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Abstract

Offline-to-online reinforcement learning (RL) provides a
promising solution to improving suboptimal offline pre-
trained policies through online fine-tuning. However, one ef-
ficient method, unconstrained fine-tuning, often suffers from
severe policy collapse due to excessive distribution shift. To
ensure stability, existing methods retain offline constraints
and employ additional techniques during fine-tuning, which
hurts efficiency. In this work, we introduce a novel perspec-
tive: eliminating the policy collapse without imposing con-
straints. We observe that such policy collapse arises from the
mismatch between unconstrained fine-tuning and the conven-
tional RL training framework. To this end, we propose Stabi-
lized Unconstrained Fine-tuning (SUF), a streamlined frame-
work that benefits from the efficiency of unconstrained fine-
tuning while ensuring stability by modifying the Update-To-
Data ratio. With just a few lines of code adjustments, SUF
demonstrates remarkable adaptability to diverse backbones
and superior performance over state-of-the-art baselines.

Introduction

Reinforcement learning (RL) has demonstrated great suc-
cess across various tasks, including board games (Silver
et al. 2017) and video games (Mnih et al. 2015). How-
ever, online RL demands extensive environmental interac-
tions initialized from a random policy (Sutton and Barto
2018), which may be impractical in realistic scenarios for
expense or safety concerns (Nair et al. 2020; Zheng et al.
2023; Zhang, Xu, and Yu 2022). Offline RL provides a
practical solution by learning from a pre-collected dataset
(Levine et al. 2020). However, the performance of offline
policy is heavily limited by the quality and state-action space
coverage of the dataset (Jin, Yang, and Wang 2021). Recent
studies (Zheng et al. 2023; Zhang, Xu, and Yu 2022) investi-
gate offline-to-online RL as a promising solution to improv-
ing suboptimal offline policies through online fine-tuning.
Unfortunately, ensuring both efficient and stable fine-
tuning remains a main challenge in offline-to-online RL,
which can be attributed to the inherent conflict between ex-
ploring for improvements and exploiting for maintaining the
learned behaviors (Mark et al. 2022; Guo et al. 2023). In
this paper, we term this challenge as the efficiency-stability
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dilemma in offline-to-online RL. The optimal fine-tuning ap-
proach is to remove offline constraints in the online phase
(Wu et al. 2022a), thereby facilitating the exploration and
promoting efficient improvements. However, previous stud-
ies (Nair et al. 2020; Zhang, Xu, and Yu 2022) have observed
severe policy collapse at the initial stage of unconstrained
fine-tuning, which is usually unacceptable in practice (Bee-
son and Montana 2022). As even short-lived policy collapse
can lead to immature or dangerous actions, resulting in irre-
versible damage to the environment or the agent. To the best
of our knowledge, the problem of policy collapse during un-
constrained fine-tuning has not been well addressed.

To skirt around such policy collapse, previous methods
retain part (Zheng et al. 2023; Guo et al. 2023; Beeson
and Montana 2022) or whole (Mark et al. 2022) of offline
constraints, carefully adjust constraint strength for different
tasks (Zhao et al. 2022) or introduce alternative constraints
(Luo et al. 2022; Li et al. 2023). However, existing con-
straints hinder the exploration of the environment and the ef-
ficiency of fine-tuning. Simultaneously, many complex tech-
niques have been imposed in offline-to-online RL, includ-
ing density estimation network (Lee et al. 2022; Guo et al.
2023), ensembled networks (Mark et al. 2022; Zheng et al.
2023; Zhao et al. 2022), and model-based method (Mao et al.
2022), resulting in increased complexity and limited adapt-
ability.

In this work, we introduce a novel perspective to circum-
vent the efficiency-stability dilemma: eliminating policy col-
lapse without imposing constraints. We note that such policy
collapse arises from the mismatch between unconstrained
fine-tuning and conventional RL training framework. Typ-
ically, the update-to-data (UTD) ratio (the number of pa-
rameter updates per environment step) is set to 1 for both
the value network (critic) and policy network (actor). How-
ever, the exploratory unconstrained objective leads to signif-
icant distribution shift, which exceeds the ability of value fit-
ting, resulting in excessive value bias on out-of-distribution
(OOD) data. Simultaneously, such frequent policy updates
exacerbate the risk of policy being misguided. To this end,
we introduce an effective framework for unconstrained fine-
tuning, which involves increasing the Critic UTD to expe-
dite the fitting of the value network and decreasing the Ac-
tor UTD to improve the accuracy of policy updates. How-
ever, previous studies (Chen et al. 2020; Li et al. 2022) in
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online RL have observed that increased UTD can lead to
inferior performance. Despite (Chen et al. 2020; Wu et al.
2022b) address this problem by employing ensembled net-
works, which in turn introduces increased parameters and
complexity. Fortunately, we observe that in offline-to-online
RL, the accessible dataset and the pre-trained policy ini-
tialization enable agents to benefit from high UTD learning
without employing ensemble. Consequently, we exclude en-
semble from our framework to reduce complexity.
Our contributions can be summarized as follows:

