
Iterative Regularization with k-support Norm:
An Important Complement to Sparse Recovery

William de Vazelhes1, Bhaskar Mukhoty1, Xiao-Tong Yuan2, Bin Gu1,3*

1MBZUAI, Abu Dhabi, UAE
2Nanjing University, Suzhou, China
3Jilin University, Changchun, China

{wdevazelhes,bhaskar.mukhoty,xtyuan1980,jsgubin}@gmail.com

Abstract

Sparse recovery is ubiquitous in machine learning and signal
processing. Due to the NP-hard nature of sparse recovery, ex-
isting methods are known to suffer either from restrictive (or
even unknown) applicability conditions, or high computational
cost. Recently, iterative regularization methods have emerged
as a promising fast approach because they can achieve sparse
recovery in one pass through early stopping, rather than the
tedious grid-search used in the traditional methods. However,
most of those iterative methods are based on the ℓ1 norm which
requires restrictive applicability conditions and could fail in
many cases. Therefore, achieving sparse recovery with itera-
tive regularization methods under a wider range of conditions
has yet to be further explored. To address this issue, we pro-
pose a novel iterative regularization algorithm, IRKSN, based
on the k-support norm regularizer rather than the ℓ1 norm.
We provide conditions for sparse recovery with IRKSN, and
compare them with traditional conditions for recovery with
ℓ1 norm regularizers. Additionally, we give an early stopping
bound on the model error of IRKSN with explicit constants,
achieving the standard linear rate for sparse recovery. Finally,
we illustrate the applicability of our algorithm on several ex-
periments, including a support recovery experiment with a
correlated design matrix.

Introduction
Sparse recovery is ubiquitous in machine learning and signal
processing, with applications ranging from single pixel cam-
era, to MRI, or radar1. In particular, with the ever-increasing
amount of information, real-life datasets often contain much
more features than samples: this is for instance the case in
DNA microarray datasets (Golub et al. 1999), text data (Lang
1995), or image data such as fMRI (Belilovsky et al. 2015),
where the number of features is generally much larger than
the number of samples. In these high-dimensional settings,
finding a linear model is under-specified, and therefore, one
often needs to leverage additional assumptions about the true
model, such as sparsity, to recover it. Usually, the problem

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1An introduction to this topic, as well as an extensive review
of its applications can be found in (Foucart and Rauhut 2013) and
(Wright and Ma 2022).

is formulated as follows: we seek to recover a sparse vector
w∗ ∈ R from its noisy linear measurements

yδ = Xw∗ + ϵ

Here, yδ is a noisy measurement vector, i.e. a noisy version of
the true target vector y = Xw∗, X = [x1, ...,xd] ∈ Rn×d

is a measurement matrix, also called design matrix, ϵ ∈ Rn

is some bounded noise (∥ϵ∥2 ≤ δ, with δ ∈ R+), and w∗

is the unknown k-sparse vector, i.e. containing only k non-
zero components, that we wish to estimate with a vector
ŵ obtained by running some sparse recovery algorithm on
observations yδ and X . Unfortunately, this problem is NP-
hard in general, even in the noiseless setting (Natarajan 1995).

However, most of those iterative methods are based on
the ℓ1 norm which requires restrictive applicability condi-
tions and could fail in many cases. We discuss such related
works in more details in the next section. Therefore, achiev-
ing sparse recovery with iterative regularization methods
under a wider range of conditions has yet to be further ex-
plored.

To address this issue, we propose a novel iterative regular-
ization algorithm, IRKSN, based on the k-support norm regu-
larizer rather than the ℓ1 norm. That norm was first introduced
in (Argyriou, Foygel, and Srebro 2012), as a way to improve
upon the ElasticNet for sparse prediction. More precisely, we
plug the k-support norm regularizer, for which there exist
efficient proximal computations (Argyriou, Foygel, and Sre-
bro 2012; McDonald, Pontil, and Stamos 2016b), into the
primal-dual framework for iterative regularization described
in (Matet et al. 2017).

We then provide some conditions for sparse recovery with
IRKSN, and discuss on a simple example how they com-
pare with traditional conditions for recovery with ℓ1 norm
regularizers.

More precisely, we elaborate on why such specific condi-
tions include cases that are not included in some usual suffi-
cient conditions for recovery with traditional methods based
on the ℓ1 norm (see Figure 1) (we describe such conditions
for recovery with ℓ1 norm in more details in Assumption 5).
Since those types of conditions are still slightly opaque to in-
terpret, we do as is common in the literature (such as in (Zou
and Hastie 2005; Jia and Yu 2010)), namely, we discuss and
compare those solutions with the help of an illustrative exam-
ple. We also give an early stopping bound on the model error

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11731

of IRKSN with explicit constants, achieving the standard
linear rate for sparse recovery.

Finally, we illustrate the applicability of IRKSN on several
experiments, including a support recovery experiment with a
correlated design matrix, and show that it allows to identify
the support more accurately than its competitors.

Contributions. We summarize the main contributions of
our paper as follows:

1. We introduce a new algorithm, IRKSN, which allows
recovery of the true sparse vector under conditions for
which some sufficient conditions for recovery with ℓ1
norm do not hold. We discuss the difference between
those conditions on a detailed example.

2. We give an early stopping bound on the model error of
IRKSN with explicit constants, achieving the standard
linear rate for sparse recovery.

3. We illustrate the applicability of our algorithm on several
experiments, including a support recovery experiment
with a correlated design matrix, and show that it allows
support recovery with a higher F1 score than its competi-
tors.

