output
series. As a result, one must use N separate MLPs / LSTMs
to ensure the disentanglement. This is called component-
wise MLP / LSTM (cMLP / cLSTM) and frequently used
when discovering Granger causality (Khanna and Tan 2020).
In the following We formalize component-wise neural net-
works as “causally disentangled neural networks”.

Definition 1 Let x ∈ X ⊂ Rn,A ∈ A ⊂ {0, 1}n×n and
y ∈ Y ⊂ Rn be the input and output spaces. We say a neural
network fΘ : ⟨X ,A⟩ → Y is a causally disentangled neural
network (CDNN) if it has the form

fΘ(x,A) = [fΘ1
(x⊙ a:,1), ..., fΘn

(x⊙ a:,n)]
T
. (3)

Here a:,j is the column vector of input causal adjacency ma-
trix A; fϕj

: Xj → Yj , with Xj ⊂ Rn and Yj ⊂ R; the
operator ⊙ denotes the Hadamard product.

Here function fΘj (·) represents the neural network func-
tion used to approximate fj(·) in Equation (1). The in-
put to CDNN can also be X with time dimension in-
stead of x, then ⊙ is defined as fϕj

(X ⊙ a:,j)
∆
=

fϕj
({x1 · a1j , ...,xN · aNj}). Under this definition, Cheng

et al. (2023) proved that when approximating fj with fϕj

(along with other assumptions), the discovered causal adja-
cency matrix will converge to the true Granger causal ma-
trix. Although being a CDNN, cMLP / cLSTM consists of
N separate networks and is highly redundant, because the
shared dynamics among different time-series are modeled
N times. This redundancy not only slows down the learning
process but also degrades causal discovery accuracy. There-
fore, the model does not scale well to high-dimension time-
series. In the following section, we introduce two techniques
to alleviate the scalability issue.

CUTS+
In this work, we implement the causal graph as Causal Prob-
ability Graphs (CPGs) M in which the element mij repre-
sents the probability of time-series i Granger causing j, i.e.,
mij = P (xi → xj). If m̃ij in the discovered graph M̃ is
penalized to zero (or below some certain threshold), we can
deduce that time-series i does not Granger cause j.

Similar to CUTS (Cheng et al. 2023), we also adapt a two-
stage training strategy, and iteratively perform the Causal
Discovery Stage and Prediction Stage—the former builds
a causal probability matrix with available time-series under
sparse penalty, while the latter one fits the complex distri-
bution of high-dimensional time-series and fills the miss-
ing entries. However, both stages are of totally new de-
signs to overcome the difficulties when encountering high-
dimensional time-series, as illustrated in Figure 1. Specifi-
cally, we propose to use the coarse-to-fine discovery (C2FD)
technique in the Causal Discovery Stage and message-
passing graph neural network (MPGNN) in the Prediction
Stage, which are detailed in the following subsections.

Coarse-to-fine Causal Discovery
To address the problem of large adjacency matrix dis-
cussed before, we propose Coarse-to-Fine causal Discovery
(C2FD). Specifically, we split the time-series into several
groups, i.e., time-series group XGk

= {xi}i∈Gk
where Gk is

the set of the indices within the kth group, and k ∈ [1, Ng]
withNg being the group number. Each time-series is and can
only be allocated to one group, i.e., ∀k ̸= l ∈ [1, Ng] ,Gk ∩
Gl = ϕ. The grouping is implemented with matrix decom-
position of M̃:

M̃ = GTQ (4)
where G ∈ RNg×N is composed of entries gki ={
0, if i /∈ Gk
1, if i ∈ Gk,

. Since each time-series is and can only be

allocated to one group, the sum of each column vector of G
is 1, i.e. ∀i ∈ [1, N ] ,

∑Ng

k=1 gki = 1. We define the Granger
causality from group XGk

as follows
Definition 2 Group XGk

is Granger non-causal of xj if
there exists X′

Gk
̸= XGk

,

fj
({

X′
Gk
,X\XGk

}
)
= fj ({XGk

,X\XGk
}
)

(5)

i.e., group xGk
influence the prediction of xj,t. Here we de-

fine X\XGk

∆
= {xi}i/∈Gk

.

