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Abstract

Meta-reinforcement learning (meta-RL) aims to quickly
solve new RL tasks by leveraging knowledge from prior
tasks. Previous studies often assume a single-mode homo-
geneous task distribution, ignoring possible structured het-
erogeneity among tasks. Such an oversight can hamper ef-
fective exploration and adaptation, especially with limited
samples. In this work, we harness the structured heterogene-
ity among tasks via clustering to improve meta-RL, which
facilitates knowledge sharing at the cluster level. To facil-
itate exploration, we also develop a dedicated cluster-level
exploratory policy to discover task clusters via divide-and-
conquer. The knowledge from the discovered clusters helps to
narrow the search space of task-specific policy learning, lead-
ing to more sample-efficient policy adaptation. We evaluate
the proposed method on environments with parametric clus-
ters (e.g., rewards and state dynamics in the MuJoCo suite)
and non-parametric clusters (e.g., control skills in the Meta-
World suite). The results demonstrate strong advantages of
our solution against a set of representative meta-RL methods.

Introduction
Conventional reinforcement learning (RL) is notorious for
its high sample complexity, which often requires tremen-
dous amount of interactions with an environment to learn
a performing policy for a new task (Huai et al. 2020; Yao,
Cai, and Wang 2021). Inspired by the learning process of hu-
mans, meta-reinforcement learning (meta-RL) is proposed
to quickly learn new tasks by leveraging knowledge shared
by related tasks (Finn, Abbeel, and Levine 2017; Duan et al.
2016; Wang et al. 2016). The key research question in meta-
RL is task modeling for identifying transferable knowledge
among tasks. For example, Finn, Abbeel, and Levine (2017)
proposed to learn a set of shared meta parameters which are
used to initialize the local policy when a new task arrives.
Duan et al. (2016) and Wang et al. (2016) trained an RNN
encoder to characterize prior tasks according to the interac-
tion history in those tasks.

Little attention has been paid to the structures in the trans-
ferable knowledge resulted from task distributions. Afore-
mentioned methods implicitly assume tasks follow a uni-
modal distribution, and thus the knowledge, once identified,
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can be broadly shared across all tasks. However, heterogene-
ity among tasks is not rare in practice. It therefore dwarfs
simple sharing of global knowledge, but instead imposes
subtle structures for identifying relatedness among tasks at a
finer granularity, e.g., groups of tasks. For instance, the gen-
eral skills required for the Go game and Gomoku game are
related, such as familiarity with the board layout and stone
colors. But to achieve mastery in either game, policies must
acquire and internalize game-specific knowledge/rules to ef-
fectively navigate subsequent matches. For example, experi-
ence about competing against different human players in Go
games can be shared within, but not over to Gomoku games.
This heterogeneity motivates us to formulate a more delicate
but also more general meta-RL setting where tasks are orig-
inated from various but a finite number of distributions, i.e.,
tasks are clustered. Hence, knowledge that benefits learn-
ing in new tasks becomes cluster-specific. We refer to this as
structured heterogeneity among tasks, and propose to explic-
itly model it to facilitate cluster-level knowledge sharing1.

Structured heterogeneity among tasks has been studied
in supervised meta-learning (Yao et al. 2019; Zhang et al.
2023); but it is a lot more challenging to be handled in meta-
RL, where the key bottleneck is how to efficiently discover
task relatedness in a population of RL tasks. Different from
supervised learning tasks where static task-specific data is
available for task relatedness inference before any learn-
ing starts, observations about RL tasks are collected by an
agent’s interactions with the task environment. As a result,
successfully adapting an RL policy to a new task depends
on accurate profiling of the task, which however is elicited
by the policy itself. Task inference becomes a major bot-
tleneck of sample efficiency in meta-RL (Liu et al. 2021).
Previous methods (Duan et al. 2016; Chu et al. 2023) focus
on task embedding learning under the uni-modal task dis-
tribution assumption, which are inefficient to infer clustered
tasks. But structured heterogeneity provides new opportuni-
ties for efficient task inference: instead of directly identify-
ing the new task, the coarse-grained cluster membership can
be first inferred with a few observations; within the located
task cluster, task inference can be performed in a designated
search space, i.e., divide-and-conquer task inference.

