
Graph-based Prediction and Planning Policy Network (GP3Net) for scalable
self-driving in dynamic environments using Deep Reinforcement Learning

Jayabrata Chowdhury 1 *, Venkataramanan Shivaraman 2 *, Suresh Sundaram 1, P B Sujit 2

1Indian Institute of Science, Bengaluru 2Indian Institute of Science Education and Research, Bhopal
jayabratac@iisc.ac.in, vshivaraman18@gmail.com, vssuresh@iisc.ac.in, sujit@iiserb.ac.in

Abstract

Recent advancements in motion planning for Autonomous
Vehicles (AVs) show great promise in using expert driver
behaviors in non-stationary driving environments. However,
learning only through expert drivers needs more generaliz-
ability to recover from domain shifts and near-failure sce-
narios due to the dynamic behavior of traffic participants
and weather conditions. A deep Graph-based Prediction and
Planning Policy Network (GP3Net) framework is proposed
for non-stationary environments that encodes the interactions
between traffic participants with contextual information and
provides a decision for safe maneuver for AV. A spatio-
temporal graph models the interactions between traffic par-
ticipants for predicting the future trajectories of those par-
ticipants. The predicted trajectories are utilized to generate a
future occupancy map around the AV with uncertainties em-
bedded to anticipate the evolving non-stationary driving en-
vironments. Then the contextual information and future oc-
cupancy maps are input to the policy network of the GP3Net
framework and trained using Proximal Policy Optimization
(PPO) algorithm. The proposed GP3Net performance is eval-
uated on standard CARLA benchmarking scenarios with do-
main shifts of traffic patterns (urban, highway, and mixed).
The results show that the GP3Net outperforms previous state-
of-the-art imitation learning-based planning models for dif-
ferent towns. Further, in unseen new weather conditions,
GP3Net completes the desired route with fewer traffic infrac-
tions. Finally, the results emphasize the advantage of includ-
ing the prediction module to enhance safety measures in non-
stationary environments.

Introduction
Motion planning for AVs still has a long way to go due to
the complexity of real-world driving environments, ensur-
ing the safety and comfort of everyone. The AV must be able
to carefully plan its maneuvers in urban and highway envi-
ronments with varying traffic dynamics set by cars, bikers,
pedestrians, and weather conditions. A typical intersection
scenario in an urban environment is shown in Fig.1. Vari-
ous traffic participants’ different intentions and final goals
(as shown by arrows in Fig.1) make it challenging for AV
to safely and comfortably move to its destination. Variable

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A typical intersection scenario with traffic lights,
pedestrians, and vehicles. The scenario has pedestrians and
vehicles moving on the desired path of AV. The figure has
colour coded markers to show the context.

speeds of different traffic participants also make it difficult
for AV to drive safely. A research finding on the United
States (Choi 2010) shows that wrong estimation of other
traffic participants’ speed is responsible for 8.4% of crit-
ical reasons for crashes. Also, another problem of driving
in an unstructured environment is that traffic pattern varies
with the cooperative/noncooperative behaviors of other traf-
fic participants. By utilizing communication channels as de-
scribed in (Bazzi et al. 2021; Cui et al. 2022), it becomes
possible to determine the intentions and objectives of fellow
traffic participants. This information simplifies the process
for AVs to make informed decisions regarding their actions.
However, vehicles use different communication protocols,
and ensuring reliable real-time communications between all
traffic participants is challenging. Hence, another way is to
model the interactions of traffic participants through time
and predict their future trajectories to understand their be-
haviors. An AV can make a safe and efficient decision in a
non-stationary environment if it can model the interactions
better and predict the future trajectories of other surrounding
vehicles. Depending on the future trajectories of others’, an
AV can decide on a safe planning maneuver. Hence, there
is a need to develop a motion planning algorithm that can
handle non-stationary environments using the intention un-
derstanding from the predicted trajectories of other traffic

ar
X

iv
:2

31
2.

05
78

4v
1

 [
cs

.A
I]

 1
0

D
ec

 2
02

3

participants.
Existing state-of-the-art methods can be broadly classi-

fied into rule-based, imitation learning-based, and reinforce-
ment learning-based works. Recently (Aksjonov and Kyrki
2021) uses a rule-based decision-making system for navigat-
ing road intersections. However, due to the non-stationary
nature of the environment, rules vary for each situation,
and attempting to create generalized rules across diverse
environments suffers from scalability issues. On the other
hand, some models mimicking expert drivers, called Imita-
tion Learning (IL) based motion planner, has been proposed
in (Bansal, Krizhevsky, and Ogale 2018; Rhinehart, McAl-
lister, and Levine 2020; Codevilla et al. 2018; Cai et al.
2020, 2021). The driving model in (Bansal, Krizhevsky,
and Ogale 2018) learns driving decisions from expert hu-
man driver demonstrations. The work in (Rhinehart, McAl-
lister, and Levine 2020) uses expert driving data collected
from CARLA (Dosovitskiy et al. 2017) simulator to learn
expert behaviors. An end-to-end motion planning algorithm
has been learned with IL in (Cai et al. 2020; Codevilla et al.
2018). However, the IL method suffers from a data distribu-
tion shift from training scenarios to unseen evaluation sce-
narios as (Bansal, Krizhevsky, and Ogale 2018) did not per-
form well in unknown highly interactive lane change sce-
narios. In (Cai et al. 2021), a graph-based attention network
has been used to model participant interactions, and a driver
model learns to imitate the expert with IL. In another work
(Teng et al. 2023), a Bird’s Eye View (BEV) representa-
tion has been generated from the front camera view to use
with IL for decision-making. The expert bias and distribu-
tion shift problems heavily influence the aforementioned IL-
based works’ performance. Since there are no near-collision
scenarios in expert driving, it will be difficult for IL-based
methods to perform in the real environment.

