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Abstract

Deep learning intellectual properties (IPs) are high-value as-
sets that are frequently susceptible to theft. This vulnerability
has led to significant interest in defending the field’s intellec-
tual properties from theft. Recently, watermarking techniques
have been extended to protect deep learning hardware from
privacy. These technique embed modifications that change
the hardware’s behavior when activated. In this work, we
propose the first method for embedding watermarks in deep
learning hardware that incorporates the owner’s key samples
into the embedding methodology. This improves our water-
marks’ reliability and efficiency in identifying the hardware
over those generated using randomly selected key samples.
Our experimental results demonstrate that by considering the
target key samples when generating the hardware modifica-
tions, we can significantly increase the embedding success
rate while targeting fewer functional blocks, decreasing the
required hardware overhead needed to defend it.

Introduction
Deep learning has seen a significant rise to prominence in re-
cent years due to various technological advancements (Dave
et al. 2022; Bernstein et al. 2021; Lucas et al. 2021). Sys-
tems powered by this technology have displaced conven-
tional approaches in many domains. Unfortunately, deep
learning systems require heavy data acquisition and process-
ing, expertise, and computing resources (Thompson et al.
2021). Further, many works have demonstrated that the se-
curity of such systems is a significant concern (Chakraborty
et al. 2021; Mani, Moh, and Moh 2021; Zhao and Lao 2022;
Allen-Zhu and Li 2022). These factors make deep learning
Intellectual Properties (IPs) high-value assets that are prime
targets for modern piracy (Wei et al. 2020; Yu et al. 2020).
In addition, the theft of deep learning IPs can often be trivial
such as through model stealing attacks (Tramèr et al. 2016).
Watermarks create avenues of detecting stolen IPs and rem-
edying such property violations (Zhu et al. 2021).

Due to the negative impacts of piracy, protecting deep
learning IPs will become increasingly important to encour-
age healthy practices in the field. However, defenses for
mitigating deep learning IP piracy are in their early stages
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and have predominately focused on defending deep learn-
ing models from theft (Zhu et al. 2021; Xue, Wang, and Liu
2021). Deep learning watermarks embed the owner’s sig-
nature into a model, often through an identifiable behavior
in response to specific inputs (i.e., key samples) (Adi et al.
2018). The embedding of this signature is usually achieve
through the utilization of the injection of non-adversarial
backdoors into the model. After embedding, the presence of
the watermark should be easily verifiable by using the key
samples even without direct access to the model. Thus, wa-
termarks can allow the reclaiming of the model after a theft
has occurred and are often the final defense against piracy.

Other deep learning IPs are similarly vulnerable to theft.
Recent interest has been directed at defending other deep
learning components, such as training data (Zou, Gong,
and Wang 2021). Meanwhile, the hardware on which a
deep learning model is executed has significant impact on
the system’s performance and is known to be vulnerable
through modern supply chains. Various deep learning hard-
ware accelerators have been developed which show signifi-
cant improvement in speed and efficiency (Talib et al. 2021;
Peng et al. 2021; Azghadi et al. 2020). Introducing water-
marks to deep learning hardware IPs, gives hardware devel-
opers the ability to defend their hardware designs. It has
been demonstrated that by purposefully introducing well-
optimized modifications into a hardware design, it is possi-
ble to inject a backdoor into a deep learning model executed
on the hardware (Clements and Lao 2019).

By merging the concept of deep learning watermarks and
hardware backdoors, a recent work developed DeepHard-
Mark, the first framework for protecting deep learning hard-
ware using watermarks (Clements and Lao 2022). Despite
the success of embedding watermarks into a hardware de-
sign, the impact of the key samples is overlooked, as this pre-
vious approach exclusively utilized randomly selected key
samples. However, the specific key samples used strongly
correlate to the defense’s efficacy and the hardware’s ef-
ficiency. In this work, we expand deep learning hardware
watermarks by incorporating the key samples into the wa-
termark generation process. We propose a novel methodol-
ogy for aligning the watermark’s key samples with hardware
modifications to produce resource efficient hardware water-
marks. Specifically, this work makes the following contribu-
tions in producing deep learning hardware watermarks:
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• We evaluate for the first time the impact of the key
samples on the resultant hardware modifications of deep
learning hardware watermarks.

• We develop a hardware modification model, establishing
a link between the effect of hardware modifications in the
algorithmic domain to the hardware.