* We introduce a novel perspective to tackle the efficiency-
stability dilemma in offline-to-online RL: eliminating the
policy collapse without imposing any constraints.

We point out that the conventional RL training frame-
work is inapplicable in unconstrained offline-to-online
RL. As a solution, we propose Stabilized Unconstrained
Fine-tuning (SUF) framework, which effectively ensures
stability during unconstrained fine-tuning.

SUF can be easily implemented and widely adapted to di-
verse offline RL backbones. Experimental results demon-
strate its superiority over state-of-the-art (SOTA) base-
lines across various environments and datasets.

Related Work
Offline-to-Online RL

Offline-to-online RL aims to improve suboptimal offline
policies through online fine-tuning. Many previous studies
(Lee et al. 2022; Mark et al. 2022; Beeson and Montana
2022; Zhao et al. 2022; Nakamoto et al. 2023; Yu and Zhang
2023) focus on fine-tuning based on specific offline RL
backbones. However, practical scenarios may involve agents
pre-trained by various offline RL algorithms, highlighting
the necessity for developing a generic offline-to-online RL
framework. Recent studies place a growing emphasis on
adaptability. PEX (Zhang, Xu, and Yu 2022) freezes the pre-
trained policy and initializes a random policy to enhance
exploration. PROTO (Li et al. 2023) gradually evolves the
regularization term to relax the constraint strength. From a
data-centric perspective, APL (Zheng et al. 2023) and SUNE
(Guo et al. 2023) impose constraints exclusively on data
from offline datasets and data with high uncertainty, respec-
tively. In contrast, SUF operates without imposing any con-
straints, thereby ensuring efficient fine-tuning.

UTD in RL

In online RL, recent studies focus on the utilization method-
ology of UTD, driven by its potential for improved effi-
ciency. REDQ (Chen et al. 2020) and its variant (Wu et al.
2022b) employ ensembled value networks to mitigate the
value bias caused by increased UTD. (Dorka, Welschehold,
and Burgard 2023) addresses model overfitting by employ-
ing dynamic UTD. (Li et al. 2022) investigates the factors
contributing to inferior performance in high UTD learning.
However, in offline-to-online RL, previous studies (Zhao
et al. 2022; Mark et al. 2022; Zheng et al. 2023) primarily
introduce powerful online backbones (e.g., REDQ) to con-
strained fine-tuning. In contrast, SUF modifies UTD to ad-
dress policy collapse during unconstrained fine-tuning. We
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further supplement the studies of UTD under the setting of
offline-to-online RL and reasonably exclude ensemble from
our framework, effectively reducing the complexity.

Preliminaries and Background
Problem Definition

We follow the standard RL paradigm, which can be mod-
eled as a Markov decision process (MDP) (S, A, P,r,7),
with state space S, action space A, state transition func-
tion P(s’|s, a), reward function (s, a) and discount factor

€ [0,1). The objective of RL is to find a policy m(als)
that maximizes the discounted return R = Y2 ~'r(s, a).
The state-action value function Q(s,a) = E;[R|s, a] rep-
resents the expected discounted return after performing the
action a in state s and following the policy 7.

Off-Policy RL

We mainly focus on off-policy RL methods (Fujimoto,
Hoof, and Meger 2018; Haarnoja et al. 2018) for online fine-
tuning, because of their efficient exploitation of historical
data from replay buffer 5. Off-policy RL methods typically
employ temporal difference learning to iteratively update the
value network Q¢ (s, a) (i.e., critic, parameterized by ), and
improve the policy network 74(als) (i.e., actor, parameter-
ized by ¢) through value maximization:

Q9(57 a) = ’I"(S, a) + WES’NP,a’~w¢(-|s’) [Q@ (Slvalﬂ 5 (1)
(2)

With access to the environment, off-policy RL meth-
ods typically prioritize optimistic exploration of the envi-
ronment instead of imposing conservative constraints on
the agent. For example, TD3 (Fujimoto, Hoof, and Meger
2018) uses random noise to augment the output actions, and
SAC (Haarnoja et al. 2018) introduces an additional maxi-
mum entropy objective to enhance exploration further. How-
ever, online RL demands extensive environmental interac-
tions initialized from a random policy, posing challenges in
many realistic scenarios (Nair et al. 2020; Zheng et al. 2023;
Zhang, Xu, and Yu 2022).

mg'XESNB,aNﬂ¢('|S) [Q9 (S, a’)] .