Another popular approach to overcome the expert-based
IL method is Reinforcement Learning (RL). In RL, the agent
learns through their experience of completing the task. Re-
cently works (Chen, Yuan, and Tomizuka 2019; Chen, Li,
and Tomizuka 2021; Ye et al. 2020; Tang et al. 2022; Al-
izadeh et al. 2019; Naveed, Qiao, and Dolan 2021) employed
RL for motion planning and maneuver decision-making for
autonomous driving. In (Chen, Yuan, and Tomizuka 2019;
Chen, Li, and Tomizuka 2021), a BEV image-based repre-
sentation has been used to represent the AV’s surrounding
environment. An RL agent learns to make maneuver deci-
sions with this input representation. The works in (Ye et al.
2020; Tang et al. 2022) learn lane-changing maneuvers in
simulated handcrafted driving scenarios through policy op-
timization methods ((Schulman et al. 2017; Haarnoja et al.
2018)). Recently, a work (Chen et al. 2020) used conditional
Deep Q Network (CDQN) for stable driving decisions in the
CARLA environment. However, this work did not include
other vehicles, pedestrians, or traffic lights to model spatio-
temporal interactions with AV. The works mentioned above
need to recognize the intent of surrounding traffic partici-
pants. In (Huang et al. 2019), the intent of surrounding vehi-
cles is calculated probabilistically to solve motion planning
problems. However, the intent is modeled for a fixed num-
ber of vehicles without pedestrians and evaluated in a hand-

crafted driving scenario. The intentions of varying numbers
of surrounding vehicles should be inferred to understand
how the non-stationary environment can evolve. Hence, a
predictive motion planning algorithm is required to model
the spatio-temporal interactions for trajectory prediction and
make a safe and efficient maneuver decision.

The proposed deep Graph-based Prediction and Planning
Policy Network (GP3Net) framework finds a way to handle
distribution shifts, model the interactions to predict trajecto-
ries and plan safe maneuvers. The GP3Net’s benefits are as
follows:
1. A deep spatio-temporal graphical model encodes inter-

action to depict the behaviors of traffic participants with
AV. These modeled interactions are passed through the
trajectory prediction module to provide predicted future
trajectories with associated prediction uncertainties.

2. The future mask generation module generates a BEV oc-
cupancy map with the prediction uncertainties, capturing
the intentions of other traffic participants and probable
evolution of a non-stationary environment in the future.

3. The AV neural architecture (state-encoder plus policy
network) encodes past BEV masks and predicted future
BEV masks together to give the final state.

4. The AV neural architecture outputs the values of accel-
eration and steering directly. The whole AV neural archi-
tecture is updated end-to-end with the RL algorithm.

5. The learned GP3Net driving agent outperforms the pre-
vious model DiGNet (Cai et al. 2021) and HIIL (Teng
et al. 2023) in CARLA Leaderboard and No-Crash mo-
tion planning benchmark in different towns and weath-
ers. A Qualitative analysis highlights the importance of
the graph-based trajectory prediction module.

Related Work
Trajectory prediction
Trajectory prediction is a crucial part of autonomous driving
involving spatiotemporal interactions between traffic partic-
ipants. In (Ma et al. 2019; Xu, Yang, and Du 2020), Long-
Short Term Memory (LSTM) network has been used for
modeling. However, these works need to model the influ-
ence of one traffic participant on another. Recently, (Shi
et al. 2022) proposes a tree-based attention method. Also,
in (Li and Zhu 2021), spatio-temporal modeling has been
by a graphical model. However, these approaches needed to
provide uncertainties in trajectory prediction. In (Ivanovic
and Pavone 2019), a spatio-temporal dynamic graph mod-
els interactions, and LSTM networks model the state encod-
ing of graph nodes. A Conditional Variational Auto-Encoder
(C-VAE) learns the trajectory distribution. Samples from
this probability distribution are taken for Gaussian Mixture
Model (GMM)-based multimodal trajectory prediction. Tra-
jectron predicts future trajectories with prediction uncertain-
ties. GP3Net uses Trajectron architecture for trajectory pre-
diction of surrounding traffic participants.

End-to-end and semantic-based motion planning
Many works directly use sensors (camera, LIDAR) to under-
stand the surrounding environment and make decisions. In

(Codevilla et al. 2018), a directional high-level command is
used to learn low-level steering and throttle values. The fol-
lowing work (Codevilla et al. 2019) showed the limitations
of IL for autonomous driving. Recently (Teng et al. 2023)
uses a front camera as a vision sensor and converts it to BEV
representation of the driving scene. However, this work does
not model rear-end side of the AV in the BEV. The rear-end
side is crucial for AV because 64.2% of AV crashes happen
from the rear end as reported in (Petrović, Mijailović, and
Pešić 2020). GP3Net uses the semantic BEV representation
for deciding safe maneuvers.

The GP3Net Framework
This section introduces the GP3Net motion planning frame-
work that incorporates future trajectory predictions gen-
erated by a trajectory prediction module into Deep Re-
inforcement Learning-based motion planning. The subsec-
tions describe the self-driving task as a Partially Observed
Markov Decision Process (POMDP). The primary input for
the GP3Net consists of past and predicted future BEV oc-
cupancy maps containing information about road layout, ve-
hicles, pedestrians, and traffic lights. The predicted future
occupancy maps of vehicles are generated using a spatio-
temporal graph-based trajectory prediction module based on
(Ivanovic and Pavone 2019). Fig. 2 is a flowchart showing
the pipeline between input processing, future BEV occu-
pancy map generation, and output control actions.