• We propose an algorithm that attempts to simultaneously
embed an aligned signature using both the key sample
and key DNN.

• We demonstrate that watermark embeddings produced
using our optimal key samples provide superior charac-
teristics to those produced with previous methods.

Related Works
Deep Learning Watermarking
Watermarks in deep learning have primarily defended the al-
gorithmic IP from theft by embedding a signature, a unique
property or functionality, into the model to identify the
IP. The first methods of embedding watermarks in deep
neural networks did so directly modifying model parame-
ters (Uchida et al. 2017). Some approaches build upon this
perspective (Zhang et al. 2021), but verifying such water-
marks often requires analyzing the weights directly. Meth-
ods that can embed the signature into the model’s response
to specific inputs have become popular (Rouhani, Chen, and
Koushanfar 2018; Lu 2022; Quan et al. 2020). A frequently
used method for producing this type of watermark applies
backdoor injection algorithms to alter the model (Adi et al.
2018; Yang et al. 2021; Zhang et al. 2018).

Methods for improving the characteristics of deep learn-
ing watermarks, such as capacity and the robustness of the
watermarks, have become a significant research focus (Zhu
et al. 2021; Lv et al. 2021; Ye et al. 2022). Recently, many
works have extended the use of deep learning watermarks
to various high-profile deep learning scenarios such as deep
reinforcement learning (Chen et al. 2021), federated learn-
ing (Li, Wang, and Liew 2022), and multi-task learning (Li
and Wang 2021). Work from the adversarial perspective has
drawn concerns that ambiguity attacks can compromise deep
learning watermarks (Fan, Ng, and Chan 2019). Currently,
very few methods can defend against such attacks (Ong
et al. 2021). Currently, similar vulnerabilities have not been
observed from the hardware perspective and known meth-
ods cannot be trivially extended due to the discrete nature
of hardware modifications limiting gradient descent-based
methods (Clements and Lao 2022).

Deep Learning Hardware Watermarking
To the best of our knowledge, DeepHardMark is the
only prior work to apply backdoor inspired watermark-
ing towards defending deep learning hardware IPs from
piracy (Clements and Lao 2022). Other works have pro-
posed the integration of hardware platforms into the pro-
tection of deep learning models by degrading its perfor-
mance on non-approved devices (Goldstein et al. 2021),
which are very different from watermarking. Figure 1 de-
picts a flowchart describing a general scheme for embedding
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Figure 1: A general scheme for deep learning hardware
watermarks embeds a signature linked to a specific DNN
and input samples during the hardware design process. The
owner can utilize the key DNN and samples to verify own-
ership over a pirated device.

and verifying hardware-based watermarks in deep learning
systems. Instead of embedding the watermark functionality
into weights, the DeepHardMark provides a scheme for em-
bedding the signature through modifications in its hardware.
Consequently, key DNN and key samples are needed to ver-
ify the hardware watermark instead of requiring only the key
samples, as with algorithmic watermarks.

There are many distinctions between algorithmic and
hardware watermarks due to the differences in the two do-
mains. For example, the immutability of hardware after fab-
rication provides the benefit of hardware watermarks be-
ing more naturally robust to removal attacks. Deep learning
hardware watermarks also come with the additional require-
ment of minimizing the overhead of the watermark. Finally,
it is also necessary to preserve the original algorithmic re-
sponse of the system over a broad range of models since
hardware platforms are usually expected to accommodate
the rapid development in this field with various models.

Limitations of Prior Method
Of critical importance in protecting deep learning hardware
IPs with watermarks is the impact in terms of the hardware
overhead and the device’s functional behavior. A rudimental
understanding of hardware indicates that the novel hardware
used to implement the modifications would introduce addi-
tional area, power, and propagation delay to the circuit. As
such, reducing the number of modifications directly corre-
lates with a reduction in the hardware overhead. Prior works
have also concluded that there is a connection between the
number of hardware modifications and the device’s func-
tional behavior (Clements and Lao 2022) due to a small
probability of the modifications being erroneously activated.
While deep learning systems tend to be reasonably robust to
such noises, as the number of modifications increase the pos-
sibility of unexpected alterations to the algorithmic behavior
of DNNs executed on the device also increases.