1We do not assume the knowledge in different clusters is exclu-
sive, and thus each cluster can still contain overlapping knowledge,
e.g., motor skills in locomotion tasks.
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To realize our idea of utilizing structured heterogene-
ity among tasks in meta-RL, we develop MILET: Meta
reInforcement Learning via Exploratory Task clusTering.
To the best of our knowledge, we are the first to propose a
method for improving sample efficiency in meta-RL by uti-
lizing cluster structures in the task distribution. Specifically,
we perform cluster-based variational inference (CBVI) (Rao
et al. 2019; Dilokthanakul et al. 2016) to infer the cluster
of a new task according to its ongoing trajectory. To facili-
tate cluster inference, at the meta-train phase, we optimize a
dedicated exploration policy based on a divide-and-conquer
strategy: it first quickly explores the task’s cluster assign-
ment, and then refines its task modeling in the narrowed
search space given the identified cluster. An exploitation pol-
icy is then trained to maximize the task rewards based on the
refined task model from the exploration trajectory. We com-
pare MILET against a rich set of state-of-the-art meta-RL
solutions on various MuJoCo environments (Todorov, Erez,
and Tassa 2012) with varying cluster structures in both re-
ward and state dynamics. To test the generality of MILET,
we further evaluate it on environments characterized by non-
parametric cluster structures among tasks, i.e., the Meta-
World tasks (Yu et al. 2020). The experiment results confirm
MILET can effectively discover clusters among tasks and
then benefit fast adaptation to new tasks.

The main contributions of this paper are three-fold,

1. We present MILET, a novel approach to improve meta-
RL by explicitly modeling cluster structures inherent in
the task distribution.

2. We introduce a dedicated cluster-level exploratory pol-
icy, which employs a divide-and-conquer strategy, ensur-
ing robust and effective discovery of task clusters.

3. We evaluate MILET on a rich set of environments with
both parametric and non-parametric task clusters. The
empirical results prove the effectiveness of MILET.

Related Work
Task modeling in meta-learning. Task modeling is impor-
tant to realize fast adaptation in new tasks in meta learning.
Finn, Abbeel, and Levine (2017) first proposed the model-
agnostic meta learning (MAML) aiming to learn a shared
model initialization, i.e., the meta model, given a popula-
tion of tasks. MAML does not explicitly model tasks, but
it expects the meta model to be only a few gradient up-
dates away from all tasks. Later, an array of methods ex-
tend MAML by explicitly modeling tasks using given train-
ing data under the supervised meta-learning setting (Lee and
Choi 2018; Vuorio et al. 2019). Yao et al. (2019) adopted a
hierarchical task clustering structure, which enables cluster-
specific meta model. Such a design encourages the solution
to capture locally transferable knowledge inside each clus-
ter, similar to our MILET model. However, task informa-
tion is not explicitly available in meta-RL: since the true
reward/state transition functions are not accessible to the
agent, the agent needs to interact with the environment to
collect observations about the tasks, while maximizing its
return from the interactions. MILET models posterior dis-
tribution of a task’s cluster assignment based on its ongoing

trajectory; better yet, it is designed to behave exploratorily to
quickly identify tasks’ clustering structures, and then refine
the task modeling in the narrowed search space conditional
on the identified cluster.

Exploration in meta-reinforcement learning. Explo-
ration plays an important role in meta-RL, as the agent can
only learn from its interactions with the environment. In
gradient-based meta-RL (Finn, Abbeel, and Levine 2017),
the local policy is trained on the trajectories collected by the
meta policy, and thus the exploration for task structure is not
explicitly handled. Stadie et al. (2018) and Rothfuss et al.
(2018) computed gradients with respect to the sampling dis-
tribution of the meta policy, in addition to the collected tra-
jectories. Gupta et al. (2018) also extended MAML by using
learnable latent variables to control different exploration be-
haviors. The context-based meta-RL algorithms (Duan et al.
2016; Wang et al. 2016) automatically learn to trade off ex-
ploration and exploitation by learning a policy conditioned
on the current context. Zintgraf et al. (2020) explicitly pro-
vided the task uncertainty to the policy to facilitate explo-
ration. Zhang et al. (2021) and Liu et al. (2021) developed
a separate exploration policy by maximizing the mutual in-
formation between task ids and inferred task embeddings.
However, because all the aforementioned methods operate
under the uni-modal assumption about the task distribution,
their exploration strategy also becomes inferior to profile a
given task under a heterogeneous task distribution. MILET
first explores to identify the cluster of a task, which is ex-
pected to require fewer samples than detailed task identifi-
cation; then the agent can explore task information within a
refined search space for better sample efficiency.