POMDP Formulation
POMDP is defined for this task as a 6-tuple
(S,A, T,R,O, γ). Here, S is a set of possible states
in the environment, A is the action space that the agent/AV
can take in the environment, T is the transition probability
T (s′|s, a) that represents the probability of AV moving
to state s′ after taking action a from state s. R is the
reward function R : S × A → R for the AV, O is a set
of observations the AV can get, and γ ∈ (0, 1] is the
discount factor. The goal is to learn a policy π which can
maximize the expected cumulative reward E[

∑∞
t=0 γ

trt],
where rt is the reward obtained in the time step t. Following
subsections define the observation space, action space, and
reward function for the driving task in CARLA simulator.

Input Preprocessing and Observation Space Design
The observation space is O = [Oc;Op;Of ;Om]. This obser-
vation vector O for RL-based AV consists of several compo-
nents of particular categories. The observations Oc, Op and
Om, except Of , are directly obtained from environment. The
observations Oc, Op and Of are rasterized, segmented local
BEV image/mask centered around the ego vehicle. The Oc
contains segmented BEV masks of the road layout, the mis-
sion route, and lane boundaries for contextual localization
at time-step t. Observation Op contains past configurations
masks of the surrounding vehicles, pedestrians, traffic lights,
and stop signs for k time-steps in the past, each 4 time-steps
apart. Observation Om = [τ, b, ω, ẋ] is a simple vector con-
taining the AV’s odometric measurements such as throttle τ ,
braking b, steering ω, and velocity ẋ = (ẋ, ẏ) at time-step t

as shown in Fig. 2. The vector Of contains the predicted oc-
cupancy maps (added as masks) of surrounding vehicles for
l time-steps in the future, spaced 4 time-steps apart. These
future occupancy maps in Of are accurately generated by
a spatio-temporal graph-based trajectory prediction module.
This trajectory prediction model takes in the observed past
trajectories of surrounding vehicles/pedestrians and models
their interactions as dynamic spatiotemporal graphs to accu-
rately predict future trajectories. The future occupancy maps
are generated using the future trajectories with respect to our
AV.

Graph-based Trajectory Prediction Module: The tra-
jectory prediction module takes past kinematics informa-
tion of the surrounding vehicles as input to generate a dis-
tribution of future trajectories for all agents present in a
scene. The most probable future trajectory is then selected
for generating the future maps. This module doesn’t as-
sume a fixed number of vehicles in the sensor range of
the AV. Let xi(t−k, t) = [(x, y)t−k, (x, y)t−(k−1), ..., (x, y)t]

are the spatial coordinates of agent i from timestep t − k
to t. The objective is first to predict the future trajecto-
ries x1

(t+1,t+T), x2(t+1,t+T), ..., xN(t+1,t+T) for T timesteps
for all N agents which were present in the scene in
that time window. Formally, the input for the model
is x =

[
x1,..,N
1:tobs

, ẋ1,..,N
1:tobs

, ẍ1,..,N1:tobs

]
and the output y =

ẋ1,..,N(tobs+1,tobs+T). The module contains a dynamic spatio-
temporal graph model, deep generative CVAE with LSTM-
based encoder/decoder, and GMM. This architecture di-
rectly models the velocity rather than the trajectories. When
the future velocities are obtained, they are numerically inte-
grated to produce future trajectories using single-integrator
dynamics, as given below. Here, δt is the difference of con-
secutive timesteps.

xit+1 = xit + yit.δt (1)

The dynamic spatiotemporal graph representation effec-
tively models dynamic interactions between the agents
present in the scene. The graphs are created based on the
spatial proximity of the agents. The CVAE framework at-
tempts to learn the probability distribution function p(y|x)
as given below, where z is a discrete latent variable.

p(y|x) =
∑
z∈Z

pψ(y|x, z)pϕ(z|x) (2)

The encoder architecture consists of a node history encoder,
a node future encoder (only during training), and an edge
encoder.

eit,node = LSTM(eit−1,node, xit;WNE) (3)

Both graph node history and future encoders have LSTM
networks, as shown in Equ.3 for encoding node data and
temporal relations between them.

f it =

xit;
∑

j∈N(i)

xjt

 ; ait = LSTM(ait−1, f
i
t ;WEE) (4)

The edge encoder also uses LSTM network as given in Equ.4
and a modulating filter to encode the influence of other

Figure 2: Schematic diagram of the GP3Net framework. The diagram shows the pipeline from input observations O to control
outputs a and ω, highlighting the future occupancy map generation by the trajectory prediction module, the state-encoder
module, the PPO algorithm that optimizes the AV’s state-encoder and policy network.

agents with smooth edge additions and removals if high-
frequency changes occur in the graph. In Equ.4, [a; b] is con-
catenation, N(i) : set of neighbors of agent i. The latent
variable z is then sampled and fed to the decoder consist-
ing of an LSTM network and GMMs. The outputs for the
decoder’s LSTM network are the GMMs’ parameters. The
GMMs are then used to produce the future velocities and
trajectories. The future masks containing future occupancy
maps for the surrounding vehicles are generated after ob-
taining the predicted future trajectories for all the vehicles
inside AV’s sensor range.

Future Mask Generation: After getting the predicted
future trajectories x1,...,N

t+1,t+T , the cartesian coordinates
xit+1,t+T are converted to pixel coordinates pit+1,t+T cen-
tered around the AV for each vehicle/agent i. The existence
of a vehicle in the future mask is denoted by a 2D symmet-
ric Gaussian patch as shown in Fig.2. The pixel coordinates
p serve as the mean of the 2D symmetric Gaussian func-
tion. The symmetric Gaussian approach helps us account for
the future prediction uncertainties of the vehicles, account-
ing for various factors such as sensor noise and occlusion.
Equation of future vehicle patch is given by:

g(x, y) = exp

(
((x− xo)

2 + (y − yo)
2))

2σ2

)
(5)

In the above equation, σ is the standard deviation of the

Gaussian, xo and yo are the mean of the 2D Gaussian. For
each timestep tf in future prediction horizon T of the trajec-
tory prediction model, a future mask is generated using pixel
coordinates p1,...,N

tf
of all N vehicles in the method men-

tioned above. Therefore, Of consists of l future masks. The
observations are taken 4 timesteps apart instead of 1, and
the inputs to the trajectory prediction module from timesteps
t− k to t are passed in 4 timestep intervals but processed as
though inputs are of consecutive timesteps. This is further
explained in the experiments section of the paper.