As such, a focus of this prior work was to reduce the num-
ber of modifications injected into the target hardware using a
cardinality constraint (ϵη). This constraint enforces an upper
bound on the number of model operations targeted by the
watermark, which is a major component in determining the
magnitude of hardware modifications embedded. Here, we

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11652



0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4

0.8
1.0

0.6

ϵη( xϵηM)

AccΔ
(xΔM)

ESR
(%)

|η|
(xηM)

Cifar10
( ϵηM = 51) ( ΔM = 0.57 )

( ηM = 18 )

Cifar100
( ϵηM = 86) ( ΔM = 0.44 )

( ηM = 17 )

ImageNet
( ϵηM = 33) ( ΔM = 0.60 )

( ηM = 22 )

0.0 1.00.80.60.40.20.1 0.90.70.3 0.5

Figure 2: Prior works attempt to control the impact of the
watermark through a cardinality constraint (ϵη). We observe
a greater deviation based on the key samples and propose to
align the key sample with the signature.

provide a preliminary experimental evaluation of this per-
spective and demonstrate its limitations.

We perform this experimental evaluation using the
ResNet18 (He et al. 2016) architecture trained for Ci-
far10, Cifar100 (Krizhevsky, Hinton et al. 2009), and Im-
ageNet (Deng et al. 2009) as the key DNN. We perform a
baseline hardware watermark embedding for 100 randomly
selected key samples while iteratively increasing ϵη until a
successful watermark embedding is found for each key sam-
ple. We categorize each test case based on the value of ϵη
used in generating them. Then, we evaluate these groups
using the Embedding Success Rate (ESR), Change in Ac-
curacy (Acc∆), and the number of targeted modifications
(|η|), which are consistent with the metrics used in Deep-
HardMark (Clements and Lao 2022). Formal definitions are
presented in Section , but intuitively speaking, they correlate
with the ease of watermark embedding, algorithmic impact,
and hardware impact, respectively. The results of this eval-
uation are shown in Figure 2, which are normalized with
respect to the maximum value for each test.

In this evaluation, we observe that while there is a gen-
eral correlation between ESR, or |η|, and ϵη , the same does
not appear to be true for Acc∆. This observation implies that
the reduction of the cardinality constraint does little to pre-
serve the algorithmic behavior of the key DNN. We further
observe a wide variation in these metrics at all values of ϵη .
This observation leads to the fact that, in these tests, we can
often increase the watermark’s performance with respect to
these metrics by up to 70% simply by selecting an average
performing key sample from the original randomly set rather

than a bad one, even at the same ϵη .
These results demonstrate that the key samples used in

generating the hardware watermark contribute significantly
to its overall performance. From this perspective, we pro-
pose that by utilizing a methodology that aligns the key sam-
ples with the watermark signature, generating a much more
efficient watermark embedding is possible. We propose a
novel watermark embedding algorithm to accomplish this.

Signature Aligned Hardware Watermarks
Threat Model IP piracy is a significant concern of hard-
ware security in the current semiconductor industry. As a
modern hardware device typically involves several design
houses, foundries, and 3rd-party IPs that span multiple coun-
tries, such a supply chain readily allows adversaries access
to low-level hardware designs outside the view of the de-
veloper. The adversary’s goal is to steal the IP and profit
from counterfeit products, e.g., sell the counterfeit products
to customers, which would subvert the owner’s profit.

We consider a scenario where an adversary has acquired
and deployed a pirated deep learning hardware IP. To maxi-
mize utilization of the device the adversary deploys the de-
vice in a setting where users provide the DNN, F (·), and
inputs, x, to be processed. In this scenario, the designer’s ob-
jective is to embed a watermark into the device through mod-
ifications to its circuitry. To confirm the watermark’s pres-
ence, the owner would characterize the hardware on open
source deep learning systems, then demonstrate a deviation
from the expected behavior when processing the owner’s key
DNN and key sample. From a high-level perspective this
scenario appears similar to prior methodologies seen in the
software domain. It should be noted that intuitions from the
software domain do not necessarily generalize to the hard-
ware. For example, modifications in the hardware do not
necessarily effect model gradients in the same way pertur-
bations on the weights do.