Background
Meta-reinforcement learning. We consider a family of
Markov decision processes (MDPs)2 p(M), where an
MDP Mi ∼ p(M) is defined by a tuple Mi =
(S,A, Ri, Ti, Ti,0, γ,H) with S denoting its state space, A
as its action space, Ri(rt+1|st, at) as its reward function,
Ti(st+1|st, at) as its state transition function, Ti,0(s0) as
its initial state distribution, γ as a discount factor, and H
as the length of an episode. The index i represents the task
id, which is provided to agents in some works (Zhang et al.
2021; Liu et al. 2021; Rakelly et al. 2019). We consider a
more general setting where the task id is not provided to the
agent (Zintgraf et al. 2020), as in general we should not ex-
pect the task id to encode any task-related information. Tasks
sampled from p(M) typically differ in the reward and/or
transition functions. In each task, we run a trial consisting
of 1 + N episodes (Duan et al. 2016). Following the evalu-
ation settings in previous works (Finn, Abbeel, and Levine
2017; Liu et al. 2021; Rothfuss et al. 2018), the first episode
in a trial is reserved as an exploration episode to gather in-
formation for task modeling, and an agent is evaluated by
the returns in the following N exploitation episodes.

Inside a trial, we denote the agent’s interaction with the
MDP at time step n as τn = {sn, an, rn, sn+1}, and τ:t =

2The terms of environment, task and MDP are used inter-
changeably in this paper, when no ambiguity is incurred.
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{s0, a0, r0, ..., st} denotes the interaction history collected
before time t. In the exploration episode, an agent should
form the most informative trajectory τψ by rolling out an
exploration policy πψ parameterized by ψ. In the exploita-
tion episodes, the agent executes the exploitation policy πϕ
parameterized by ϕ (in some prior work, πψ and πϕ are the
same (Zintgraf et al. 2020)) conditioned on τψ and, option-
ally, the history collected in the exploitation episodes τϕ.
The returns in exploitation episodes are computed as,

J (πψ, πϕ) = EMi∼p(M),τψ∼πψ

[
N×H∑
t=0

Ri
(
πϕ(τ

ψ; τϕ:t)
)]
,

(1)
whereRi

(
πϕ(τ

ψ; τϕ:t)
)

is the return of πϕ conditioned on τψ

and τϕ:t at time step t in task Mi.
Clustered RL tasks. In this paper, we consider a more gen-
eral and realistic setting, where the task distribution is multi-
modal and thus forms a mixture,

p(M) =

C∑
c=1

wc · pc(M), (2)

where C is the number of mixing components (i.e., clusters)
and wc is the corresponding weight of component c, such
that

∑C
c=1 wc = 1. Thus, every task is sampled as follows,

1. Sample a cluster c according to the multinomial distribu-
tion of Mul(w1, ..., wC);

2. Sample a reward function R or a transition function T or
both from pc(M).

The knowledge shared in different clusters could be differ-
ent. For example, two clusters of distinct target positions
can exist in a navigational environment, e.g., top-left vs.,
bottom-right. The knowledge about how an agent reaches
the top-left target positions in the first cluster cannot help
tasks in the second cluster; but it is crucial for learning dif-
ferent tasks in the first cluster. In this example, when han-
dling a new task, a good exploration strategy should first
recognize the task cluster (i.e., to move top-left or bottom-
right), as it is much easier to recognize than individual tasks,
and then identify the specific target position in the corre-
sponding region of the map. This coarse-to-fine identifica-
tion allows more efficient exploration of task information.

Methodology
In this section, we present MILET in detail, which con-
sists of two complementary components. First, we intro-
duce how to infer population-level task structures using the
collected trajectories via cluster-based variational inference
(CBVI). Then, we explain the exploration policy trained by
the exploration-driven reward, which is designed to quickly
identify the cluster assignment of a new task. At a high level,
in each task MILET first executes the exploration policy to
collect the coarse-grained cluster information; then it adapts
the task policy with the help of inferred posterior cluster dis-
tribution. The architecture of MILET is shown in Figure 1.