Preliminaries
Notations. We first recall a few definitions and notations
used in the rest of the paper. We denote all vectors and ma-
trices variables in bold font. For S ⊆ [d], S̄ denotes [d] \ S.
For any matrix M ∈ Rn×d, mi denotes its i-th column for
i ∈ N, M⊤ its transpose, M † its Moore-Penrose pseudo-
inverse (Golub and Van Loan 2013), ∥M∥ its nuclear norm,
and MS its column-restriction to a support S ⊆ [d], i.e. the
n×|S| matrix composed of the |S| columns of M of indices
in S. For a vector w ∈ Rd, supp(w) denotes its support w,
that is, the coordinates of the non-zero components of w, wi

denotes its i-th component, |w|↓i denotes its i-th top absolute
value, and ∥w∥ denotes its ℓ2 norm.

More generally ∥w∥p denotes its ℓp norm for p ∈ [1,+∞),
and ∥w∥0 denotes its number of non-zero components.
wS ∈ Rk denotes its restriction to a support S of size k,
that is, the sub-vector of size k formed by extracting only
the components wi with i ∈ S. sgn(w) denotes the vector
of its signs (with the additional convention that if wi = 0,
sgn(w)i = 0).

Related works. Due to the NP-hard nature of sparse re-
covery, existing methods are known to suffer either from
restrictive (or even unknown) applicability conditions, or
high computational cost. Amongst those methods, a first
group of methods can achieve an exact sparsity k of the
estimate ŵ: Iterative Hard Thresholding (Blumensath and
Davies 2009) returns an estimate ŵ which recovers w∗ up to
an error ∥ŵ −w∗∥ ≤ O(δ), if the design matrix X satisfies
some Restricted Isometry Property (RIP) (Blumensath and
Davies 2009). However, as mentioned in (Jain, Tewari, and
Kar 2014), this condition is very restrictive, and does not hold
in most high-dimensional problems. Greedy methods, such
as Orthogonal Matching Pursuit (OMP) (Tropp and Gilbert
2007), also can return an exactly k-sparse vector, and bounds

Figure 1: Conditions for recovery in various settings: l1SC
corresponds to the condition maxℓ∈S̄ |⟨X

†
Sxℓ, sgn(w

∗
S)⟩| <

1. “ours” denotes the condition maxi∈S̄ |⟨X
†
Sxi,w

∗
S⟩| <

minj∈S |⟨X†
Sxj ,w

∗
S⟩|. c denotes some constant in [0, 1].

Here 3k-RIP is shown for indicative purposes, corresponding
to the condition for IHT as described in (Blumensath and
Davies 2009). As we can see, for some cases (in blue), only
IRKSN (our algorithm) can provably ensure sparse recovery.

on the recovery of a (generalized version of) OMP, of the
type ∥ŵ −w∗∥ ≤ O(δ), can be found for instance in (Wang
et al. 2015), under some RIP condition.

A second set of methods for sparse recovery solve the
following penalized problem:

(P) : min
w
∥Xw − yδ∥2 + λR(w)

Where R is a regularizer, such as the ℓ1 norm as is done in the
Lasso method (Tibshirani 1996), and λ is a penalty parameter
that needs to be tuned. For a given λ, (P) is usually solved
through a convex optimization algorithm, and returns a solu-
tion ŵ of (P), as an estimate of w∗. Amongst those, one of
the most important algorithms for sparse recovery, the Lasso
(Tibshirani 1996), has been proven in (Grasmair, Scherzer,
and Haltmeier 2011) to give a bound ∥ŵ − w∗∥ ≤ O(δ)
under the so-called source conditions (described in Condition
4.3 from (Grasmair, Scherzer, and Haltmeier 2011)) which
are implied by the following more intuitive conditions: XS

is injective, and maxℓ∈S̄ |⟨X
†
Sxℓ, sgn(w

∗
S)⟩| < 1 (we de-

tail this implication in Assumption 5). Following the Lasso,
the ElasticNet was later developed to solve the problem of
a design matrix with possibly high correlations. However,
although some conditions for statistical consistency exist for
the ElasticNet (Jia and Yu 2010), to the best of our knowl-
edge, there is no model error bound (and conditions thereof)
for recovery with ElasticNet. Finally, the k-support norm
regularization has also been used successfully as a penalty
(Argyriou, Foygel, and Srebro 2012), with even better empiri-
cal results than the ElasticNet, but no explicit error bounds on
model error (and the conditions thereof) currently exists: in-
deed, their work was mostly focused on sparse prediction and
not sparse recovery. Efficient solvers have later been derived
for the Lasso using for instance coordinate descent and its

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11732

METHOD CONDITION ON X BOUND ON ∥ŵ −w∗∥ COMPLEXITY

IHT (BLUMENSATH AND DAVIES 2009) RIP O(δ) O(T)

LASSO (TIBSHIRANI 1996) max
ℓ∈S̄

|⟨X†
Sxℓ, sgn(w

∗
S)⟩| < 1(2) O(δ) O(ΛT)

ELASTICNET (ZOU AND HASTIE 2005) - - O(ΛT)
KSN PEN. (ARGYRIOU, FOYGEL, AND
SREBRO 2012)

- - O(ΛT)

OMP (TROPP AND GILBERT 2007) RIP O(δ) O(k)

SRDI (OSHER ET AL. 2016)
{

∃γ ∈ (0, 1] : X⊤
S XS ≥ nγId,d

∃η ∈ (0, 1) : ∥XS̄X
†
S∥∞ ≤ 1− η

O(σ
√

k log d
n

) (1) O(T)

IROSR (VASKEVICIUS, KANADE, AND
REBESCHINI 2019)

RIP O(σ
√

k log d
n

) (1) O(T)