Embedding Hardware Watermarks
The typical algorithmic perspective of deep learning consid-
ers a DNN, F (·), to be a function trained to map inputs, x,
to corresponding model responses, y. The model’s ability
to produce this mapping is the algorithmic response of the
model. This algorithmic response is made to match a dataset,
D = {x,y}, representing this task according to a loss func-
tion, L, which quantifies the error over the task. Due to the
scale of modern DNNs and physical limitations on hardware
resources, during the execution of a DNN, model operations
are mapped onto functional blocks, which multiple opera-
tions must share in a time-multiplexed manner. Various op-
timization techniques have been incorporated to accelerate
the execution, including multiple dataflow schemes which
specify how operations are mapped into the hardware (Sze
et al. 2017). We understand the ability of the hardware de-
sign to produce this algorithmic response correctly as the
hardware’s functional behavior. Modifications to the hard-
ware often alter the functional behavior of the design. If
these modifications are well-aligned with a DNN, F (·), they
can even produce targeted changes in the algorithmic re-
sponse (Clements and Lao 2018).
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The central objective of the process is to alter the al-
gorithmic functionality of a key DNN, Fk(·), on specific
key samples, xk, when executed on the watermarked hard-
ware. We distinguish the model executed on the altered hard-
ware as F δ(·), signifying the change in its algorithmic re-
sponse. Formally, the altered functionality is described as:
F δ
k (xk) = ŷk, where ŷk sharply deviates from the expected

algorithmic response indicated by D. The watermark em-
bedding should produce this deviation while preserving its
algorithmic functionality in other scenarios.

In addition to this central objective, we want to reduce
the impact of the watermark on the hardware. Following the
observation discussed in Section that both the selected key
sample and magnitude of the hardware modification play a
significant role in this endeavor, we propose an algorithm to
target both aspects. We establish a link between the hard-
ware modifications and the algorithmic domain to accom-
plish this. While the effect of the modifications on the al-
gorithmic response is not equivalent to direct perturbations
on the DNN, we can approximate it layer-wise perturbation,
δ = {δl}. For a targeted operation, op, in layer, l, with pa-
rameters, Wl, of a DNN Hl = op(Wl, Hl−1), the perturbed
latent representation is: Ĥl = op(Wl, Hl−1) + δl. Further,
we also extend the understanding of the key sample selec-
tion as perturbing a known input x̂k = xk + p. Finding a
selection for p and δ, which align with the watermark signa-
ture, allows us to minimize both the hardware overhead and
algorithmic functionality simultaneously.

Modeling Hardware Modifications
To begin, we assume the owner of the device has access to
a model to be used as the key DNN, Fk(·), trained on a
dataset, D. The owner can then randomly select a subset of
samples from the training dataset with altered labels signify-
ing the watermark signature, i.e., Dk = {xk, ŷk}, such that
ŷk ̸= yk. In prior algorithms embedding the watermark can
be understood as simply establishing a link between hard-
ware and the key samples, xk. We extend this perspective
by simultaneously co-optimizing the sample input to find a
new sample, x̂k ≈ xk. This sample should meet the criteria
that Fk(xk) = Fk(x̂k) = yk and F δ

k (xk) ̸= F δ
k (x̂k) = ŷk

while minimizing the necessary hardware modifications.
The link is established through hardware modifications,

which alter the functionality of the key DNN producing the
result F δ

k (x̂k) = ŷk. We identify a class of hardware modi-
fications that can produce the perturbations, δl, on the latent
representations, Hl, as they are being computed in hardware.
Research into hardware Trojan attacks has produced various
avenues for designing this class of modification while hav-
ing a minimal impact on both the functionality and hard-
ware overhead (Chakraborty, Mondal, and Srivastava 2020).
One of the most straightforward methods is to utilize two
small logic circuits, which are referred to as the activator
(act(·, ·)) and perturber (per(·, ·, ·)). When embedded in a
functional block, act(·, ·) is designed to detect when a tar-
get operation is being processed, which sends a signal to
per(·, ·, ·). Then, per(·, ·, ·) responds to this signal by alter-
ing the operation of the functional blocks in a way that em-
ulates a perturbation on the latent space. Figure 3 presents a

HlHl-1
opl

HlHlHl-1
opl

act

per

Standard Hardware
Operation Simple Modified Operation

Figure 3: An activator (act) and perturbator (per) circuit can
be introduced to the hardware to modify its outputs.

block diagram depicting this modification scheme.
We mathematically define the activators as tl,opt

=
act(Hl−1,opt

, Tl−1,opt
) where l and opt signify the layer

and specific target operation in the layer which should ac-
tivate act(·, ·). The functionality of this circuit is to analyze
the incoming latent representations, Hl−1, during compu-
tation and produce a binary response signal tl,opt signify-
ing that the signal was detected. Our approach is to make
a static comparison that evaluates and compares the binary
latent representation observed, [Hl−1]bin, with the binary la-
tent representation expected for the key sample, [Tl−1]bin.

tl,opt = 1[comp([Hl−1,opt ]bin, [Tl−1,opt ]bin)] (1)

where comp is a binary comparison and 1[cond] is the indi-
cator function that returns 1 when cond is a True statement
and 0 if False. tl,opt is a trigger signal sent to the perturber
indicating that it should produce the required perturbation.