Exploration policy

Sample

Exploitation policy

Decoder

Environments

Rew.
Trans.

…

…
Actions

T-GRU

C-GRU

Encoder

Sam
ple

Figure 1: MILET architecture. The encoder processes on-
going trajectories and performs CBVI for qθ(z|c, hβ). The
exploration policy πψ is trained to find the most certain clus-
ter assignment cwhen interacting with the environment. The
explored information is passed to the exploitation policy πϕ
to facilitate fast adaptation in task Mi.

Cluster-based Variational Inference with
Consistency Regularization
Since the reward and transition functions are unknown to
the agent, we estimate a latent random variable ci to infer
the cluster assignment of current task Mi ∼ pc(M). Based
on ci, we infer another latent random variable zi carrying
task-level information, i.e., zi suggests the reward/transition
functions that define the task. For simplicity, we first drop
the subscript i in this section, as we will only use one task
as an example to illustrate our model design.

In meta-RL, all information about a given task can be en-
coded by z. But inferring z can be sample inefficient, as the
task space can be very large. Thanks to the structured hetero-
geneity among tasks, inferring a task’s cluster assignment c
can be more sample efficient, since we should expect a much
smaller number of task clusters than the number of tasks.
Once c is identified, z can be more efficiently identified, i.e.,
divide and conquer. Hence, in MILET, when a new task ar-
rives, we decode its characteristics by the posterior distribu-
tion p(z, c|τ:t) = p(z|τ:t, c)p(c|τ:t) with respect to the inter-
action history up to time t. The inferred task information zc,
which refers to z conditioned on c, is then provided to the
policy πψ/ϕ(at|st, zc).

Exact posterior of p(z, c|τ:t) defined by Eq.(2) is in-
tractable. Instead, we learn an approximated variational pos-
terior qθ(z, c|τ:t) = qθ(z|τ:t, c)qθ(c|τ:t), in which we esti-
mate two dependent inference networks and collectively de-
note their parameters as θ. On top of the inference networks,
we learn a decoder pω to reconstruct the collected trajec-
tories. The whole framework is trained by maximizing the
following objective,

Eρπ(M,τ+)

[
log p(τ+|π)

]
, (3)

where ρπ is the distribution of trajectories induced by the
policies π = {πψ, πϕ} within the task, and τ+ = {τψ, τϕ}
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denotes all trajectories collected in a trial, the length of
which is denoted asH+ = (N+1)H . We choose to use tra-
jectories from both exploration and exploitation episodes to
best leverage information about the same underlying MDP.
We omit the dependencies on π to simplify our notations in
later discussions. Instead of optimizing the intractable objec-
tive in Eq.(3), we optimize its evidence lower bound (ELBO)
w.r.t. the approximated posterior qθ(z, c|τ:t) estimated via
Monte Carlo sampling (Rao et al. 2019) (full derivation can
be found in Appendix A),

ELBOt = Eρ
[cluster-specific reconstruction likelihood︷ ︸︸ ︷
Eqθ(z,c|τ:t)

[
ln pω(τ

+|z̃c)
]

−

cluster-specific regularization︷ ︸︸ ︷
Eqθ(c|τ:t)

[
KL(qθ(z|c, τ:t) ∥ pω(z|c))

]
−

cluster regularization︷ ︸︸ ︷
KL(qθ(c|τ:t) ∥ p(c))

]
, (4)

where pω(z|c) = N
(
µω(c), σ

2
ω(c)

)
is a learnable cluster-

specific prior, which is different from the simple Gaus-
sian prior used in single-mode VAE (Kingma and Welling
2013). This prior allows MILET to capture unique charac-
teristics of each cluster. pω(z|c)’s parameters are included
in ω since the cluster structure is also part of the environ-
ment. z̃c is the latent variable sampled from qθ(z|c, τ:t) =
N
(
µθ(c, τ:t), σ

2
θ(c, τ:t)

)
, using the reparameterization trick

(Kingma and Welling 2013). qθ(c|τ:t) outputs the approx-
imated posterior cluster distribution given τ:t3. p(c) is the
prior cluster distribution of tasks; when no specific prior
knowledge is known about the task, we choose a fixed non-
informative multinomial distribution for it. Intuitively, if dis-
crete structures (i.e., clusters) exist in the task distribution,
a uniform qθ(c|τ:t) will cause low reconstruction likelihood;
thus collapsed posterior, i.e., clustering, is preferred.