IRCR (MOLINARI ET AL. 2021) max
ℓ∈S̄

|⟨X†
Sxℓ, sgn(w

∗
S)⟩| < 1(2) O(δ) O(T)

IRKSN (OURS) max
ℓ∈S̄

|⟨X†
Sxℓ,w

∗
S⟩| < min

j∈S
|⟨X†

Sxj ,w
∗
S⟩| O(δ) O(T)

Table 1: Comparison of the existing algorithms for sparse recovery in the literature, including conditions on X and w∗ sufficient
for recovery. T is the number of iterations each algorithm is ran for, and Λ is the number of values of λ that need to be tried out
(for penalized methods). (1) assuming ϵ ∼

i.i.d.
N (0, σ2). (2): Additionally, XS should be injective.

variants (Fang et al. 2020; Bertrand and Massias 2021). How-
ever, even with efficient solvers, these penalized methods
need to tune the parameter λ, which is very costly.

Recently, iterative regularization methods have emerged
as a promising fast approach because they can achieve sparse
recovery in one pass through early stopping, rather than the
tedious grid-search used in traditional methods. They solve
the following problem

(I) : min
w

R(w)

s.t. Xw = yδ

An iterative algorithm is used to solve it, and returns some
ŵ to estimate w∗. Importantly, ŵ is obtained by stopping
the algorithm before convergence, also called early stopping.
One of the first amongst these methods, SRDI (Osher et al.

2016), achieves a rate of ∥ŵ−w∥ ≤ O(σ
√

k log d
n) with high

probability, assuming ϵ ∼
i.i.d.

N (0, σ), and two conditions:

(1) ∃γ ∈ (0, 1] : X⊤
S XS ≥ nγId,d (Restricted Strong Con-

vexity) and (2) ∃η ∈ (0, 1) : ∥XS̄X
†
S∥∞ ≤ 1− η. IROSR

(Vaskevicius, Kanade, and Rebeschini 2019) uses an iterative
regularization scheme that is based on a reparameterization
of the problem (I). They prove a high probability model con-

sistency bound of ∥ŵ − w∗∥ ≤ O(σ
√

k log d
n), assuming

the ((k+1, c)-RIP for some constant c(k,w∗,X, ϵ). Similar
to their work is (Zhao, Yang, and He 2022): under similar
conditions, they also obtain a similar rate. Finally, (Molinari
et al. 2021) provide bounds of the form ∥ŵ −w∥ ≤ O(δ),
under the same source conditions as in (Grasmair, Scherzer,
and Haltmeier 2011).

However, most of those iterative methods are based on the
ℓ1 norm which requires restrictive applicability conditions
and could fail in many cases. Indeed, in those cases, the
conditions for recovery with the methods described above
(e.g. RIP, or the sufficient conditions for recovery with Lasso

that we discussed above) do not hold anymore. For instance,
in gene array data (Zou and Hastie 2005), it is known that
many columns of the design matrix are correlated, and that
RIP does not hold. It is therefore crucial to come up with
algorithms for which recovery is provably possible under
different conditions, which we tackle in this paper.

k-support Norm Regularization. We now introduce the
k-support norm, which is the main component of our algo-
rithm, as well as its proximal operator. The k-support norm
was first introduced in (Argyriou, Foygel, and Srebro 2012),
as the tightest convex relaxation of the intersection of the
ℓ2 ball and the ℓ0 ball. It was later generalized to the matrix
case (McDonald, Pontil, and Stamos 2016a,b), as well as suc-
cessfully applied to several problems, including for instance
fMRI (Gkirtzou et al. 2013; Belilovsky et al. 2015). We give
below its formal definition, with the following variational
formula from (Argyriou, Foygel, and Srebro 2012):
Definition 1 ((Argyriou, Foygel, and Srebro 2012; McDon-
ald, Pontil, and Stamos 2014)). Let k ∈ {1, ..., d}. The k-
support norm ∥ · ∥spk is defined, for every w ∈ Rd, as:

∥w∥spk = min

{∑
I∈Gk

∥vI∥2 : vI ∈ Rd, supp (vI) ⊆ I,

∑
I∈Gk

vI = w

}
where Gk denotes the set of all subsets of {1, ..., d} of cardi-
nality at most k.

In other words, the k-support norm is equal to the smallest
sum of the norms of some k-sparse atoms (the yI above) that
constitute w: as studied in (Chatterjee, Chen, and Banerjee
2014), the k-support norm is indeed a so-called atomic norm.
One can also see from this definition that the k-support norm
interpolates between the ℓ1 norm (which it is equal to if
k = 1) and the ℓ2 norm (which it is equal to if k = d). As

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11733

discussed in (Argyriou, Foygel, and Srebro 2012), another
interpretation of the k-support norm is that it is equivalent
to the Group-Lasso penalty with overlaps (Jacob, Obozinski,
and Vert 2009), when the set of overlapping groups is all
possible subsets of {1, ..., d} of cardinality at most k. Finally,
we introduce the proximal operator (Parikh, Boyd et al. 2014)
below, that will be used in our algorithm:
Definition 2 (Proximal operator, (Parikh, Boyd et al. 2014)).
The proximal operator for a function h : Rd → R is defined
as:

proxh(z) = argmin
w

h(w) +
1

2
∥w − z∥22

A closed form for the proximal operator of the squared
k-support norm was first given in (Argyriou, Foygel, and
Srebro 2012), and more efficient computations have been
found e.g. in (McDonald, Pontil, and Stamos 2016b), which
we will use in IRKSN, as described in Appendix E.