If activated, the perturber should alter the computation
of the block to produce the desired perturbation. We want
per(·, ·, ·) to perform the operation Ĥl = Hl + δl given that
we know Hl = Tl, i.e. the latent representation for the target
operation. Performing this in hardware can be done with the
following mathematical representation of per(t, h, b) where
t = tl, h = Hl, and b = βl for a given l.

per(t, h, b) =

{
[hopt ]bin ⊕ [bopt ]bin, when topt = 1,

[hopt
]bin, otherwise.

(2)
where ⊕ is the XOR operation used to flip the bits
of [hopt

]bin based on the corresponding binary mask
[bopt

]bin ∈ [βl,opt
]bin. [βl,opt

]bin should be selected such
that [Tl,opt

]bin ⊕ [βl,opt
]bin = [Tl,opt

+ δl,opt
]bin implying

that [βl,opt
]bin = [Tl,opt

]bin ⊕ [Tl,opt
+ δl,opt

]bin.
In summary, the hardware designer needs three parame-

ters Tl, Tl−1, and δl. Tl and Tl−1 can determined by prob-
ing the model and observing its latent representations when
computing x̂k. The functionality of F δ

k (x̂k) can be simu-
lated. Then, using modern optimization techniques the δl re-
quired to produce their watermark signature is determined.
These circuits consume some hardware overhead and have
the potential of activating under untargeted input samples.
The designer should reduce the impact of the modifications
on the hardware by minimize its the magnitude of δl.

Perturbation/Sample Signature Alignment
From the algorithmic perspective, we wish to determine
a δ which produces the watermark embedding defined by
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F δ
k (x̂k) = ŷk ̸= Fk(xk). Our approach to solve for δ is

with the optimization problem:

minimize
δ

L(F δ
k (x̂k), ŷk). (3)

where L is a standard deep learning loss function for the
corresponding task. For classifiers, we utilize cross-entropy
loss and an arbitrarily selected abnormal label, ŷk. However,
an essential criterion of a watermark is to minimize any im-
pacts on the design. One method of lowering the hardware
overhead is to decrease the number of modifications. This
may also help reduce incorrect activation of the modifica-
tions due to there being less modifications to activate. Using
the combinational circuits to produce the perturbation as de-
scribe above, each non-zero element of δ requires additional
hardware. Thus, a significant component of the watermark-
ing strategy is enforcing sparsity in δ.

To meet this objective, we utilize a binary mask, η = {ηl}
for each layer l, which selects which operations in Fk(·) are
targeted for modification. Using this mask, we compose a
block constrained perturbation δ̂ = δ ⊙ η. By setting en-
suring the sparsity of η, we can ensure the sparsity of δ̂.
Utilizing this as our model perturbation, we reformulate the
problem as follows:

minimize
δ,η

L(F δ⊙η
k (x̂k), ŷk)

subject to |η| < ϵη, ηi ∈ {0, 1} (4)

Here ϵη becomes a constraint that determines the upper
bound on the number of operations targeted for modifica-
tion. Solving this problem ensures that the number of modi-
fication circuits needed to be embedded is less than ϵη .

Samples near a classification boundary require a smaller
model perturbation to cross the decision boundary. We can
select an optimal x̂k by beginning with a seed image se-
lected from the training dataset and introducing a small per-
turbation to it, i.e., x̂k = xk + p. We can then optimize
p to minimize L(F δ⊙η

k (xk + p), ŷk) while solving Equa-
tion 4. However, the best solution for this problem occurs
when η = 0, which can be seen as an adversarial example
for the unmodified key DNN, Fk(xk + p) = ŷk. As such,
for the key sample to be useful in demonstrating the func-
tional difference between the watermarked and clean hard-
ware designs, we must ensure that it does not collapse into
an adversarial example for the key DNN. As such, we must
introduce the constraint that Fk(xk + p) = yk, the original
label. Finally, we can formulate the full optimization prob-
lem as follows:

minimize
δ,η,p

L(F δ⊙η
k (xk + p), ŷk)

subject to |η| < ϵη, ηi ∈ {0, 1},
Fk(xk + p) = yk, ∥p∥∞ < ϵp (5)

We introduce the additional ϵp constraint to ensure that the
key sample retains some similarity to xk.