Then Q ∈ RNg×N is the Group Causal Probability Graph
(GCPG) with qij = P (XGi

→ xj).
Initial Allocation. Before training, we initiate G with

a relatively small Ng and consequently obtain a “coarse”
grouping. Specifically, the time series are allocated into a
group following

|Gi| =
{
⌊N/Ng⌋, if i ∈ [1, Ng − 1]

N − ⌊N/Ng⌋ · (Ng − 1), if i = Ng.
(6)

Group Splitting. During training, we periodically split
each group into two groups, and then Ng is doubled every
20 epochs until every group contains only one time-series.
Correspondingly, when doubling group numbers, GCPG el-
ement qij is allocated to 2 elements qi1,j and qi2,j in the new
GCPG, as initial guesses. Here we assume a group Granger
cause xj if at least one sub-group Granger cause xj , then
qij = P (XGi → xj) = 1−P (XGi1

↛ xj)P (XGi2
↛ xj),

where ↛ denotes not Granger cause. As initial guesses we
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assume P (XGi1
→ xj) = P (XGi2

→ xj), then qi1,j and
qi2,j are calculated as

qi1,j = qi2,j = 1−
√
1− qij . (7)

Convergence of C2FD. We prove the convergence of
C2FD with CDNN as predictor, with a similar manner to
(Cheng et al. 2023). Due to space limit, we place the de-
tailed assumptions, theorem, and proof in Section A of the
supplementary material.

The idea of coarse-to-fine is quite common in the field
of machine learning (Fleuret and Geman 2001; Sarlin et al.
2019). However, to our best knowledge, we are the first to in-
troduce the idea into neural-network-based Granger causal-
ity. Actually, the advantage of introducing C2FD is two-fold.
Firstly, the parameter number to learn is greatly decreased in
the initial stages. In the initial stages when Ng ≪ N , only
N · Ng instead of N2 parameters are required to be opti-
mized. Secondly, the learning results with smaller Ng serve
as initial guess for learning with larger Ng . When |Gk| > 1,
GCPG element qkj increases towards 1 if at least one mem-
ber Granger cause time-series j. Then the whole group is
used to perform data prediction with higher accuracy. Af-
ter doubling Ng , the optimizer further locates the sub-group
that actually Granger causes j. The empirical advantage of
C2FD is validated in experiments section.

Message-passing-based Graph Neural Network
To satisfy the definition of causally disentangled neural
network (CDNN) while preventing using highly redundant
cMLP / cLSTM, we leverage the Message-Passing Neu-
ral Network (MPNN (Gilmer et al. 2017)) for data predic-
tion encoder. To learn the dynamics of the high-dimensional
time-series, we alter the gated recurrent units (GRUs, (Cho
et al. 2014)) by adding message-passing layers. Firstly, we
formulate single-layer MPNN as

MPNNν(z; s) = MLPν (z⊙ s) = z′ (8)

where h′ is the output of MPNN in the last layer,
MLP1(·),MLP2(·) is multi-layer perceptrons (MLPs), ⊙ de-
notes the Hadamard product, and s ∈ {0, 1}N is the binary
causal vector, i.e., a column in the sampled Binary Causal
Graph (BCG, described in Section ) where si = 1 denotes zi
Granger cause the prediction. Similar to (Cini, Marisca, and
Alippi 2022), we add MPNN to GRU units, which serves as
a layer in MPGNN:

rjt = σ
(
MPNNνr

l
(x:,t; s:,j)

)
(9)

ujt = σ
(
MPNNνu

l
(x:,t; s:,j)

)
(10)

cjt = tanh
(
MPNNνc

l
(x:,t; s:,j)

)
(11)

hjt = uit ⊙ hit−1 + (1− uit)⊙ cit, (12)

with σ(·) being the sigmoid function. Different
from standard GRU units, each gate is computed
using only the input vector, which decreases pa-
rameter numbers. In the following we represent l

MPGNN layers with MPGNNν(x:,t,h
j
0; s:,j), where

ν = {νr1 , νu1 , νc1, ..., νrl , νul , νcl } (parameters of MPNNs in

all layers). Note that we share ν for each j, which is the key
design contributing to high scalability.

Scalability of MPGNN Encoder. The number of
parameters that need to be optimized in the MPGNN en-
coder can be calculated as l (|νr|+ |νu|+ |νc|), where
l is the number of MPGNN layers. Comparing CUTS+
with component-wise GRU, whose parameter number is
Nl (|νr|+ |νu|+ |νc|) (or cMLP / cLSTM (Tank et al.
2022) which is also O(Nl)), MPGNN achieves high scal-
ability by significantly reducing the number of optimization
parameters in the encoder. Moreover, since the component-
wise network-based prediction model is usually overparam-
eterized and thus prone to overfitting (Khanna and Tan
2020), our design also helps to mitigate overfitting.