The Algorithm
In this section, we describe the IRKSN (Iterative Regulariza-
tion with k-Support Norm) algorithm. It is based on the gen-
eral accelerated algorithm from (Matet et al. 2017), in which
we plug a regularization function based on the k-support
norm. More precisely, (Matet et al. 2017) describe a gen-
eral regularization algorithm for model recovery based on a
primal-dual method, and an early stopping rule. As they do,
we will solve the following problem approximately (i.e. with
early stopping):

(Iks) : min
w

R(w)

s.t. Xw = yδ

with a specific regularizer that we introduce: R(w) =

F (w) + α
2 ∥w∥2

2 with F (w) = 1−α
2 (∥w∥spk)2, for some

constant 1 > α > 0 which will be described later. The
algorithm that we will use to solve approximately (Iks) is
the Accelerated Dual Gradient Descent (ADGD) described
in (Matet et al. 2017), which is an accelerated version of
a primal-dual method that is known in the literature under
many names, and that comprises the following steps, with γ
being some learning rate, and v̂t being a dual variable:
primal projection step
ŵt ← proxα−1F (−α−1X⊤v̂t)
dual update step
v̂t+1 ← v̂t + γ(Xŵt − yδ)
The method above is most commonly known in the signal
processing and image denoising literature as Linearized Breg-
man Iterations, or Inverse Scale Space Methods (Cai, Osher,
and Shen 2009; Osher et al. 2016). In the optimization litera-
ture, it is mostly known as (Lazy) Mirror Descent (Bubeck
et al. 2015), also called Dual Averaging (Nesterov 2009; Xiao
2009). The main idea in (Matet et al. 2017) is to early stop
the algorithm at some iteration T , before convergence. We
present the full accelerated version, IRKSN, in Algorithm 1.

Main Results
In this section, we introduce the main result of our paper,
which gives specific conditions for robust recovery of w∗,
and early stopping bounds on ∥ŵt −w∗∥ for IRKSN.

Assumptions
We will present several sufficient conditions for recovery
with the k-support norm, which are similar to the sufficient
conditions needed for ℓ1-based recovery that we describe
in Assumption 5 (we will then elaborate on the differences
between such conditions). The first assumption below is a
variant of the usual feasibility assumption of the noiseless
problem (Foucart and Rauhut 2013): it simply states that w∗,
the true model that we wish to recover, is a feasible solution
of the noiseless problem, and that it is k-sparse. Additionally,
if several feasible solutions of same support than w∗ exist,
w∗ should be the smallest norm one (we will elaborate on
such condition in this section). Recall from the Introduction
that y is the true target vector, i.e. uncorrupted by noise.
Assumption 3. w∗ is k-sparse of support S ⊂ [d], and is a
solution of the system (L) : Xw = y. In addition, w∗ is the
smallest ℓ2 norm solution of (L) on its support, that is, w∗ is
such that:

w∗
S = arg min

z∈Rk:XSz=y
∥z∥2

We now provide our main assumption, which is intrinsi-
cally linked to the structure of the k-support norm, and which
is, up to our knowledge, the first condition of such kind in
the sparse recovery literature.
Assumption 4. w∗ verifies:

max
ℓ∈S̄
|⟨X†

Sxℓ,w
∗
S⟩| < min

j∈S
|⟨X†

Sxj ,w
∗
S⟩|

Up to our knowledge, we are the first to provide such
assumptions for recovery with a k-support norm based al-
gorithm: although (Chatterjee, Chen, and Banerjee 2014)
proposed a k-support norm based algorithm and correspond-
ing conditions for recovery, those conditions only apply in
the case of a design matrix X with values which are i.i.d.
samples from a Gaussian distribution.

Discussion on the Assumptions
In this section, we attempt to interpret the assumptions above
in simple terms, and to compare them to some similar suffi-
cient conditions for recovery with ℓ1 norm. More precisely,
the condition below implies Condition 4.3 from (Grasmair,
Scherzer, and Haltmeier 2011), which latter is shown in (Gras-
mair, Scherzer, and Haltmeier 2011) to be a necessary and
sufficient condition for achieving a linear rate of recovery
with ℓ1 norm Tikhonov regularization. We prove such impli-
cation in Appendix B.

Algorithm 1: IRKSN

Input: v̂0 = ẑ−1 = ẑ0 ∈ Rd, γ = α∥X∥−2, θ0 = 1
for t = 0 to T do
ŵt ← proxα−1F

(
−α−1XT ẑt

)
r̂t ← proxα−1F

(
−α−1XT v̂t

)
ẑt ← v̂t + γ

(
Xr̂t − yδ

)
θt+1 ←

(
1 +

√
1 + 4θ2t

)
/2

v̂t+1 = ẑt +
θt−1
θt+1

(ẑt − ẑt−1)

end for

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11734

Assumption 5 (Recovery with ℓ1 norm.). Let w∗ be sup-
ported on a support S ⊂ [d]. w∗ is such that:

(i) Xw∗ = y
(ii) XS is injective
(iii) maxℓ∈S̄ |⟨X

†
Sxℓ, sgn(w

∗
S)⟩| < 1

Below, we now compare this assumption to ours.
The min ℓ2 norm solution. In our Assumption 3, the min-

imum ℓ2 norm condition is actually not restrictive, compared
to Assumption 5: indeed, in Assumption 5 XS needs to be
injective, which implies that there needs to be only one so-
lution w∗

S on S such that XSw
∗
s = y: we can also work

in such situations, but we also include the additional cases
where there are several solutions on S (we just require that
w∗ is the minimum norm one) : XS does not need to be
injective in our case. Importantly we can deal with cases with
n < k, when Lasso (and ℓ1 iterative regularization methods)
cannot (that is, we can obtain recovery in a regime where
the number of samples n is even lower than the sparsity of
the signal k). Note that for the Lasso, the condition n ≥ k is
even necessary: indeed, when n < k, the Lasso is known to
saturate (Zou and Hastie 2005) and recovery is impossible: in-
terestingly, there is no such constraint when using a k-support
norm regularizer (similarly to recovery with ElasticNet).