Similar to (Zintgraf et al. 2020), the first term
ln pω(τ

+|z̃c) in Eq.(4) can be further factorized as,

ln pω(τ
+|z̃c) = ln p(s0|z̃c) +

H+−1∑
i=0

[
ln pω(si+1|si, ai, z̃c)

+ ln pω(ri+1|si, ai, si+1, z̃c)
]
,

where p(s0|z̃c) is the initial state distribution in a task, and
we consider it as a constant by assuming identical distri-
bution of the initial states across clusters. The second and
third terms are likelihood derived from the decoders for
transition and reward functions. The density functions of
pω(si+1|si, ai, z̃c) and pω(ri+1|si, ai, si+1, z̃c) are difficult
to estimate in continuous state and action spaces. Follow-
ing (Zhang et al. 2021; Babaeizadeh et al. 2018), we use L2
distance to approximate the log-likelihood functions.

In the inference networks qθ(z|τ:t, c) and qθ(c|τ:t), we
follow (Duan et al. 2016; Zintgraf et al. 2020) to encode the
history τ:t by Gated Recurrent Units (GRUs) (Chung et al.

3We use the Gumbel-softmax trick to simplify the calculation.

2014; Cai et al. 2021; Wu, Cai, and Wang 2020). We pro-
pose a stacked GRU structure (shown in Figure 1) to differ-
entiate the information for cluster and task inference in the
hidden space. Specifically, we set a task-GRU (T-GRU) and
a cluster-GRU (C-GRU), both of which encode the history
τ:t, but with different levels of granularity. T-GRU is set to
capture fine-grained task-specific patterns in the history, as
it is optimized to reconstruct trajectories of a specific task.
C-GRU captures coarser-grained patterns beyond tasks, as
it is set to help T-GRU reconstruct all trajectories within a
cluster. To realize this difference, the output hβ of T-GRU is
only provided to qθ

(
z|hβ(τ:t, hα), c

)
, while the output hα of

C-GRU is passed to both cluster inference qθ
(
c|hα(τ:t)

)
and

task inference qθ
(
z|hβ(τ:t, hα), c

)
. This also reflects our de-

pendency assumption about the task structure: cluster as-
signment determines tasks. We denote h = {hα, hβ}, which
is passed across episodes in a trial.

The trajectory data is incrementally collected by the agent
in meta-RL, which brings both challenges and opportunities
for cluster inference. First, inside a trial, the inference im-
proves as more observations are collected, which means the
agent’s belief about the ongoing task could change thereby.
This is problematic, since the cluster inference result should
stay consistent within a given task, no matter how trajectory
changes over episodes. We attribute this property as in-trial
consistency, which is measured by KL(q(c|τ:t1) ∥ q(c|τ:t2)),
where t1 and t2 refer to two arbitrary timestamps in a trial.
We enforce the notion of cluster inference consistency via
the following regularizer,

LI =
1

H+ − 1

H+−1∑
t=0

KL
(
qθ(c|τ:t) ∥ qθ(c|τ:t+1)

)
. (5)

Similarly, since the cluster-specific prior pω(z|c) is learn-
able, the task inference can become inconsistent if pω(z|c)
changes drastically across training epochs. More seriously,
oscillation in the inference of latent variable z can cause
the collapse of policy training, as tasks across clusters might
be assigned with the same latent variable z across different
training epochs. We conclude it as the prior consistency re-
quirement and enforce it via the following regularization,

LP =
1

C

C∑
c=1

KL
(
pω(z|c) ∥ ptgt(z|c)

)
, (6)

where ptgt(z|c) is a target network and its parameters are
the same as pω(z|c) but updated in a much slower pace. We
finally obtain the objective in CBVI as follows,

J (θ, ω) = Ep(M)

[ H+∑
t=0

ELBOt − λILI − λPLP

]
, (7)

where λI and λP are hyper-parameters to control the strength
of two regularizers.