Final State Encoder: Once Oc, Op, Of , and Om are ob-
tained, they are passed through a state-encoder (first part
of AV Neural Architecture) which results in a column vec-
tor. The architecture for the state encoder, as shown in Fig.
2, has two parts. The first part processes the BEV image
masks Oc, Op and Of using a Convolutional Neural Net-
work (CNN) as input channels and a simple Fully Connected
(FC) layer. The measurement vector Om is encoded using
two FC layers and concatenated with the output of the BEV
encoder, passed through an FC layer, finally giving the final
state representation for the RL algorithm.

Action Space
The CARLA-Gym simulator takes three values for actions:
throttle τ , brake b, and steering ω. However, to train the RL
algorithm, action space is defined as a 2D continuous space

a = [max{τ, b}·sgn(τ−b), ω], where sgn(.) is signum func-
tion. The first expression in a is acceleration whose value
ranges from -1 (maximum braking) to 1 (maximum throttle),
and the steering value goes from -1 (maximum left steer-
ing) to 1 (maximum right steering). If the acceleration value
is positive, it is passed to throttle τ , and brake value b is
zero. If the acceleration value is negative, the magnitude of
the acceleration is passed as brake b value, and throttle τ is
zero. To select actions from this continuous space, the pol-
icy network πθ is trained to output parameters α and β for
a Beta distribution B(α, β) for an improved policy gradient
method (Chou, Maturana, and Scherer 2017). The throttle
and steering actions are sampled from this Beta distribution.
This work uses separate Beta distributions for throttle and
steering.

Reward Structure
The reward structure of RL is essential to train agents/AV
to perform specific tasks. The reward is a superposition of
different components, as given below.

R = rroute + rhalt + rvel + rpos + rhd + ract (6)

where the AV is penalized, and the episode is terminated
whenever the vehicle collides with anything, runs a traffic
light or a stop sign, routes deviation, or blocks. rroute = −1
if route deviation δ ≥ 3.5m; rhalt = −1 if AV’s velocity
v ≤ 0.1m/s; rvel = 1− |v − vassigned|/vmax where vmax
is maximum velocity allowed and vassigned is assigned by
the simulator; rpos = −0.5x where x is the distance from
the AV’s center and the center of the desired route; rhd =
−∆h absolute difference between heading of AV and route;
ract = −0.1 if |ωt − ωt−1| > 0.01.

PPO Algorithm
The AV’s policy network π (second part of AV neural archi-
tecture) learns using a state-of-the-art policy gradient-based
RL algorithm called Proximal Policy Optimization (PPO)
(Schulman et al. 2017). The usual form of loss function used
in policy gradient methods is shown below.

Lpg = Eπ
[
Ât log π(at | st, θ)

]
(7)

Here, πθ(at | st, θ) is a stochastic policy with θ as param-
eter. Ât is an estimator of the advantage function at time t,
and Eπ represents the empirical average of a finite batch of
samples.

However, updating the policy network πθ for optimizing
the objective loss function shown in Equ.8 can lead to large
policy updates, often resulting in instability and bad policy
updates. A new objective function called the clipped surro-
gate objective, which places a constraint on policy updates,
is proposed in PPO paper. This makes the training process
much more stable and reliable when updated over multiple
epochs of gradient ascent. Also, a Generalized Advantage
Estimate (GAE) and adding an entropy bonus with their new
clipped surrogate objective function is used, as shown in the

following equation for PPO training of the GP3Net model.

Lppo = E
[
min(r̃(θ)Â, clip(r̃(θ), 1− ϵ, 1 + ϵ)Â),

−c1(Vϕ(s, a)− Vtarg)− c2H(s, πθ)
] (8)

Here in Equ.8, ϵ, c1 and c2 are tunable hyper-parameters
and H(s, πθ) denotes the entropy bonus. The generalized
advantage estimate makes use of a learned state function
Vϕ(s, a) for computing the advantage function Â. The en-
tropy bonus encourages the AV to explore adequately. Most
importantly, during update, the whole AV Neural Architec-
ture gets updated.

Experiments
Training Setup
This subsection describes the trajectory prediction module’s
training setup and the RL-based motion planning training.

Trajectory Prediction Module Training First, trajectory
data of surrounding vehicles are collected as observed by
the CARLA simulator’s roaming agent in different towns for
training the trajectory prediction module. The trajectory data
contains rectangular coordinates xt = (xt, yt) of all vehicles
at time-steps t, t+4δt, t+8δt... with each time-step spaced
δt = 0.1 seconds apart in simulation time. The trajectory
prediction module is provided with 3.2 seconds of observed
trajectories as input, divided into eight discrete time-steps
(t − 29δt, t − 25δt, ..., t − δt), and the model predicts the
trajectories up to 2.8 seconds, divided into seven time-steps
(t+ 4δt, t+ 8δt, ..., t+ 28δt).

The training starts by initializing the weights and setting
the batch size to 64 and the learning rate to 0.001 with a
decay rate of 0.9999 to improve convergence. Adam opti-
mizer updates the weight parameters of the model. Trajec-
tory prediction models are typically benchmarked by com-
paring their performance against actual or simulated ground
truth trajectories to evaluate accuracy and reliability. Here
Mean Squared Error (MSE) metric evaluates the perfor-
mance and accuracy of the model. The MSE is the mean
L2 error between the ground truth trajectories and predicted
trajectories. The model was trained over 2000 steps and the
MSE was evaluated intermittently over a validation set as
shown in (Ivanovic and Pavone 2019).