Dependence on the sign. As we can observe, Assump-
tion 5 is verified or not based on sgn(w∗

S). This implies that
irrespective of the actual values of w∗, recovery will be pos-
sible or not only based on sgn(w∗

S). On the contrary, our
Assumption 4 depends on w∗ itself.

Case where XS is injective. In the case where XS is in-
jective (as will happen in most cases in practice when n > k,
i.e. unless there is some spurious exact linear dependence
between columns), it is even easier to compare Assumptions
4 and 5. Indeed, since in that case we have that XS is full
column rank, we then have : X†

SXS = Ik×k. Therefore, As-
sumption 4 can be rewritten into: maxℓ∈S̄ |⟨X

†
Sxℓ,w

∗
S⟩| <

minj∈S |w∗
i |, which is equivalent to:

max
ℓ∈S̄
|⟨X†

Sxℓ,
w∗

S

minj∈S |w∗
i |
⟩| < 1

Therefore, we can notice that if w∗
S = γ sgn(w∗

S) for some
γ > 0 (that is, each component of w∗

S have the same absolute
value), both Assumptions 4 and 5 become equivalent (because
then: w∗

S

minj∈S |w∗
i |

= sgn(w∗
S)). However, the two conditions

4 and 5 may differ depending on the relative magnitudes
of the entries in w∗

S . In particular, it may happen that our
Assumption 4 is verified even if the Assumption 5 is not
verified. We analyze such an example in Example 1.

Early Stopping Bound
We are now ready to state our main result:
Theorem 6 (Early Stopping Bound). Let δ ∈]0, 1] and
let (ŵt)t∈N be the sequence generated by IRKSN. Assum-
ing the design matrix X and the true sparse vector w∗ sat-
isfy Assumptions 3 and 4, and with α < η

∥w∥∞
with η :=

minj∈S |⟨(XSX
⊤
S)†y,xj⟩| − maxℓ∈S̄ |⟨(XSX

⊤
S)†y,xℓ⟩|,

we have for t ≥ 2:
∥ŵt −w∗∥2 ≤ atδ + bt−1

with a = 4∥X∥−1 and b =
2∥X∥∥(X⊤

S)†w∗
S∥

α

In particular (if δ > 0), with tδ = ⌈cδ−1/2⌉, for some c > 0:

∥ŵt −w∗∥2 ≤ (a(c+ 1) + bc−1)δ1/2

Proof. Proof in Appendix C.

Discussion. We can notice in Theorem 6 above that b is
large when α is small: therefore, if the inequality in 4 is very
tight, as a consequence, α will need to be taken small, and b
will become large. Therefore, we can say that the larger the
margin by which Assumption 4 is fulfilled is, the better the
retrieval of the true vector w∗ is (because the larger we can
choose α).

Illustrating Example
In this section, we describe a simple example that illustrates
the cases where ℓ1 norm-based regularization fails, and where
IRKSN will successfully recover the true vector.

Example 1. We consider a model that consists of three
“generating” variables X(0), X(1) and X(2), that are random
i.i.d. variables from standard Gaussian (we denote X(0) ∼
N (0, 1) and X(1) ∼ N (0, 1) and X(2) ∼ N (0, 1)). Two
other variables X(3) and X(4), are actually correlated with
the previous random variables: they are obtained noiselessly,
and linearly from those, with some vectors w(3) and w(4)

that will be defined below:

X(3) = w
(3)
0 X(0) + w

(3)
1 X(1) + w

(3)
2 X(2)

and

X(4) = w
(4)
0 X(0) + w

(4)
1 X(1) + w

(4)
2 X(2)

In addition, similarly, the actual observations Y are formed
noiselessly and linearly from (X(0), X(1), X(2)), for some
vector w(y):

Y = w
(y)
0 X(0) + w

(y)
1 X(1) + w

(y)
2 X(2)

A graphical visualization of this construction can be seen on
Figure 2. More precisely, we define the vectors w(3),w(4)

and w(y) are defined as follows:

w(3) =

9/11
6/11
2/11
0
0

 ,w(4) =

1/3
14/15
2/15
0
0

 ,w(y) =

1
1
−4
0
0

 .

We will generate such a dataset with n = 4: so the dataset will
be composed of 4 samples of X(0), X(1), X(2), X(3), X(4),
which form the matrix X ∈ R4,5, with X =
[x0,x1,x2,x3,x4] and 4 samples of Y , which form the
vector y ∈ R4. In our case, we have S = supp(w(y)) =
{0, 1, 2}, and therefore we just ensure that XS =
[x0,x1,x2] is full column rank (which should be the case
with overwhelming probability since those three first vectors
are sampled from a Gaussian, and since we have n = 4 >
k = 3). Our goal is to reconstruct the true linear model of Y ,
which is w(y) from the observation of X and y. We can eas-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11735

X(0)

X(1)

X(2)
X(3)

X(4)

Y

Figure 2: X(3), X(4) are correlated with X(0), X(1), X(2)

ily check mathematically (using the closed form from the first
column of Table 1), that this example only verifies our condi-
tion (Assumption 4), but that it does not verify Assumption 5
(i.e. it is in the blue area from Figure 1). Indeed, in that case,
XS is full column rank, which implies (XS)