Exploration via Reducing Inference Uncertainty
In MILET, policy adaptation in a new task has two objec-
tives: (1) explore cluster structure; (2) explore task-specific
information to solve the task. As we explained before,
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MILET follows a divide-and-conquer principle to realize
these two objectives, which is implemented by learning
two separate policies as shown in Figure 1. One takes ex-
ploratory behaviors to collect cluster and task information,
i.e., the exploration policy πψ . The other is optimized to
solve the task with the collected information, i.e., the ex-
ploitation policy πϕ.

We train a dedicated exploration policy to provide a good
basis for task-solving, where cluster structures provide in-
formative hints about task relatedness. The quality of explo-
ration is evaluated by two principles. First, whether the tra-
jectory of an exploration episode can reduce the uncertainty
of cluster inference. Second, whether the inference result is
consistent. We conclude them as certain and consistent ex-
ploration. To realize these two principles, we introduce two
intrinsic rewards to encourage certain and consistent infer-
ence results. First, we use the entropy of cluster inference
network qθ(c|τψ:H) to measure the uncertainty of the inferred
cluster. For a new task, we look for trajectories that provide
the most certain cluster inference. We formalize the objec-
tive as follows, omitting the subscript θ and ψ for simplicity,

H(q(c|τ:H)) = −E
[
ln q(c|τ0) +

H−1∑
t=0

ln
q(c|τ:t+1)

q(c|τ:t)
]
.

We then define an intrinsic reward of each action by tele-
scoping the second term similar to (Zhang et al. 2021; Liu
et al. 2021),

rh(at) =E
[
ln
q(c|τ:t+1 = [st+1; at; rt; τ:t])

q(c|τ:t)
]

=H(q(c|τ:t))−H(q(c|τ:t+1)).

This reward favorites actions which can reduce the entropy
of cluster inference; and therefore, a trajectory leading to a
consistent cluster inference is preferred. To more explicitly
measure the divergence between the posterior cluster distri-
butions in two steps, we define another reward encouraging
consistent cluster inference,

rc(at) = −KL(q(c|τ:t) ∥ q(c|τ:t+1)).

Intuitively, given the inferred cluster, the exploration policy
can focus on identifying task-level information within a nar-
rowed search space, i.e., divide-and-conquer. We define the
following composed reward to encourage this coarse-to-fine
exploration behavior,

re(at) = r(at) + γh(t)rh(at) + γc(t)rc(at), (8)

where r(at) is the environment reward. γh(t) and γc(t) are
two temporal decaying functions,

γh(t) = bh − ah exp(−sh(H − t)), (9)
γc(t) = −bc + ac exp(−sc(H − t)), (10)

where {a, b, s}h,c are hyper-parameters controlling the rate
of decay. γh(t) should gradually decrease to 0, which en-
courages the policy to find a certain cluster at the early stage.
γc(t) gradually increases from a negative value to positive.
At the early stage, a negative γc(t) encourages the policy
to try different clusters. Later, a positive γc(t) enforces the

policy to stick to the current cluster and focuses more on
discovering task information by maximizing raw rewards.
We provide a detailed discussion on the design of Eq.(10) in
Appendix D and present the comparison of different explo-
ration strategies in Appendix E.

Finally, the exploitation policy πϕ inherits the hidden state
h
πψ
H , which encodes knowledge collected by the exploration

policy, and is then trained to maximize the expected reward
defined in Eq.(1). The detailed pseudo-codes of meta-train
and meta-test phases for MILET are shown in Appendix B.

Experiments
In this section, we conduct extensive experiments to study
the following research questions: (1) Can MILET achieve
better performance than state-of-the-art meta-RL algorithms
by exploring structured heterogeneity in the task distribu-
tion? (2) Can MILET effectively discover cluster structures
in both rewards and state dynamics? (3) How does the num-
ber of clusters affect the final performance of MILET? (4)
Is MILET capable of clustering tasks with non-parametric
cluster structures, e.g., the Meta-World tasks? Due to space
limit, we defer the comprehensive ablation study of MILET
to Appendix E. We further evaluate MILET on handling
out-of-distribution clusters of tasks (Appendix I) and more
difficult environments with partial rewards (Appendix J).