Offline RL

Offline RL aims to learn policy from a fixed dataset D with-
out environmental interactions. To mitigate the well-known
extrapolation error in value networks for OOD actions (Fu-
jimoto, Meger, and Precup 2019; Kumar et al. 2020), of-
fline RL methods typically constrain the policy to perform
actions close to the dataset through policy constraint (Fuji-
moto, Meger, and Precup 2019; Kumar et al. 2019; Fujimoto
and Gu 2021), value regularization (Kumar et al. 2020; An
etal. 2021), in-sample learning (Kostrikov, Nair, and Levine
2021; Garg et al. 2022; Xiao et al. 2022), etc. As discussed
in (Guo et al. 2023), most model-free offline RL methods
can be briefly summarized by introducing an additional reg-
ularizer R, to the online RL objective:

L7ofﬁine = L7online + )\Rreg>

where )\ is a trade-off coefficient.

3)
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Method

In this section, we first analyze the efficiency-stability
dilemma in offline-to-online RL and the reasons behind pol-
icy collapse during unconstrained fine-tuning. Then, we ex-
plain our motivation for tackling these problems. Further, we
supplement the studies of UTD under the setting of offline-
to-online RL. Finally, we present our SUF framework and
the detailed algorithm for its implementation.

Efficiency-Stability Dilemma in Offline-to-Online
RL

Offline RL prioritizes the effective exploitation of existing
datasets, while online RL prioritizes the efficient exploration
of new actions. This indicates the inherent challenge that
offline-to-online RL. demands a proper bridge between the
conflicting objectives of offline pre-training and online fine-
tuning.

To illustrate this challenge, we investigate two typical
methods in offline-to-online RL: constrained fine-tuning and
unconstrained fine-tuning. Specifically, we perform 1 mil-
lion pre-training steps on walker2d-medium using IQL
(Kostrikov, Nair, and Levine 2021), an advanced offline RL
method. In the online phase, we use IQL for constrained
fine-tuning and SAC for unconstrained fine-tuning, respec-
tively. Figure 1(a-b) presents the learning curves of nor-
malized return and the density histogram of action dis-
tance at 50000 steps for each method. The action distance
E(s,a)~D,a~ms(|s) @ — al|3] illustrates the offset between
the policy-induced data distribution and the dataset.

As shown in Figure 1(a-b), the constrained method re-
stricts the policy to perform actions close to the dataset,
which limits the exploration of new actions and leads to
stable yet inefficient improvements. In contrast, the uncon-
strained objective encourages policy to explore a broader
action space outside the dataset, leading to efficient im-
provements yet severe policy collapse at the initial fine-
tuning stage. In this paper, we term this phenomenon as the
efficiency-stability dilemma in offline-to-online RL.

To skirt around such policy collapse, previous methods
retain constraints and introduce complex techniques, result-
ing in inefficiency and complexity. A natural question thus
arises: Can policy collapse be eliminated without imposing
any constraints? It motivates us to develop a stabilized un-
constrained fine-tuning framework, thereby circumventing
this dilemma.

Eliminating Policy Collapse without Imposing
Constraints

To investigate the underlying reasons behind policy collapse
during unconstrained fine-tuning, we evaluate the qual-
ity of value estimates on data newly collected in the on-
line phase. Specifically, we randomly sample 1000 state-
action pairs from online replay buffer B every 5000 en-
vironment steps. For each pair, we obtain the value esti-
mate (Qp through the value network and the true value R
through the Monte Carlo method. Then we compute the nor-
malized bias |(Qq(s,a) — R(s,a)) /E(s.q)~5 [R(s, a)]| be-
tween them. Following (Chen et al. 2020), we present the av-
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Figure 1: Metrics for unconstrained fine-tuning (denoted as
Uncons) and constrained fine-tuning (denoted as Cons) in
walker2d-medium. (a) Learning curves of normalized
return. (b) Density histograms of distance between actions
from the policy and actions from the dataset. (c-d) Average
and standard deviation of normalized bias in value estimates.

erage normalized bias (ANB) in Figure 1(c) and the standard
deviation of normalized bias (SNB) in Figure 1(d). Among
them, SNB quantifies the uniformity of bias across various
state-action pairs. As discussed in (Chen et al. 2020), non-
uniform bias can severely impair policy learning by signifi-
cantly changing the action selection.