Algorithm 1: Signature Alignment Algorithm

Require: L, Fk, (xk,yk), ŷk, τ{1,2,3}, cp α{δ,p,η}, ϵL
ζ1 = ζ2 = ζ3 = 0; ϵη = ϵL[0]
while Inner Loops Converge do

while |η| >= ϵη & not timed out do
L = L(F δ⊙η

k (xk + p), ŷk)
A1 = τ1(η − S1) + ζ1
A2 = τ2(η − S2) + ζ2
A3 = τ3(1

Tη − ϵη) + ζ3

η = η − αη[
∂L
∂η +A1 +A2 +A3]

ζi += τi(η − ζi) ∀i ∈ {1, 2}; ζ3 = A3

end while
while F δ⊙η

k (xk + p) ̸= ŷk & not timed out do
L1 = L(F δ⊙η

k (xk + p), ŷk)
L2 = L(Fk(xk + p),yk)
p = p− αp[

∂L1

∂p + cp
∂L2

∂p ]

δ = δ − αδ
∂L1

∂δ
end while

end while
ϵη = next(ϵL)

Optimization Strategy
Due to the binary mask representation of η, we recognize
that optimizing η is akin to minimizing the so-called ℓ0-
norm seen deep learning application domains such as sparse
adversarial examples. A strong solution to such problems
is notoriously difficult to find due to the discrete nature of
the variable. Recently, a novel algorithm was proposed for
solving similarly mixed integer problems (Wu and Ghanem
2019). Using this work as inspiration, we are able to develop
a process for solving the optimization problem laid out in
Equation 5.

To solve this problem, we employ an algorithm that cycles
through multiple iterations of updating η followed by itera-
tively updating δ and p simultaneously. The full algorithm
is presented in Algorithm 1. We begin by first updating δ as
follows:

δ = δ − αδ

[
∂L(F δ⊙η

k (xk + p), ŷk)

∂δ

]
(6)

where αδ is the step size that controls the convergence rate
for δ. Simultaneously, we update p using:

p = p− αp dp (7)

where

dp =
∂L(F δ⊙η

k (xk + p), ŷk) + cP L(Fk(xk + p),yk)

∂p
(8)

Here, αp is the step size, and cP is a constant used to
balance the strength of the terms. These parameters control
the convergence rate and the degree to which the solution
avoids the trivial adversarial example solution for x̂k. Once
updated, we project p back into the allowable solution space
using pi = min(max(pi,−ϵ), ϵ) to all pi ∈ p.
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Once a solution to the watermarking problem is found,
we follow the ℓp-ADMM algorithm for reducing η (Wu and
Ghanem 2019). We leave the details of this algorithm to the
initial work of DeepHardMark (Clements and Lao 2022).
Using this algorithm, we find that by iteratively updating η
using the equation below for optimizing η:

η = η + αη

[
∂LA

∂η

]
(9)

where αη is the step size and ∂L
∂η is the derivative of the

augmented Lagrangian function:

∂LA

∂η
=
∂L(F δ⊙η

k (xk + p), ŷk)

∂η
+ τ1(η − S1) + ζ1

+ τ2(η − S2) + ζ2 + τ3(1
T η − ϵη) + ζ3. (10)

where, ζ1 ∈ RM , ζ2 ∈ RM , and ζ3 ∈ R1 are dual variables
with corresponding penalty parameters: τ1, τ2, and τ3. S1

and S2 are the projections of η on to an ℓ∞-box and ℓ2-
sphere, respectively. S1 = max(min(PSp

(η+ 1
τ1
ζ1),1),0)

and S2 =
√
M
2

(η+ 1
τ2

ζ2)−0.5(1)

∥(η+ 1
τ2

ζ2)−0.5(1)∥ + 1
2 (1).

This methodology utilizes multiple step sizes and penalty
parameters. The purpose of these parameters is to ensure that
each of the watermark variables (p, δ, and η) all converge at
relatively the same rate to ensure the quality of the embed-
ding. However, we note that as long as these terms are all
fairly balanced, the methodology appears to generalize well
from scenario to scenario and doesn’t require fine-tuning for
individual key samples or key DNNs. In the supplementary
materials, we provide an ablation study verifying the stabil-
ity of the methodology with respect to these parameters.