RL Simulation Environment Setup
The CARLA simulator is employed as a gym environment
for training the RL algorithm and evaluating proposed RL-
based motion planning. The training was conducted in paral-
lel on six distinct town maps, namely Town 1 to Town 6, em-
ploying a vectorized environment configuration. This train-
ing approach on multiple maps simultaneously enhanced the
replay buffer’s diversity and improved the training process’s
efficiency. During the rollout phase, the AV is provided with
a mission route at the beginning of each episode. This route
is generated by randomly selecting a source and destination
point and connecting them using a path search algorithm like
A∗. The AV aims to successfully navigate the environment
map and complete the assigned mission route. The episode

would terminate if any of the following conditions were met:
1) collision with a vehicle, pedestrian, or obstacle in the map
layout; 2) deviation from the given route; 3) traffic stag-
nation/halt and 4) violation of traffic lights and stop signs.
Upon reaching the destination point, the AV was assigned a
new mission route, continuing the rollout phase. The training
and experiments were run in parallel on a Ubuntu 20.04 ma-
chine with 64 GB RAM and used two Nvidia 2080Ti GPU.

RL-based Motion Planning Training The RL-based mo-
tion planning model is trained using the CARLA simulator
(Dosovitskiy et al. 2017) as an RL gym environment. The
environment setup is vectorized, and the model trains by
running the RL training simulation on different town maps
in parallel. The training process consists of two phases: (a)
the rollout phase and (b) the training phase. In the rollout
phase, the AV keeps interacting with the environment for
several episodes, trying to navigate around the environment
and reach its destination. At each step, the AV collects the
tuple (O, a, r,O

′
, d) and stores it in its replay buffer. Here,

O and O
′

are observations of timestep t and next timestep
t
′
, a is action, r is reward and d is done/termination condi-

tion. The AV mainly collects experience from various sce-
narios offered by different town maps. The AV remains in
this phase until it has accumulated sufficient experience in
the replay buffer for moving into the training phase. The
training phase mainly involves the AV updating its policy
network πθ based on the experience it accumulated in the
rollout phase. The policy πθ is updated based on the loss
function Equ.8, and the AV again reverts to the rollout phase.
After a few rounds, the AV’s performance is evaluated, and
several metrics are recorded to ensure that the AV is learning
correctly and troubleshooting issues with proper tuning.

Performance Evaluation
Evaluation Environment Setup
To ensure a comprehensive evaluation of GP3Net, the per-
formance benchmarking environment is setup based on the
Leaderboard benchmarking suite described in the literature
(Dosovitskiy et al. 2017) and NoCrash environment (Codev-
illa et al. 2019). These benchmarking suites offer diverse,
complex scenarios across several towns, encompassing var-
ious weather conditions, numerical configurations, and be-
havior of vehicles and pedestrians. GP3Net’s performance is
assessed and recorded after conducting several episodes in-
volving different environment configurations to ensure that
the model can generalize well in complex unseen scenarios.

Performance Evaluation Metrics
Specific performance evaluation metrics are employed to
measure the performance of the predictive reinforcement
learning-based motion planning framework GP3Net by the
benchmarking suites aforementioned in the previous subsec-
tion. These metrics include the Success Rate (SR) and Driv-
ing Score (DS). The SR is calculated as the percentage of in-
stances where the AV reaches its intended destination with-
out experiencing any collision. This metric directly assesses
the model’s ability to navigate and complete the designated

mission routes safely and successfully. The DS is a compos-
ite metric that combines the AV’s route completion success
with penalties incurred due to collisions and traffic rule in-
fractions. It is formulated as the product of the percentage of
completed routes and a penalty factor.

Quantitative Benchmark Results
The GP3Net’s performance was evaluated in different towns
and weather conditions for 100 episodes with five different
seeds. Here Table 1 and Table 2 display the mean com-
parative results with other previously proposed solutions,
some of which use a BEV perspective for motion planning
similar to GP3Net. It can be observed in Table 1 that the
predictive RL-based motion planner, GP3Net, outperforms
DiGNet (Cai et al. 2021), its variations, and other works like
CILRS (Codevilla et al. 2019) in terms of the success rate
and the driving score in several towns. The mean improve-
ment in the success rate and driving score is 3.85% and 8%,
respectively. The standard deviation is 1.5%. GP3Net has a
large improvement in Town 4 and Town 6 which consists of
both mixed and highway environments, showing capability
to handle well in higher speeds. This generalization to a wide
range of scenarios can be attributed to the GP3Net’s under-
standing of how a non-stationary environment can evolve
with the trajectory prediction module.

Figure 3: Plots of (a) reward obtained and (b) vehicle colli-
sions with and without trajectory prediction module.

Another experiment was performed to test the resilience
of GP3Net to different weather conditions, whose results are
shown in Table 2. The test was conducted in Towns 1 and 2
under eight weather conditions mentioned in Table 2. Ac-
cording to Table 2, GP3Net is robust to rainy weather con-
ditions and does a better job of navigating the environment
successfully compared to another work, HIIL (Teng et al.
2023). The insights about the future trajectories provided by
the proposed trajectory prediction module have positively

Town 03
urban

Town 04
mixed

Town 05
urban

Town 06
highway

Town 01
urban

Town 02
urban

Models SR ↑ DS ↑ SR ↑ DS ↑ SR ↑ DS ↑ SR ↑ DS ↑ SR ↑ DS ↑ SR ↑ DS ↑
CILRS 43.2 0.56 16.2 0.28 38.2 0.52 35.2 0.48 42.3 - 24.7 -
MLP 62.3 0.72 60.5 0.70 60.0 0.69 72.2 0.79 - - - -

GCN (U) 68.8 0.77 68.5 0.76 70.2 0.78 73.8 0.80 - - - -
GCN (D) 74.2 0.80 64.0 0.72 71.5 0.79 74.8 0.81 - - - -

GAT 76.0 0.82 71.0 0.78 81.5 0.87 78.2 0.83 - - - -
DiGNet (CTL) 72.8 0.79 67.5 0.75 69.8 0.77 73.2 0.79 - - - -
DiGNet (Full) 80.2 0.85 67.5 0.75 69.8 0.77 78.2 0.79 - - - -
GP3Net (ours) 82.5 0.87 75.0 0.85 82.8 0.91 82.5 0.85 92.5 0.96 93.1 0.91

Table 1: A comparative result showing the mean success rate and the driving score of GP3Net and other SOTA works on
different towns.