Decoder. After encoding with MPGNN, the prediction
result x̂j,t is retrieved with a two-part decoder, i.e.,

x̂j,t = Linearψ2
j

(
MLPψ1

(
hjt−1

))
(13)

where Linearψ2
j
(·) denotes a single linear layer with un-

shared weights. To capture the heterogeneity among time-
series while removing structural redundancy as much as pos-
sible, here we share the weights of the first MLP part (ψ) and
do not share the weight of the second single-layered part
(distinct ψj for each target time-series j).

Overall Architecture
Bernoulli Sampling of CPG. Our CUTS+ represents
causal relationships with CPG M̃. To ensure elements of M̃
are within range [0, 1], we set Q = σ(Θ) where Θ is the
parameter to learn. During Causal Discovery Stage, Θ is
optimized using Gumbel-Softmax estimator (Jang, Gu, and
Poole 2016), i.e.,

sij =
e(log(mij)+g)/τ

e(log(mij)+g)/τ + e(log(1−mij)+g)/τ
(14)

Where g = − log(− log(u)), u ∼ Uniform(0, 1). We use
a large τ in the initial stages then decrease to a small
value. This estimator has a relatively low variance, mimic
Bernoulli distribution when τ is small, and more impor-
tantly, enables continuous optimization of Θ. During Pre-
diction Stage, CPG M̃ is sampled to binary causal graph
(BCG) S where sij ∼ Ber(mij). Finally BCG columns s:,j
is used as adjacency matrix in MPNNs.

Loss Functions. CUTS+ iterates between Causal Dis-
covery Stage and Prediction Stage. During the former stage,
only the CPG M̃ = σ(Θ) will be optimized, so the opti-
mization problem is

max
Θ

Lgraph = max
Θ

∑N
j=1

∑T
t=1 (x̂j,t − xj,t)

2 · oj,t∑N
j=1

∑T
t=1 oj,t

+ λ ∥σ(Θ)∥1 .

(15)

In the latter stage, we only optimize the network parameters:

max
Φ

Ldata = max
Φ

∑N
j=1

∑T
t=1 (x̂j,t − xj,t)

2 · oj,t∑N
j=1

∑T
t=1 oj,t

. (16)
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Figure 1: The architecture of CUTS+ with two alternating stages, both boosted for high-dimensional causal discovery. The
Causal Discovery Stage is equipped with Coarse-to-fine Causal Discovery (C2FD) while the Prediction Stage is with Message-
passing-based Graph Neural Network (MPGNN).

where Φ =
{
ν, ψ1, {ψj2}Nj=1

}
is all network parameters in

MPGNN encoder and decoder.
Satisfaction of CDNN. CDNN in Definition 1 is satis-

fied when a column of the matrix A only affects the corre-
sponding component of the prediction fΦ(x,A). If we com-
bine the prediction encoder MPGNNν

(
X̃,hj0; s:,j

)
with

the decoder Linearψ2
j

(
MLPψ1 (·)

)
, we get

x̂:,t = fΦ(X,S) =[
...,Linearψ2

j

(
MLPψ1

(
MPGNNν

(
X̃,hj0; s:,j

)))
, ...

]T
(17)

where hj0 is the initial value of GRU hidden states and irrel-
evant to x. Therefore, our CUTS is a CDNN, and according
to Theorem 1 in supplements A, the correct causal graph can
be recovered.

Handling Irregular Time-series with Imputation. In
this work, we handle irregular time-series by performing
concurrent data imputation during Prediction Stage. Our
data imputation is performed with sliding windows, where
the missing entries in one time window are filled with the
prediction x̂j,t from the last windows. Due to page limits,
we place the details for sliding window imputation in sup-
plements C.3.

Experiments
In this section, we quantitatively evaluate the proposed
CUTS+ and comprehensively compare it with state-of-the-
art methods to validate our design.

Baseline Algorithms. To demonstrate its advanta-
geous performance, we compared CUTS+ with 7 baseline
algorithms: (i) Neural Granger Causality (NGC, (Tank et al.