By iteratively performing these steps, we can find δ ⊙ η,
which produces the watermark functionality. η can then be
used to specify which functional blocks need to be modified
in the hardware, and δ used to determine [βl,o]bin needed
to generate per(·, ·, ·). This provides all the necessary infor-
mation to embed watermark functionality into the hardware
with the act(·, ·) and per(·, ·, ·) circuits. Simultaneously, we
co-optimize a key sample, x̂k = xk + p, to most effectively
work with the modifications to highlight the difference be-
tween the watermarked and watermark-free hardware.

Experimental Results
Experimental Setting
To demonstrate the effectiveness of the proposed methodol-
ogy, we provide a comprehensive evaluation of our method-
ology when embedding watermarks into hardware using var-
ious well-known image classification benchmark architec-
tures as the key DNN. Further, we demonstrate the efficacy
of our algorithm by providing a comparison with DeepHard-
Mark (Clements and Lao 2022), which to the best of our
knowledge, is the only prior hardware watermark embed-
ding framework. In this evaluation, we include ResNet (He
et al. 2016), VGG (Simonyan and Zisserman 2015), and
ViT (Dosovitskiy et al. 2021) models trained for the Cifar10,
Cifar100, and ImageNet datasets. Finally, we present a di-
rect evaluation of the key sample’s effect on the watermark

Model ESR% |η|% Terr%

ResNet34 95 3.12e−3 6.15e−3
ResNet50 90 4.87e−3 2.47e−5
VGG11 100 3.27e−3 2.17e−5
VGG13 92 3.53e−3 1.52e−4
VGG16 87 2.49e−3 2.17e−5

DenseNet101 87 3.28e−3 1.82e−2
ViT-16-224 100 3.75e−2 0.00e0
ViT-32-224 100 1.65e−1 0.00e0

Table 1: Watermarks generated for ImageNet.

embeddings. For our experiments, we assume a hardware
design composed of a grid of 128× 128 ALUs with the sta-
tionary output dataflow consistent with prior hardware im-
plementations (Putra et al. 2021). Our experiments are con-
ducted using the Pytorch framework (Paszke et al. 2019) and
the TIMM model library (Wightman 2019).

In these evaluations, we utilize the Embedding Success
rate (ESR), Change in Accuracy (Acc∆), and Change in
Fidelity (Fid∆) as proposed in prior works (Clements and
Lao 2022). ESR defines the success rate when finding an
embedding for specific hardware using a selected key DNN
and key samples. While Acc∆ and Fid∆ define the change
in natural prediction accuracy of the key DNN and other
DNNs running on the modified hardware, respectively. We
also evaluate the Triggering Error (Terr) by measuring the
percentage of operations that produce the conditions for trig-
gering an activator circuit (act), incorrectly. These erroneous
triggerings inevitably alter model predictions and additional
consumer power in the circuit, making it a strong metric for
a more nuanced evaluation of the watermark’s impact.

Broad Feasibility Evaluations

To demonstrate the feasibility of our methodology for em-
bedding watermarks in deep learning hardware, we evalu-
ate the watermark embeddings generated by our approach
for various ImageNet classifiers, as shown in Table 1. In
this experiment, we produce 100 watermark embedding for
each model using different key samples randomly selected
from the model’s training data and determine the ESR for
these cases. Then, using the embeddings generated, we de-
termine the hardware modifications needed to be embedded
in the hardware to produce the watermark. We then cal-
culate |η|, Terr, Acc∆, and Fid∆ using software simula-
tions that emulate the functionality of the hardware modi-
fied according to Section and compare the predictions for
the watermark-free model. We perform this evaluation for
5000 images randomly selected from the ImageNet Testing
data. For this evaluation, we utilize a ResNet18 ImageNet
classifier to calculate Fid∆, transferring the modification
from the key DNN to the ResNet18 model according to the
hardware mapping scheme. We note that across these exper-
iments, Acc∆ and Fid∆ are 0%, i.e., typical DNNs running
on the hardware are unchanged.
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Method Dataset ESR% |η|% Acc∆% Fid∆% Terr%
⋆

DeepHardMark
Cifar10 100 1.80e−1 0.68 0.12 -
Cifar100 100 1.29e0 0.30 0.25 -
ImageNet 100 1.50e−1 0.67 0.68 -

Signature Aligned
(Proposed)

Cifar10 100 7.16e−3 0.00 0.00 0.00
Cifar100 100 1.05e−2 0.00 0.00 0.00
ImageNet 100 5.95e−5 0.00 0.00 1.67e−3

⋆ The values of Terr% are not reported in DeepHardMark (Clements and Lao 2022).