Weather
Condition

T1
(ours)

T2
(ours)

T1
(HIIL)

T2
(HIIL)

Wetnoon 96 95.9 84 84
ClearSunset 97.3 92 88 88
ClearNoon 92 94 89 89
HardRainNoon 96 88 80 80
SoftRainSunset 93.3 94 86 86
WetSunset 98 94 85 85
WetCloudSunset 98 92 84 84
SoftRainNoon 88 91.4 88 88

Table 2: Success-rate Benchmarking results on T1: Town 1
and T2: Town 2 in different weather conditions.

impacted the RL-based motion planner’s decision-making
during training and evaluation time, making it safe and cau-
tious of the non-stationary environment. The following sec-
tion discusses the effectiveness of our graph-based predic-
tion module.

Qualitative Analysis
During training experiments, we plotted quantities such as
total reward and the number of vehicle collisions for mon-
itoring the training process for two cases: 1) With the tra-
jectory prediction module and 2) without the trajectory pre-
diction module. Fig.3 shows a significant difference in the
training plots. After the 5 M steps, both the models have
learned correctly not to deviate from the route or to stop
when the lights turn red. However, the models were yet to
learn to avoid collisions with other vehicles. The model with
a trajectory prediction module showed a better capability to
avoid collisions as the training progressed compared to the
one which did not use a trajectory prediction module.

Ablation Study: In addition to the leaderboard suite,
GP3Net’s performance was benchmarked on the NoCrash
suite for analyzing the framework’s behavior in dense en-
vironments. Several metrics are utilized, such as end reach
%, success rate %, penalty factor, crash rates, vehicle halts,
and traffic lights passed were recorded to perform this anal-
ysis. The quantitative evaluation was done in Towns 1 and
2 in training and testing weather conditions which are dis-

played in Table 3. It can be observed that the success rate
of GP3Net in Town 2, though competitive, is not as high as
in Town 1 due to a much denser population of vehicles and
walkers since Town 2 is smaller in size compared to Town 1.
It is to be noted that the NoCrash suite has twice the walker
population than that in the Leaderboard suite.

Performance
Metric

T1
train

T1
new

T2
train

T2
new

End Reach (%) 100 100 96 90
Succ. Rate (%) 96 98 94 80
Driving Score 0.976 0.982 0.976 0.918
Penalty Factor 0.976 0.982 0.992 0.941
Score Route 1 1 0.984 0.977
Layout crash 0 0 0 0.047
Walker crash 0.039 0 0 0.151
Vehicle crash 0.018 0.039 0.083 0.167
Vehicle halt 0 0 0.313 1.556
Lights met 4.4 4.4 3.7 3.7
Lights passed 4.38 4.36 3.7 3.7

Table 3: Ablation study on CARLA NoCrash benchmarking
suite. T1: Town 1; T2: Town 2.

Conclusion
This paper discusses the challenges faced by rule-based
and imitation learning methods that rely on expert demon-
strations. It highlights the limited ability of these meth-
ods to recover from domain shifts and near-failure scenar-
ios in non-stationary environments. To mitigate this prob-
lem, this paper presents a deep Graph-based Prediction and
Planning Network (GP3Net) framework that encodes spatio-
temporal dynamic interactions of different traffic partici-
pants using a graphical model to infer their future behaviors
and combines the advantage of exploration in reinforcement
learning. GP3Net improves AV performance compared to
the previous graph-encoded imitation learning-based policy
in CARLA benchmarking driving scenarios for urban and
highway environments. The qualitative study also clearly in-
dicates the importance of the proposed prediction module
for safe motion planning in dynamic driving scenarios. Fu-

ture work will look at other methods to model interactions
with the dynamics of traffic participants involved and how
they can influence the planning capabilities of AV.

References
Aksjonov, A.; and Kyrki, V. 2021. Rule-Based Decision-
Making System for Autonomous Vehicles at Intersections
with Mixed Traffic Environment. In 2021 IEEE In-
ternational Intelligent Transportation Systems Conference
(ITSC), 660–666.

Alizadeh, A.; Moghadam, M.; Bicer, Y.; Ure, N. K.; Yavas,
U.; and Kurtulus, C. 2019. Automated Lane Change De-
cision Making using Deep Reinforcement Learning in Dy-
namic and Uncertain Highway Environment. In 2019
IEEE Intelligent Transportation Systems Conference (ITSC),
1399–1404.

Bansal, M.; Krizhevsky, A.; and Ogale, A. 2018. Chauffeur-
net: Learning to drive by imitating the best and synthesizing
the worst. arXiv preprint arXiv:1812.03079.

Bazzi, A.; Berthet, A. O.; Campolo, C.; Masini, B. M.; Moli-
naro, A.; and Zanella, A. 2021. On the Design of Sidelink
for Cellular V2X: A Literature Review and Outlook for Fu-
ture. IEEE Access, 9: 97953–97980.

Cai, P.; Wang, H.; Sun, Y.; and Liu, M. 2021. DiGNet:
Learning Scalable Self-Driving Policies for Generic Traffic
Scenarios with Graph Neural Networks. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 8979–8984.