†x3 = w(3)

and (XS)
†x4 = w(4) (Golub and Van Loan 2013). We then

have:

|⟨X†
Sx3, sgn(w

(y))⟩| = |⟨w(3), sgn(w(y))⟩| = 13/11 > 1

|⟨X†
Sx4, sgn(w

(y))⟩| = |⟨w(4), sgn(w(y))⟩| = 17/15 > 1

Therefore: maxℓ∈S̄ |⟨X
†
Sxℓ, sgn(w

∗
S)⟩| = 13

11 > 1 Which
means that Assumption 5 is not verified. However, on the
other hand, we have:

|⟨X†
Sx3,

w(y)

minj∈S |w(y)
i |
⟩| = |⟨w(3),

w(y)

minj∈S |w(y)
i |
⟩| = 7

11

|⟨X†
Sx4,

w(y)

minj∈S |w(y)
i |
⟩| = |⟨w(4),

w(y)

minj∈S |w(y)
i |
⟩| = 11

15

Therefore: maxℓ∈S̄ |⟨X
†
Sxℓ,

w(y)

minj∈S |w(y)
i |
⟩| = 11

15 < 1.

Therefore, from the Section Discussion on the Assumptions,
paragraph Case where XS is injective, we see that our As-
sumption 4 is verified here.

Comparison of the IRKSN path with Lasso. In Figure
3 below, we compare the Lasso path (that is, the solutions
found by Lasso for all values of the penalization λ), with the
IRKSN path (that is, the solutions found by IRKSN at every
timestep). For indicative purposes, we also provide the path
of the ElasticNet on the same problem in Appendix G.

Experiments
As we can see, the Lasso is unable to retrieve the true sparse
vector, for any λ. However IRKSN can successfully retrieve
it, which confirms the theory above.

In addition, this path from Figure 3 above illustrates well
the optimization dynamics of IRKSN: first, the true support
of w(y) is not identified in the first iterations. But after a
few iterations, we observe what we could call a phenomenon
of exchange of variable: w(y)

0 is exchanged with w
(y)
1 , and

later, w(y)
3 is exchanged with w

(y)
0 (by exchange, we mean

that at a timestep t, w(y)
0 (t) ̸= 0 but w(y)

1 (t) = 0, but at

(a) Lasso path (b) IRKSN path

Figure 3: Comparison of the path of IRKSN with Lasso. w(y)
i

is the i-th component of w(y), and λ is the penalty of the
Lasso. We recall w(y)

0 = w
(y)
1 = 1, w

(y)
2 = −4, w(y)

3 =

w
(y)
4 = 0: only IRKSN recovers the true w(y).

(a) Model error ∥ŵ −w(y)∥ (b) Model sparsity ∥ŵ∥0

Figure 4: Error and sparsity vs. number of iterations. Only
IRKSN can recover the true w(y) in this example.

timestep t+ 1: w(y)
0 (t+ 1) = 0 and w

(y)
1 (t+ 1) ≈ w

(y)
0 (t)).

This can be explained by the fact that when α is small, the
proximal operator of the k-support norm approaches the hard-
thresholding operator from (Blumensath and Davies 2009):
hence at a particular timestep the ordering (in absolute mag-
nitude) of the components of X⊤ẑt suddenly changes (with
the components where the change occurs having about the
same magnitude at the time of change, if the learning rate is
small), which results into such an observed change in primal
space. Additionally, in Figure 4, we run the iterative methods
from Table 1 (IRKSN, IRCR, IROSR and SRDI) (as well
as IHT for comparison) on Example 1, and measure the re-
covery error ∥ŵ −w(y)∥ as well as the sparsity ∥ŵ∥0 of the
iterates. As we can see, only IRKSN can achieve 0 error, that
is, full recovery in the noiseless setting. In addition, except
IHT (which however fails to approach the true solution), no
method is able to converge to a 3-sparse solution, which is
the true degree of sparsity of the solution.

Below we present experimental results to evaluate the
sparse recovery properties of IRKSN. Additional details on
those experiments as well as further experiments are provided
in the Appendix.

Experimental Setting. We consider a simple linear re-
gression setting with a correlated design matrix, i.e. where
the design matrix X is formed by n i.i.d. samples from d
(we take d = 50 here) correlated Gaussian random vari-
ables {X1, .., Xd} of zero mean and unit variance, such that:
∀i ∈ {1, . . . , d} : E[Xi] = 0,E[X2

i] = 1; and ∀(i, j) ∈

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11736

{1, . . . , d}2, i ̸= j : E[XiXj] = ρ|i−j|. More precisely, we
generate each feature Xi in an auto-regressive manner, from
previous features, using a correlation ρ ∈ [0, 1), in the fol-
lowing way: we have X1 ∼ N (0, 1) and σ2 = 1 − ρ2, and
for all j ∈ {2, ..., d}: Xj+1 = ρXj + ϵj where ϵj = σ ∗∆,
with ∆ ∼ N (0, 1). Additionally, w is supported on a support,
sampled uniformly at random, of k = 10 non-zero entries,
with each non-zero entry sampled from a normal distribution,
and y is obtained with a noise vector ϵ created from i.i.d.
samples from a normal distribution, rescaled to enforce a
given signal to noise ratio (SNR), as follows: y = Xw∗ + ϵ

with the signal to noise ratio defined as snr = ∥Xw∗∥
∥ϵ∥ . We

generate this dataset using the make correlated data
function from the benchopt package (Moreau et al. 2022).
Such a dataset is commonly used to evaluate sparse recovery
algorithms (see e.g. (Molinari et al. 2021)), since it possesses
correlated features, which is more challenging for sparse re-
covery (see e.g. the ElasticNet paper, which was motivated by
such correlated datasets (Zou and Hastie 2005)). In addition,
the advantage of such synthetic dataset is that the support
is known since it is generated, which therefore allows to
evaluate the performance of the algorithms on support recov-
ery, contrary to real-life datasets where a true sparse support
of w is hypothetical (or at least often unknown). Addition-
ally, we can notice that such dataset resembles our Example
1, as some features are generated from other features. We
evaluate the performance of each final recovered model w
using the F1 score on support recovery, defined as follows:
F1 = 2 PR