2022)), which utilizes cMLP and cLSTM to infer Granger
causal relationships; (ii) economy-SRU (eSRU, (Khanna
and Tan 2020)), a variant of SRU that is less prone to
over-fitting when inferring Granger causality; (iii) PCMCI
(Runge et al. 2019), a non-Granger-causality-based method
that uses conditional independence tests; (iv) Latent Con-
vergent Cross Mapping (LCCM, (Brouwer et al. 2021)), a
CCM-based approach that also tackles the irregular time-
series problem; (v) Neural Graphical Model (NGM, (Bel-
lot, Branson, and van der Schaar 2022)), which uses Neu-
ral Ordinary Differential Equations (Neural-ODE) to han-
dle irregular time-series data; (vi) Scalable Causal Graph
Learning (SCGL, (Xu, Huang, and Yoo 2019)) that address
scalable causal discovery problem with low-rank assump-
tion; and (vii) CUTS (Cheng et al. 2023). We evaluated
the performance in terms of the area under the ROC curve
(AUROC) criterion. For a fair comparison, we search the
best hyperparameters for the baseline algorithms on the val-
idation dataset, and test performances on testing sets for 5
random seeds per experiment. For the baseline algorithms
that could not handle irregular time-series data, i.e., NGC,
PCMCI, SCGL, and eSRU, we imputed the irregular time-
series using two algorithms: Zero-order Holder (ZOH, fill-
ing with the nearest historical sample, does not introduce
future samples), and state-of-the-art imputation algorithm
TimesNet (Wu et al. 2023).

Ablation Study Settings. Our main technical contri-
butions are introducing C2FD and MPGNN into causal dis-
covery. To quantitatively validate these two techniques, we
add C2FD into the original CUTS (Cheng et al. 2023) to get
“CUTS with C2FD”. Consequently, we can measure C2FD’s
performance gain by comparing “CUTS” with “CUTS with
C2FD” and verify MPGNN by comparing “CUTS with
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Method Imputation VAR with RM (N = 128) VAR with RBM (N = 128) VAR (N = 128)
p = 0.3 p = 0.6 pblk = 0.15% pblk = 0.3% No missing

NGC ZOH 0.8234 ± 0.0082 0.7419 ± 0.0056 0.8638 ± 0.0165 0.8357 ± 0.0161 0.9168 ± 0.0087TimesNet 0.7900 ± 0.0111 0.6560 ± 0.0112 0.8519 ± 0.0056 0.8292 ± 0.0083

eSRU ZOH 0.6627 ± 0.0071 0.6711 ± 0.0097 0.6606 ± 0.0152 0.6457 ± 0.0060 0.6860 ± 0.0144TimesNet 0.6175 ± 0.0149 0.5671 ± 0.0156 0.6643 ± 0.0097 0.6488 ± 0.0096

SCGL ZOH 0.6627 ± 0.0071 0.6711 ± 0.0097 0.6606 ± 0.0152 0.6457 ± 0.0060 0.6519 ± 0.0078TimesNet 0.6536 ± 0.0180 0.6542 ± 0.0048 0.6558 ± 0.0118 0.6631 ± 0.0138
NGM 0.5815 ± 0.0494 0.5016 ± 0.0010 0.5918 ± 0.0700 0.5003 ± 0.0004 0.6626 ± 0.0052

CUTS 0.9434 ± 0.0123 0.8814 ± 0.0151 0.9579 ± 0.0085 0.9505 ± 0.0091 0.9626 ± 0.0057
CUTS with C2FD 0.9594 ± 0.0094 0.8752 ± 0.0183 0.9742 ± 0.0061 0.9651 ± 0.0072 0.9875 ± 0.0024

CUTS+ 0.9907 ± 0.0008 0.9569 ± 0.0051 0.9939 ± 0.0018 0.9912 ± 0.0025 0.9972 ± 0.0005

Method Imputation Lorenz-96 with RM (N = 256) Lorenz-96 with RBM (N = 256) Lorenz-96 (N = 256)
p = 0.3 p = 0.6 pblk = 0.15% pblk = 0.3% No missing

NGC ZOH 0.9755 ± 0.0092 0.8469 ± 0.0331 0.9893 ± 0.0022 0.9760 ± 0.0042 0.9937 ± 0.0014TimesNet 0.9415 ± 0.0183 0.5000 ± 0.0000 0.9685 ± 0.0070 0.7965 ± 0.0442

eSRU ZOH 0.9735 ± 0.0019 0.8972 ± 0.0046 0.9821 ± 0.0019 0.9728 ± 0.0016 0.9908 ± 0.0005TimesNet 0.9618 ± 0.0044 0.8742 ± 0.0047 0.9794 ± 0.0042 0.9762 ± 0.0033