Cai, P.; Wang, S.; Sun, Y.; and Liu, M. 2020. Probabilistic
End-to-End Vehicle Navigation in Complex Dynamic Envi-
ronments With Multimodal Sensor Fusion. IEEE Robotics
and Automation Letters, 5(3): 4218–4224.

Chen, J.; Li, S. E.; and Tomizuka, M. 2021. Interpretable
end-to-end urban autonomous driving with latent deep rein-
forcement learning. IEEE Transactions on Intelligent Trans-
portation Systems, 23(6): 5068–5078.

Chen, J.; Yuan, B.; and Tomizuka, M. 2019. Model-free
deep reinforcement learning for urban autonomous driving.
In 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), 2765–2771. IEEE.

Chen, L.; Hu, X.; Tang, B.; and Cheng, Y. 2020. Condi-
tional DQN-based motion planning with fuzzy logic for au-
tonomous driving. IEEE Transactions on Intelligent Trans-
portation Systems, 23(4): 2966–2977.

Choi, E.-H. 2010. Crash factors in intersection-related
crashes: An on-scene perspective. Technical report.

Chou, P.-W.; Maturana, D.; and Scherer, S. 2017. Improving
stochastic policy gradients in continuous control with deep
reinforcement learning using the beta distribution. In Inter-
national conference on machine learning, 834–843. PMLR.

Codevilla, F.; Müller, M.; López, A.; Koltun, V.; and Doso-
vitskiy, A. 2018. End-to-End Driving Via Conditional Imi-
tation Learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), 4693–4700.

Codevilla, F.; Santana, E.; López, A. M.; and Gaidon, A.
2019. Exploring the limitations of behavior cloning for au-
tonomous driving. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 9329–9338.
Cui, J.; Qiu, H.; Chen, D.; Stone, P.; and Zhu, Y. 2022.
Coopernaut: End-to-End Driving With Cooperative Per-
ception for Networked Vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 17252–17262.
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An open urban driving simula-
tor. In Conference on robot learning, 1–16. PMLR.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. In Dy, J.; and
Krause, A., eds., Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, 1861–1870. PMLR.
Huang, X.; Hong, S.; Hofmann, A.; and Williams, B. C.
2019. Online risk-bounded motion planning for autonomous
vehicles in dynamic environments. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 29, 214–222.
Ivanovic, B.; and Pavone, M. 2019. The trajectron: Proba-
bilistic multi-agent trajectory modeling with dynamic spa-
tiotemporal graphs. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2375–2384.
Li, M.; and Zhu, Z. 2021. Spatial-temporal fusion graph
neural networks for traffic flow forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35,
4189–4196.
Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; and
Manocha, D. 2019. TrafficPredict: Trajectory prediction for
heterogeneous traffic-agents. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, 6120–6127.
Naveed, K. B.; Qiao, Z.; and Dolan, J. M. 2021. Trajec-
tory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning. In 2021 IEEE International Intel-
ligent Transportation Systems Conference (ITSC), 601–606.
Petrović, D.; Mijailović, R.; and Pešić, D. 2020. Traffic ac-
cidents with autonomous vehicles: type of collisions, ma-
noeuvres and errors of conventional vehicles’ drivers. Trans-
portation research procedia, 45: 161–168.
Rhinehart, N.; McAllister, R.; and Levine, S. 2020. Deep
Imitative Models for Flexible Inference, Planning, and Con-
trol. In International Conference on Learning Representa-
tions.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shi, L.; Wang, L.; Long, C.; Zhou, S.; Zheng, F.; Zheng, N.;
and Hua, G. 2022. Social interpretable tree for pedestrian
trajectory prediction. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, 2235–2243.
Tang, X.; Huang, B.; Liu, T.; and Lin, X. 2022. Highway
Decision-Making and Motion Planning for Autonomous

Driving via Soft Actor-Critic. IEEE Transactions on Vehic-
ular Technology, 71(5): 4706–4717.
Teng, S.; Chen, L.; Ai, Y.; Zhou, Y.; Xuanyuan, Z.; and Hu,
X. 2023. Hierarchical Interpretable Imitation Learning for
End-to-End Autonomous Driving. IEEE Transactions on In-
telligent Vehicles, 8(1): 673–683.
Xu, Y.; Yang, J.; and Du, S. 2020. CF-LSTM: Cas-
caded feature-based long short-term networks for predicting
pedestrian trajectory. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, 12541–12548.
Ye, F.; Cheng, X.; Wang, P.; Chan, C.-Y.; and Zhang, J.
2020. Automated lane change strategy using proximal pol-
icy optimization-based deep reinforcement learning. In
2020 IEEE Intelligent Vehicles Symposium (IV), 1746–1752.
IEEE.

Supplementary Materials for GP3Net
The supplementary materials consists of 1) More qualita-
tive analysis 2) More quantitative results for different towns,
3) Architectural details of the neural network models used
in GP3Net, 4) Hyper-parameter settings for GP3Net and 5)
video recording of trained GP3Net based AV in different
towns in different weathers.

Driving Videos by GP3Net
There are six videos included in the videos folder. The
videos show many scenarios in different towns (small cities,
big cities, highways, and mixed towns) and weather condi-
tions (rainy and clear). There are urban intersections, junc-
tions, highway lane merging, and diversions. The GP3Net
performed better in all scenarios.

Qualitative Analysis

Figure 4: Plot of the layout collisions with and without tra-
jectory prediction module.

Figure 5: Plot of the percentage of cases going outside lane
with and without trajectory prediction module.

This section shows some plots about the importance of
the prediction module in motion planning for AVs. A PPO
algorithm is trained without the prediction module to check
its performance. The following plots show the performance
in different metrics defined by CARLA with and without the
trajectory prediction module.