P+R , with P the precision and R the recall of sup-

port recovery, which are defined as: P = |supp(w∗)∩supp(w)|
|supp(w)|

and R = |supp(w∗)∩supp(w)|
|supp(w∗)| . Therefore, the F1 score allows to

evaluate at the same time how much of the predicted nonzero
elements are accurate, and how much of the actual support
has been found. A higher F1 score indicates better identifi-
cation of the true support. In each experiment (defined by
a particular value of n, ρ, snr and a given random seed for
generating X , w∗ and ϵ), and for each algorithm, we choose
the hyperparameters from a grid-search, to attain the best
F1-score (we give details on that grid in the Appendix). For
all algorithms which need to set a value k (IRKSN, KSN,
IHT), we set k to its true value k = 10. In a realistic use-case,
since the support is unknown, one may instead tune those
hyper-parameters based on a hold-out validation set predic-
tion mean squared error, but tuning those hyperparameters
directly for best support F1 score, as we do, allows to evaluate
the best potential support recovery capability of each algo-
rithm (e.g. for Lasso it informs us that there exist a certain
λ, such that we can achieve such a support recovery score).
Each experiment is regenerated 5 times with different random
seeds, and the average of the obtained best F1 scores, as well
as their standard deviation, are reported in Figures 5(a), 5(c),
and 5(b), for various values of the dataset parameters, while
the others are kept fixed. In Figure 5(a), we take ρ = 0.5,
snr = 1., and n ∈ {10, 30, 50, 70, 90}. In Figure 5(b), we
take ρ = 0.5, snr ∈ {0.1, 0.5, 1., 2., 3.}, and n = 30. In Fig-
ure 5(c), we take ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, snr = 1., and
n = 30. Additionally, we plot on Figure 5(d) the evolution

(a) F1-score vs. n (b) F1-score vs. snr

(c) F1-score vs. ρ (d) F1-score vs. t

Figure 5: F1-score of support recovery in various settings

of the F1 score along training for iterative algorithms (i.e.
algorithms where there is no grid search over a penalty λ,
which are IHT, IRKSN, IRCR, IROSR, SRDI), in the case
where n = 30, snr = 3, and ρ = 0.5.

Results. In all the experiments, as can be expected, we
observe that support recovery is more successful when the
signal to noise ratio is high, the number of samples is greater,
and the correlation ρ is smaller (for that latter point, this is
due to the fact that highly correlated datasets are harder for
sparse recovery, see e.g. (Zou and Hastie 2005) for a discus-
sion on the topic). But overall, we can observe that IRKSN
consistently achieves better support recovery than other algo-
rithms from Table 1. Also, we can observe on Figure 5(d) that
IHT and IRKSN maintain a good F1 score after many itera-
tions, while other methods implicitly enforcing an ℓ1 norm
regularization (IRCR, IROSR, SRDI) have poor F1 score in
late training.

Conclusion
In this paper, we introduced an iterative regularization method
based on the k-support norm regularization, IRKSN, to com-
plement usual methods based on the ℓ1 norm. In particular,
we gave some condition for sparse recovery with our method,
that we analyzed in details and compared to traditional con-
ditions for recovery with ℓ1 norm regularizers, through an
illustrative example. We then gave an early stopping bound
for sparse recovery with IRKSN with explicit constants in
terms of the design matrix and the true sparse vector. Finally,
we evaluated the applicability of IRKSN on several exper-
iments. In future works, it would be interesting to analyze
recovery with the s-support norm for general s, where s is not
necessarily equal to k: indeed, this setting would generalize
both our work and works based on the ℓ1 norm. We leave this
for future work.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11737

Acknowledgements
We would like to thank Velibor Bojković for fruiteful discus-
sions, as well as the anonymous reviewers for their useful
comments. Xiao-Tong Yuan is funded in part by the Na-
tional Key Research and Development Program of China
under Grant No. 2018AAA0100400, and in part by the
Natural Science Foundation of China (NSFC) under Grant
No.U21B2049 and No.61936005.