Results on MuJoCo Environments
Environment setup. We evaluated MILET on two contin-
uous control tasks with clustered reward functions, simu-
lated by MuJoCo (Todorov, Erez, and Tassa 2012). In Ant-
Goal, the ant robot is set to move to a predetermined goal
position. We created 4 clusters of the goal positions in 4
different centered areas. In Humanoid-Dir, the human-like
robot is controlled to move towards different target direc-
tions. We created 4 clusters by distributing target direc-
tions along 4 farthest apart directions in a 2D space. We
also created environments with clustered transition func-
tions by adopting two movement environments Hopper-
Rand-Params and Walker-Rand-Params, also simulated
by MuJoCo. The physical parameters of the robot, including
body mass, damping on degrees of freedom, body inertia and
geometry friction, were manipulated to realize different tran-
sition functions of the robot’s movement. The hopper and
walker robots are set to move smoothly under different pa-
rameter settings. We created 4 clusters by manipulating one
of the parameters at a time and keeping the others to the de-
fault parameters. More details can be found in Appendix C.
Baseline setup. We compared MILET with several repre-
sentative meta-RL baselines, including RL2 (Duan et al.
2016), PEARL (Rakelly et al. 2019), VariBAD (Zintgraf
et al. 2020), MetaCURE (Zhang et al. 2021), ProMP (Roth-
fuss et al. 2018) and MMAML (Vuorio et al. 2019). We
also included an Oracle model, where we trained a separate
VariBAD model for each ground-truth cluster. We used im-
plementations of baselines provided by the original papers.

For each environment, we created 500 tasks for meta-
train and hold out 32 new tasks for meta-test. We report
the performance on test tasks during the meta-train phase.
In the meta-test phase, we executed 2 episodes in each new
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(a) Environments with clustered reward functions.

(b) Environments with clustered state transition functions.

Figure 2: Average test performance for 2 episodes on MuJoCo environments.

(a) MiLEt traces. (b) VariBAD traces. (c) NMI score in exploration.

Figure 3: Qualitative analysis of MILET. (a) Traces of MILET on the meta-test tasks of Ant-Goal. Cross marks represent goal
positions, and the colors represent the clusters assigned by MILET. The dashed lines suggest the optimal traces to the centers
of ground-truth clusters. (b) Traces of VariBAD on the same meta-test tasks of Ant-Goal. The traces are in the same color as
VariBAD is unaware of clusters. (c) NMI of MILET’s inferred clusters in the exploration episode of meta-test tasks.

task. For algorithms with an explicit exploration policy, i.e.,
MILET and MetaCURE, we run their exploration policy
in the first episode and exploitation policy in the second
episode. We trained MILET via Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) and set the default cluster
number C to 4. Because PEARL and MetaCURE are based
on off-policy algorithms (Haarnoja et al. 2018), they need
less frames of data to converge in meta-train. We terminated
them once the algorithm was converged and reported the fi-
nal performance obtained by the moment. We report the av-
eraged performance over 3 random seeds. More implemen-
tation details can be found in Appendix D.
Results and analysis. Figure 2 shows the test perfor-
mance of all evaluated meta-RL algorithms. We also pro-
vide qualitative analysis in Figure 3, including visualization
of the models’ behaviors and the clustering performance of
MILET in the exploration episode, measured by the normal-
ized mutual information score (NMI).

First, we clearly observed Oracle performed the best in
both episodes. By directly utilizing shared knowledge within

correct clusters, Oracle is able to fast adapt to individual
tasks. It shows the necessity of accurate cluster modeling
for fast adaptation. MILET showed significant improvement
against baselines in the second episode in testing, approach-
ing the performance of Oracle. Interestingly, we can observe
even though the first episode of MILET was reserved for ex-
ploration, it still performed comparably to other methods in
all four different environment setups. In the first episode,
MILET behaved exploratorily to find the most probable
cluster of the current task, and thus its traces in Figure 3a
look like spirals from the starting point. VariBAD is also
designed to explore by uncertainty in task inference, but its
traces were close to random walk at the early stage, which is
less effective. In Figure 3c, we can observe the NMI scores
of the MILET’s inferred tasks have almost converged in
20 steps, which means the cluster inference became stable
in an early stage and can thereby provide the agent help-
ful cluster-level information to gain fine-grained task infor-
mation. This also explains how MILET obtained compara-
ble performance in the first episode. In the second episode,
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Ant-Goal Ant-U
VariBAD -168.6±9.6 -162.4±9.2