Table 2: Comparison of the proposed methodology with DeepHardMark.

Comparison with DeepHardMark
From these results, we see that for all models, the proposed
methodology achieves an average ESR of 92.6%. It is pos-
sible to increase the average ESR by allowing more hard-
ware blocks to be modified. This is done by relaxing the
bound on ϵη until a valid solution is found. However, this
leads to selecting a poor watermark embedding. Instead, we
start with a large upper bound of ϵη and then decrease this
constraint every five iterations of the algorithm by about
50% until a valid solution cannot be found. This allows us to
produce more effective embeddings while sacrificing some
ESR. However, this process filters out some of the sub-
optimal key samples contributing to a more efficient embed-
ding. We also observe that |η| and Terr are also near 0%,
demonstrating the minimal impact of the hardware modifi-
cations proposed would be. These strong results would suf-
ficiently confirm that the watermark-free and watermarked
hardware are highly similar.

We also provide a direct comparison with watermarks
produced by the DeepHardMark algorithm. To offer a strong
comparison, we target a hardware architecture composed of
a smaller ALUs grid of size 32×32 consistent with the prior
work and ResNet18 key DNNs trained for the cifar10, ci-
far100, and ImageNet datasets. Further, the original work
ensured a 100% ESR, which we also allow for this evalua-
tion. We present the results in Table 2. From these results, we
observe that our proposed methodology demonstrates supe-
rior results across all the metrics evaluated. We first note that
by incorporating the key samples into the algorithm, we can
observe a marked decrease in |η|, often able to beat this prior
work by an order of magnitude or more. Further, of particu-
lar interest is the fact that the proposed methodology has no
impact on the predictions of any of the models tested here.
This is a significant boon for the proposed method, strongly
demonstrating its ability to preserve the functional behavior
of the device and validating the importance of key sample
selection for watermarking scenarios. We further highlight
that Terr for all scenarios in this evaluation are near zero,
indicating the negligible impact of the modifications on the
hardware.

Hardware Analysis
To demonstrate the efficiency of the hardware produced by
the proposed approach, we utilize the TinyTPU (Shinn 2019)
hardware architecture and a custom MMU architecture con-

Hardware
Design

Area Cells Power Time
Proposed

TinyTPU 0.001% 0.003% 0.00% 0.01%
MMU 0.034% 0.045% 0.00% 0.00%

DeepHardMark
TinyTPU 0.144% 0.119% 0.169% 0.00%

MMU 0.054% 0.058% 0.039% 0.00%

Table 3: Hardware Overhead of the propose methodology in
ASIC designs.

sistent with prior works (Clements and Lao 2022). We gen-
erate a 32 × 32 ASIC implementation of the design us-
ing Synopsis Design Compiler with 32nm Technology. For
these implementations, we determine the area, number of
cells, power utilization, and propagation delay of the design.
These characteristics are presented in Table 3 alongside the
results shown in DeepHardMark (Clements and Lao 2022).

From these results, we observe that the proposed method-
ology is highly efficient in terms of hardware overhead. The
resulting watermarks produce almost no change in power
and timing while reducing the number of cells and area used
by the watermark by almost 100x in the case of TinyTPU.

Conclusions

The work proposes a novel watermark embedding algorithm
for defending deep learning hardware platforms. DeepHard-
Mark (Clements and Lao 2022), the first such methodology,
did not consider the implications of integrating the key sam-
ples into the framework. This prior work attempted to min-
imize the watermark’s impact on the design with a bound
on the number of total hardware modifications. However,
we observe limitations in this methodology to consistently
provide optimal watermarks. To improve on this, we present
a model for incorporating the hardware modifications and
key samples into the watermark embedding algorithm. This
aligns the key samples used to activate the watermark with
its algorithmic perturbation. Hardware modifications work
with the key samples to alter the behavior of a device to
provide reliably verification of ownership, while having a
minimal impact on the hardware.
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