Regarding the unconstrained method, Figure 1(b) has il-
lustrated its distribution shift between the policy-induced
data and the offline dataset. However, the pre-trained value
network struggles to promptly provide accurate estimates for
such OOD data, resulting in excessive ANB and SNB at the
initial fine-tuning stage, as shown in Figure 1(c-d). Further,
the value bias propagates across a broader state-action space
due to bootstrapping and the generalization of neural net-
works, which severely misguides the policy and undermines
the learned behavior. In turn, the deterioration of policy ex-
acerbates the distribution shift, generating a vicious circle.
Encouragingly, this circle is surmountable. Figure 1 demon-
strates that the increasing accuracy of value estimates in
the unconstrained method enables more effective policy im-
provements than the constrained method. Briefly, we can at-
tribute the policy collapse during unconstrained fine-tuning
to the following two sequential problems:

* Problem 1: Value network underfitting on OOD data,
leading to estimation bias.

* Problem 2: Policy misguidance from value bias.

We note that these problems arise from the conventional
RL training framework, where the value network and pol-
icy network are updated once per environment step (i.e.,
both Critic UTD and Actor UTD are set to 1). Due to
the abrupt and significant distribution shift in unconstrained
fine-tuning, this setting will severely hinder the fitting of
value networks on OOD data, lead to excessive value bias,
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Figure 2: (a) Learning curves of normalized return, (b)
ANB, and (c) SNB in Ant. +Data denotes access to
ant-random dataset. +Init denotes initialization with
IQL agent pre-trained on ant —medium dataset.

and exacerbate the risk of policy being misguided. Based on
these insights, we propose a unified framework for uncon-
strained fine-tuning, involving the following solutions:

¢ Solution 1: Increase the Critic UTD to expedite the fit-
ting of the value network, addressing Problem 1.

* Solution 2: Decrease the Actor UTD to improve the ac-
curacy of policy updates, addressing Problem 2.

Note that the complete solution of Problem 1 inherently
solves Problem 2. However, our experiments in Hyperpa-
rameter Analysis indicate the challenge of further mitigating
policy collapse by solely increasing the Critic UTD. In such
instances, decreasing the Actor UTD proves a more effective
solution. In Ablation Study, we will verify and explain the
effectiveness of Solution 1 and Solution 2, respectively.

Rethinking the Necessity of Ensemble

In Solution 1, we increase the Critic UTD to address Prob-
lem 1. However, previous studies (Chen et al. 2020; Li et al.
2022) have observed that directly increasing UTD in online
RL can severely impair the value estimates on some tasks.
To verify this issue, we present the ANB and SNB of vanilla
SAC and its variants in Figure 2(b-c), computed in the same
way as the results in Figure 1(c-d). As expected, with a Critic
UTD of 20, SAC-20 exhibits significant value bias, result-
ing in inferior performance compared with the vanilla SAC.
Despite REDQ (Chen et al. 2020) mitigates this value bias
by employing 10 ensembled value networks, which in turn
introduces increased parameters and complexity. We note
that the settings of offline-to-online RL differ from online
RL, particularly in terms of:

¢ Access to the offline dataset.
* Initialization through a pre-trained agent.

Such properties of offline-to-online RL prompt us to re-
think the necessity of ensemble in our framework. To this
end, we investigate their impacts on high UTD learning, re-
spectively.

Impact of Offline Data We allow SAC-20 to access the
offline dataset. Herein, we use the random dataset (about
1 million in size) to isolate the impact of data quality. As
shown in Figure 2, SAC-20+Dat a effectively mitigates the
value bias observed in SAC-20, leading to relatively supe-
rior performance.
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Impact of Offline Inmitialization Further, we initialize
SAC-20 through an agent pre-trained on medium dataset
for 1 million steps using IQL, denoted as SAC-20+Init.
Herein, we disabled its access to the dataset to iso-
late the impact of offline data. Figure 2 demonstrates
that SAC-20+Init exhibits lower bias and outperforms
SAC-20 significantly. Remarkably, the combination of of-
fline data and offline initialization SAC-20+Init+Data
exhibits the lowest bias and the best performance.