References
Argyriou, A.; Foygel, R.; and Srebro, N. 2012. Sparse pre-
diction with the k-support norm. Advances in Neural Infor-
mation Processing Systems, 25.
Belilovsky, E.; Gkirtzou, K.; Misyrlis, M.; Konova, A. B.;
Honorio, J.; Alia-Klein, N.; Goldstein, R. Z.; Samaras, D.;
and Blaschko, M. B. 2015. Predictive sparse modeling of
fMRI data for improved classification, regression, and visu-
alization using the k-support norm. Computerized Medical
Imaging and Graphics, 46: 40–46.
Bertrand, Q.; and Massias, M. 2021. Anderson accelera-
tion of coordinate descent. In International Conference on
Artificial Intelligence and Statistics, 1288–1296. PMLR.
Blumensath, T.; and Davies, M. E. 2009. Iterative hard thresh-
olding for compressed sensing. Applied and computational
harmonic analysis, 27(3): 265–274.
Bubeck, S.; et al. 2015. Convex optimization: Algorithms and
complexity. Foundations and Trends® in Machine Learning,
8(3-4): 231–357.
Cai, J.-F.; Osher, S.; and Shen, Z. 2009. Linearized Bregman
iterations for compressed sensing. Mathematics of computa-
tion, 78(267): 1515–1536.
Chatterjee, S.; Chen, S.; and Banerjee, A. 2014. Generalized
dantzig selector: Application to the k-support norm. Ad-
vances in Neural Information Processing Systems, 27.
Fang, H.; Fan, Z.; Sun, Y.; and Friedlander, M. 2020. Greed
meets sparsity: Understanding and improving greedy co-
ordinate descent for sparse optimization. In International
Conference on Artificial Intelligence and Statistics, 434–444.
PMLR.
Foucart, S.; and Rauhut, H. 2013. An invitation to compres-
sive sensing. In A mathematical introduction to compressive
sensing, 1–39. Springer.
Gkirtzou, K.; Honorio, J.; Samaras, D.; Goldstein, R.; and
Blaschko, M. B. 2013. fMRI analysis of cocaine addiction
using k-support sparsity. In 2013 IEEE 10th International
Symposium on Biomedical Imaging, 1078–1081. IEEE.
Golub, G. H.; and Van Loan, C. F. 2013. Matrix computations.
JHU press.
Golub, T. R.; Slonim, D. K.; Tamayo, P.; Huard, C.; Gaasen-
beek, M.; Mesirov, J. P.; Coller, H.; Loh, M. L.; Downing,
J. R.; Caligiuri, M. A.; et al. 1999. Molecular classifica-
tion of cancer: class discovery and class prediction by gene
expression monitoring. science, 286(5439): 531–537.

Grasmair, M.; Scherzer, O.; and Haltmeier, M. 2011. Nec-
essary and sufficient conditions for linear convergence of
ℓ1-regularization. Communications on Pure and Applied
Mathematics, 64(2): 161–182.
Jacob, L.; Obozinski, G.; and Vert, J.-P. 2009. Group lasso
with overlap and graph lasso. In Proceedings of the 26th
annual international conference on machine learning, 433–
440.
Jain, P.; Tewari, A.; and Kar, P. 2014. On Iterative Hard
Thresholding Methods for High-dimensional M-Estimation.
In Advances in Neural Information Processing Systems, vol-
ume 27.
Jia, J.; and Yu, B. 2010. On model selection consistency of
the elastic net when p ¿¿ n. Statistica Sinica, 595–611.
Lang, K. 1995. Newsweeder: Learning to filter netnews. In
Machine Learning Proceedings 1995, 331–339. Elsevier.
Matet, S.; Rosasco, L.; Villa, S.; and Vu, B. L. 2017. Don’t
relax: early stopping for convex regularization. arXiv preprint
arXiv:1707.05422.
McDonald, A.; Pontil, M.; and Stamos, D. 2016a. Fitting
spectral decay with the k-support norm. In Artificial Intelli-
gence and Statistics, 1061–1069. PMLR.
McDonald, A. M.; Pontil, M.; and Stamos, D. 2014. Spectral
k-support norm regularization. Advances in neural informa-
tion processing systems, 27.
McDonald, A. M.; Pontil, M.; and Stamos, D. 2016b. New
perspectives on k-support and cluster norms. The Journal of
Machine Learning Research, 17(1): 5376–5413.
Molinari, C.; Massias, M.; Rosasco, L.; and Villa, S. 2021.
Iterative regularization for convex regularizers. In Inter-
national conference on artificial intelligence and statistics,
1684–1692. PMLR.
Moreau, T.; Massias, M.; Gramfort, A.; Ablin, P.; Bannier,
P.-A.; Charlier, B.; Dagréou, M.; La Tour, T. D.; Durif, G.;
Dantas, C. F.; et al. 2022. Benchopt: Reproducible, efficient
and collaborative optimization benchmarks. In NeurIPS-36th
Conference on Neural Information Processing Systems.
Natarajan, B. K. 1995. Sparse approximate solutions to linear
systems. SIAM journal on computing, 24(2): 227–234.
Nesterov, Y. 2009. Primal-dual subgradient methods for
convex problems. Mathematical programming, 120(1): 221–
259.
Osher, S.; Ruan, F.; Xiong, J.; Yao, Y.; and Yin, W. 2016.
Sparse recovery via differential inclusions. Applied and
Computational Harmonic Analysis, 41(2): 436–469.
Parikh, N.; Boyd, S.; et al. 2014. Proximal algorithms. Foun-
dations and trends® in Optimization, 1(3): 127–239.
Tibshirani, R. 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1): 267–288.
Tropp, J. A.; and Gilbert, A. C. 2007. Signal recovery
from random measurements via orthogonal matching pur-
suit. IEEE Transactions on information theory, 53(12): 4655–
4666.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11738

Vaskevicius, T.; Kanade, V.; and Rebeschini, P. 2019. Im-
plicit regularization for optimal sparse recovery. Advances in
Neural Information Processing Systems, 32.
Wang, J.; Kwon, S.; Li, P.; and Shim, B. 2015. Recovery of
sparse signals via generalized orthogonal matching pursuit:
A new analysis. IEEE Transactions on Signal Processing,
64(4): 1076–1089.
Wright, J.; and Ma, Y. 2022. High-Dimensional Data Analy-
sis with Low-Dimensional Models: Principles, Computation,
and Applications. Cambridge University Press.
Xiao, L. 2009. Dual Averaging Method for Regularized
Stochastic Learning and Online Optimization. In Advances
in Neural Information Processing Systems, volume 22.
Zhao, P.; Yang, Y.; and He, Q.-C. 2022. High-dimensional
linear regression via implicit regularization. Biometrika.
Zou, H.; and Hastie, T. 2005. Regularization and variable
selection via the elastic net. Journal of the royal statistical
society: series B (statistical methodology), 67(2): 301–320.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11739