MILET-2 -132.3±7.6 -128.6±8.8

MILET-4 -125.4±5.1 -113.7±4.8

MILET-6 -123.6±4.4 -99.7±5.2

MILET-8 -124.2±4.7 -117.9±5.7

MILET-10 -128.6±5.2 -142.7±10.4

Table 1: Results on Ant-Goal and Ant-U.

with cultivated task information, MILET is able to move to-
wards the targets directly, showing significant improvements
against baselines. MetaCURE guides the exploration by task
IDs, which in fact provides more information of environ-
ment than what MILET can access. However, the explo-
ration empowered by task IDs does not explicitly explore
the coarser but useful information at the cluster level. Both
ProMP and MMAML are gradient-based methods, we found
they need 5 times samples to converge, thus we also reported
the final performance. Importantly, MMAML, tailored for
multi-modal tasks, faces challenges during exploration. It re-
lies heavily on its meta-policy to explore task-specific infor-
mation and then formulates task embeddings. If exploration
is suboptimal, the final performance suffers.

Influence of the Number of Clusters
We also studied how the number of clusters C set by
the agent influences the final performance, especially when
there is a mismatch between the ground-truth cluster size
and C set by the agent. We set C to different values and de-
note it in suffixes of MILET. We additionally created a set of
tasks on Ant-Goal, where the goal positions were uniformly
sampled. We denote it as Ant-U.

(a) MILET-2 on Ant-G. (b) MILET-6 on Ant-U.

Figure 4: Traces of MILET-2 and -6 in exploration episodes.
Colors represent the assigned clusters.

The average final returns are shown in Table 1. Interest-
ingly, we observe MILET can perform well even though
there is no explicit cluster structure in Ant-U. By looking
into the detailed trajectories, we found MILET segmented
the circle into different parts as shown in Figure 4b such
that knowledge from nearby tasks can be effectively shared.
VariBAD mistakenly assumed all tasks can share knowl-
edge and thus failed seriously. When C is set smaller than
the ground-truth number of clusters, MILET-2 discovered
more general structures (as shown in Figure 4a). However,
transferable knowledge within such structures is limited as
distinct clusters are merged, causing the performance drop.

Also, it does not mean more clusters than necessary is help-
ful, as less knowledge could be shared in each cluster. In
Ant-U, MILET-8 and -10 generated unnecessary clusters,
and cluster assignments are mixed at the boundary of adja-
cent clusters (visualized in Appendix G). Such inaccurate
cluster modeling causes ineffective exploration and knowl-
edge sharing, leading to degenerated performance.

Figure 5: Meta-World results.

Results on Meta-World Environments
We also evaluated MILET on a challenging task suite Meta-
World (Yu et al. 2020), which includes a variety of robot
arm control tasks. Each task needs specific skills to solve,
e.g., pushing and pulling, and different tasks share differ-
ent degrees of relatedness. It is crucial to differentiate tasks
and use corresponding skills. There are also variants in-
side each task, e.g., positions of objects and targets. We
considered a combination of 8 set of tasks: {Push, Reach,
Drawer-Close, Button-Press, Plate-Slide, Plate-Slide-Side,
Plate-Slide-Back-Side, Plate-Slide-Back}. We held out 8
variants of each task for testing and present results in Figure
5. MILET achieved higher success rates by correctly recog-
nizing tasks and using task-specific skills.

Conclusion & Future Work
In this paper, we present MILET, a cluster-based solution
to improve meta-RL by utilizing the structured heterogene-
ity of tasks. MILET is able to discover clustered task struc-
tures in a population of RL-tasks and enable cluster-level
knowledge sharing to new tasks. To quickly identify the
cluster assignment of new tasks, MILET learns a dedicated
exploratory policy based on a divide-and-conquer strategy.

Several extensions of MILET are worth exploring in our
future work. First, more complicated priors can be consid-
ered to enable new features. For example, the Dirichlet pro-
cess prior can be used to automatically identify number of
clusters in the task distribution, and possibly detect out-of-
distribution tasks in the meta-test phase. Second, MILET
can be combined with skill-based RL methods (Pertsch, Lee,
and Lim 2021; Nam et al. 2022) to learn cluster-level skills,
which will form a new basis for meta-RL, e.g., each task is
modeled as a skill mixture, with different task clusters re-
flecting varied skill distributions.
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