SCGL ZOH 0.6191 ± 0.0090 0.5182 ± 0.0109 0.6308 ± 0.0061 0.6195 ± 0.0069 0.6620 ± 0.0083TimesNet 0.6210 ± 0.0032 0.5280 ± 0.0060 0.6312 ± 0.0072 0.6054 ± 0.0034
NGM 0.9620 ± 0.0072 0.6125 ± 0.0372 0.9831 ± 0.0031 0.9866 ± 0.0006 0.9907 ± 0.0010

CUTS 0.9360 ± 0.0043 0.8668 ± 0.0043 0.9430 ± 0.0030 0.9330 ± 0.0053 0.9571 ± 0.0027
CUTS with C2FD 0.9790 ± 0.0016 0.9069 ± 0.0036 0.9874 ± 0.0009 0.9834 ± 0.0015 0.9992 ± 0.0000

CUTS+ 0.9984 ± 0.0002 0.9916 ± 0.0016 0.9989 ± 0.0003 0.9985 ± 0.0002 0.9992 ± 0.0002

Table 2: Performance comparison of CUTS+ with NGC, eSRU, NGM, SCGL, and CUTS combined with ZOH and TimesNet
for imputation. We do not perform comparison experiments with PCMCI and LCCM, because with large N and T , the running
times for these two methods are extremely long. Comparisons to them are performed on Dream-3 datasets (Table 3).

C2FD” with “CUTS+”.
Datasets. We assess the performance of the causal

discovery approach CUTS+ on three types of datasets:
simulated data, quasi-realistic data (i.e., synthesized under
physically meaningful causality), and real data. Simulated
datasets include linear Vector Autoregressive (VAR) and
nonlinear Lorenz-96 models (Karimi and Paul 2010), quasi-
realistic datasets are from Dream-3 (Prill et al. 2010), while
real datasets include Air Quality datasets from 163 monitor
stations across 20 Chinese cities. Irregular observations are
generated via Random Missing (RM) and Random Block
Missing (RBM). For statistical evaluation of causal discov-
ery algorithms, we average over results on simulations from
5 different random seeds. In the following experiments, we
also show the standard derivations.

Results on Simulated Datasets
VAR. VAR datasets are simulated with the linear equa-
tion x:,t =

∑τmax

τ=1 Ax:,t−τ + e:,t, where the matrix A is
the causal coefficients and e:,t ∼ N (0, σI). Time-series i
Granger causes time-series j if aij > 0. The objective of
causal discovery is to find the non-zero elements in a causal
graph A with M̃. We set τmax = 3 and time-series length
L = 1000 in this experiment. One can observe in Table
2 that CUTS+ beats all other algorithms with a clear mar-
gin. Moreover, we perform comparison experiments on VAR
datasets with different graph densities in supplements B.1.

(a) (b)

Figure 2: Experiments on scalability of the models. (a) Com-
parison of scalability with CUTS and NGC in terms of AU-
ROC (RM with p = 0.3). (b) Time cost of CUTS+ compar-
ing with NGC and CUTS+, onN = 64, 128, 256, 512, 1024.

Lorenz-96. Lorenz-96 datasets are simulated accord-
ing to dxi,t

dt = −xi−1,t(xi−2,t − xi+1,t) − xi,t + F , where
we set F = 10, L = 1000. In this model, each time-
series xi is affected by historical values of four time-series
xi−2,xi−1,xi,xi+1, and each row in the true causal graph
A has four non-zero elements. Table 2 shows that CUTS+ is
advantageous over other algorithms.

Ablation Study. By comparing “CUTS”, “CUTS with
C2FD”, and “CUTS+”, we see that both C2FD and MPGNN
contribute to the performance gain. C2FD is relatively more
helpful on Lorenz-96, and MPGNN helps more on VAR.

Scalability. The VAR and Lorenz-96 datasets sup-
port setting N . To demonstrate the scalability of CUTS +
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Methods Dream-3 (N = 100, No missing)

PCMCI 0.5517 ± 0.0261
NGC 0.5579 ± 0.0313
eSRU 0.5587 ± 0.0335
SCGL 0.5273 ± 0.0276
LCCM 0.5046 ± 0.0318
NGM 0.5477 ± 0.0252

CUTS 0.5915 ± 0.0344
CUTS with C2FD 0.6123 ± 0.0497

CUTS+ 0.6374 ± 0.0740

Table 3: Performance comparison of CUTS+ with PCMCI,
NGC, eSRU, NGM, SCGL, LCCM and CUTS on Dream-3
datasets without missing values.