Figure 6: Plot of the score composed with and without tra-
jectory prediction module.

In Fig.4 and Fig. 5, it can be seen that up to 2M steps, the
GP3Net model without trajectory prediction performed bet-
ter. However, after 2M training steps, the GP3Net with tra-
jectory prediction module started performing well. In Fig.6,
the advantage of the trajectory prediction module is visible.
After 2M training steps, there is improvement in the met-
ric score composed. This metric combines infractions and
penalty factors and provides the final score for driving.

Detailed Quantitative Results
The detailed quantitative results for the CARLA Leader-
board benchmarking scenarios are given in Table.4.

Trajectory Prediction Architecture Details
The trajectory prediction module uses a deep generative
trajectory prediction architecture which is has Conditional
Variational Auto Encoder (CVAE) to generate a distribu-
tion of potential trajectories. CVAE, a latent variable model,
rely on Gaussian Mixture Models (GMM) to produce multi-
modal distribution outputs. The encoder and decoder of the
CVAE consists of Long Short Term Memory (LSTM) net-
works for modeling temporal data such as trajectories and
system evolution. After representing the nodes and edges as
a vector, they are encoded using a Node Encoder and Edge
Encoder respectively, whose hidden dimensions are shown
in Table 5. The encoded nodes and edges are sent to an at-
tention module and low-pass filter M . The probability den-
sity function p(z|x) is captured by a Fully Connected Layer.
Here, z is the latent variable and x is the input to the model.
After sampling z from p(z|x), it is passed through the de-
coder LSTM network which outputs the parameters for the
GMM, from which multimodal trajectories are sampled. Ta-
ble 5 shows the Trajectory Prediction Architecture details.

State Encoder Architecture Details
The State Encoder consists of Convolutional Neural Net-
work (CNN) for encoding the BEV (past and generated fu-
ture) masks and a Multi-Layered Perceptron to encode the
odometry values of AV. After concatenating the outputs from
these two networks, it is further processed using a Fully-
Connected Layer giving the final state encoding. The details
of the State Encoder architecture is displayed in Table 6.

State Encoder
Layers

IN
Channels/

Dims

OUT
Channels/

Dims

Filter
Size

Conv 1 (BEV) 21 8 5
Conv 2 (BEV) 8 16 5
Conv 3 (BEV) 16 32 5
Conv 4 (BEV) 32 64 3
Conv 5 (BEV) 64 128 3
Conv 6 (BEV) 128 256 3

Fully Connected
(Odometry) 256 256 -

Fully Connected
(Odometry) 256 256 -

Fully Connected 256 512 -
Fully Connected 512 256 -

Table 6: State Encoder Architecture

PPO Policy Network Architecture Details and
Hyperparameters
The policy network π like in many RL works is a Multi-
Layered Perceptron (MLP). This policy network π gives the
values of α and β parameters of Beta distribution of throttle
and steering, resulting in two αs and two βs. The details for
policy network architecture and hyperparameters used for
PPO training is shown in Table 7.

Policy Network Layers IN dims OUT dims
Fully Connected 256 256

Fully Connected (α) 256 2
Fully Connected (β) 256 2

PPO Hyperparameters Values
Clip ratio ϵ 0.2

Epochs 30
Gamma γ 0.99
Target KL 0.01

GAE λ 0.97
Learning Rate 0.00003

Table 7: Policy Network Architecture and Hyperparameter
Details

Data collection settings for trajectory prediction
module
The training data was collected using the CARLA simu-
lator’s Autopilot/Roaming Agent in Town 1. For several
episodes, this autopilot vehicle navigates from source to des-
tination, recording the trajectories of all vehicles at each
time step t. The trajectories are represented by a sequence
of local rectangular coordinates xt = (xt, yt) of the agents
at time step t, as observed by the roaming agent. The dataset
contains the timestamp of the recorded trajectory data, the
index of the agent, and the trajectory coordinates. The data
for vehicles and pedestrians are collected every 4-time steps
(0.4 seconds) and stored in separate datasets, as we train two
models for the former and the latter.

Performance Metric Town01
Urban

Town02
Urban

Town03
Urban

Town04
Mixed

Town05
Urban

Town06
Highway

End Reach (%) 100 95.43 96.25 93.75 97.86 95.0
Success Rate (%) 92.5 93.14 82.5 75.0 82.8 82.5
Driving Score 0.96 0.91 0.87 0.85 0.91 0.91
Penalty Factor 0.9588 0.9840 0.9062 0.8721 0.9223 0.914
Score Route 1.0 0.9994 0.9866 0.9794 0.9916 0.9832
Layout Crash 0 0 0 0.0115 0 0
Walker Crash 0.0922 0 0.2141 0.0419 0.015 0.0104
Vehicle Crash 0 0.0508 0.0320 0.0579 0.1291 0.0865
Vehicle Halt 0 0.2509 0.0394 0.0439 0.0572 0.0296
Lights met 4.7 3.76 7.638 8.65 8.2357 6.025
Lights passed 4.675 3.7371 7.5375 8.5375 8.2214 5.975

Table 4: Detailed performance of GP3Net on Leaderboard Benchmarking scenarios in different towns

Network Architecture Components Value
Batch Size 16

Learning Rate 0.001
Minimum Learning Rate 0.00001

Learning Decay Rate 0.9999
Edge Addition distance (vehicles) 45 meters

LSTM Encoder Edge 8
LSTM Node History Encoder

Hidden Dimensions 32

LSTM Node Future Encoder
Hidden Dimensions 32

FC Layer p(z|x) Dimensions 16
LSTM Decoder Hidden Dimensions 128

GMM Components 16
Past Data Length 8 steps (3.2 sec)

Future Prediction Horizon 7 steps (2.8 sec)

Table 5: Trajectory Prediction Module Architecture and Hy-
perparameters Details