to high-dimensional data, we compare CUTS+ with the two
best-performing algorithms, i.e., CUTS and NGC (combin-
ing ZOH). We set the same average numbers for causal par-
ents in VAR when N changes. Shown in Figure 2(a), by in-
creasing the time series number N of VAR and Lorenz-96
datasets, we observe that AUROC of CUTS and NGC de-
grades significantly when N increases on both datasets. On
the contrary, CUTS+ beats both algorithms with a clear mar-
gin, and the advantages are especially prominent with a large
N . The performance for CUTS+ only degrades clearly when
N = 512 on VAR datasets. More scalability experiments
with multiple types of irregular sampling or no missing val-
ues are shown in supplements B.2.

Our advantages over other approaches also exists in terms
of computational complexity. Shown in Figure 2(b) are the
time costs for each forward + backward propagation. We
compare the network in our CUTS+ with cMLP and cLSTM
in NGC and CUTS. The results show that the computa-
tional costs are greatly reduced when comparing to cMLP
and cLSTM, especially when N > 256.

Results on Quasi-Realistic Datasets
Dream-3. Dream-3 (Prill et al. 2010) is a gene expres-
sion and regulation dataset widely used as causal discovery
benchmarks (Khanna and Tan 2020; Tank et al. 2022). This
dataset contains 5 models, each representing measurements
of 100 gene expression levels. The length of each measured
trajectory is T = 21, which is too short to perform RM or
RBM, so we only compare with baselines for time-series
without data missing on Dream-3. The results are listed in
Table 3, which shows that our CUTS+ performs better than
the others, proving that our approach can also handle data
without missing entries.

As for the ablation study, we observe that MPGNN and
C2FD both contribute clearly, each with performance gain
of more than 0.02 in terms of AUROC.

Results on Real Datasets
Air Quality (AQI). We test our CUTS+ on AQI, a real
high-dimensional dataset with N = 163, T = 8760 (de-
tailed description of this dataset is in supplements C.2). We
do not have access to the ground-truth causal graph because

(a) (b)

Figure 3: Causal discovery result on AQI dataset. (a) Causal
discovery results on AQI dataset compared with the dis-
tance matrix (which might indicate the true causal graph)
(b) Causal discovery results plot overlaid on the map.

of the extremely complex atmosphere physics, so quantita-
tive performance evaluation and comparisons with baselines
may be less persuasive (shown in supplements B.3). How-
ever, we have a prior that the real causal relationships are
very closely related to the geometrical distances. Therefore,
to verify the causal discovery results of CUTS+, we compare
the discovered CPG M̃ (Figure 3(a) left) with the distance
matrix D (where its element dij ∝ 1/dist(i, j), Figure 3(a)
right). It can be observed that the discovered causal matrix
does mimic the distance matrix. We also plotted the CPG
edges with P (i→ j) > 0.5 on the map (Figure 3(b)), which
shows that most of the causal edges discovered connect the
stations not far apart. This indirectly demonstrates the effec-
tiveness of CUTS+ on real high-dimensional data.

Additional information. The assumptions, theorems
and proof for the convergence of CPG in our CUTS+ are
provided in the supplements Section A. In Section B, we
perform other supplementary experiments, including experi-
ments on graph density, imputation, scalability, hyperparam-
eters, noise, quantitative comparison on AQI dataset, and
an example to showcase the enhancement of our CUTS+.
We provide implementation details for CUTS in Section C,
including network structure, hyperparameters, configuration
for RM and RBM, and detailed settings for baseline algo-
rithms. Additionally, we list the broader impacts and limita-
tions in Sections D and E.

Conclusions

We propose CUTS+, a Granger-causality-based causal dis-
covery approach, to handle high-dimensional time-series
with irregular sampling. We largely improve the scalabil-
ity with respect to the data dimension by (a) introduc-
ing Coarse-to-fine Discovery (C2FD) to resolve the large
CPG problem and (b) designing a Message-passing-based
Graph Neural Network (MPGNN) to address the redundant
network parameters problem. Comparing to previous ap-
proaches, CUTS+ largely increases AUROC and decrease
time cost especially when confronted with high dimensional
time series. Our future works include: (i) High-dimensional
causal discovery with latent confounder or instantaneous ef-
fect. (ii) Explaining neural network with causal models. Our
code and supplementary materials is on https://github.com/
jarrycyx/UNN.
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