The aforementioned experiments demonstrate that the in-
creased data or improved policy initialization can mitigate
the value bias in high UTD learning. Herein, we offer possi-
ble explanations for such observations.

Online RL necessitates data collection from scratch. As
discussed in previous studies (Nikishin et al. 2022; Li et al.
2022; D’Oro et al. 2022), performing large updates on the
limited low-quality data severely impairs the value esti-
mates, which is termed as primacy bias (Nikishin et al.
2022) or statistical overfitting (Li et al. 2022) in online
RL. In contrast, offline-to-online RL harnesses broader data
from datasets, thereby facilitating a smoother fitting of the
value network. Simultaneously, the initialization through a
pre-trained policy generates higher quality data at the ini-
tial training stage. These properties effectively mitigate the
value bias in online RL, enabling agents to benefit from
high UTD learning without employing ensemble. The aim of
this work is to offer a streamlined framework for offline-to-
online RL, thus we exclude ensemble to reduce complexity,
Nonetheless, the practical implementation allows the combi-
nation of our framework with various techniques, including
ensemble, to further improve the performance.

We believe the significance of investigating the properties
of UTD in offline-to-online RL and simplifying our frame-
work accordingly, which have been largely overlooked in
previous studies (Zhao et al. 2022; Mark et al. 2022; Zheng
et al. 2023). In the next section, we will demonstrate the su-
periority of the proposed framework over constrained meth-
ods with ensemble.

SUF Framework for Offline-to-Online RL

We name our framework as Stabilized Unconstrained Fine-
tuning (SUF) and summarize it in Algorithm 1. SUF entails
(1) removing the offline constraints before transitioning to
the online phase and (2) modifying the default UTD of ac-
tor and critic. These can be easily implemented by making
minor code adjustments to the original algorithm, which are
underlined in Algorithm 1. Note that SUF does not change
the existing pre-training process, enabling seamless integra-
tion with diverse offline RL backbones.

Experiments

In this section, we conduct experiments to answer the fol-
lowing questions: (1) Can SUF stabilize unconstrained fine-
tuning by eliminating policy collapse? (2) Can SUF outper-
form SOTA baselines when combined with diverse offline
RL backbones, including IQL, TD3-BC, and CQL? (3) What
are the contributions of each component in SUF? (4) What
are the impacts of different hyperparameters on SUF?
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Algorithm 1: SUF pseudo-code

Input: Offline RL algorithm Fgqine, offline dataset D, pre-
trained value network @)y, pre-trained policy network 7y,
total fine-tuning steps 7', Critic UTD G, Actor UTD G,.
Initialize: Remove the constraints of Fysine, named Fonjine-
Initialize online replay buffer 5 < &.

1: fort =0to T do

2 a~mw(|s),s ~P(ls,a)

3 B+ BU{(s,a,r(s,a),s)}

4 for G, updates do

5 Sample a mini-batch B from D U B

6: Update Qg using B according to Fopjine
7:  end for

8: ift mod (1/G,) == 0 then

9 Update 7 using B according to Fonline
10 end if
11: end for

Experimental Setup

Tasks We consider all MuJoCo (Todorov, Erez, and Tassa
2012) environments from the public D4RL (Fu et al. 2020)
benchmark: Halfcheetah, Hopper, Walker2d, and
Ant. To investigate effective improvements for various sub-
optimal policies, we use three suboptimal dataset types:
random, medium, and medium-replay with the latest
v2 version, following the compared baselines (Zhang, Xu,
and Yu 2022; Li et al. 2023; Guo et al. 2023).

Baselines We compare SUF with the latest generic frame-
works in offline-to-online RL: (1) PEX (Zhang, Xu, and
Yu 2022) freezes the pre-training policy and introduces pol-
icy expansion to enhance exploration. (2) PROTO (Li et al.
2023) gradually evolves the regularization term to relax the
constraint strength. (3) APL (Zheng et al. 2023) leverages
the distinct advantages of offline and online data for adaptive
constraints. (4) SUNG (Guo et al. 2023) controls constraints
based on the uncertainty of data quantified by a VAE density
estimator.

Offline RL Backbones To demonstrate the adaptability of
SUF, we instantiate it on diverse offline RL backbones, in-
cluding (1) IQL (Kostrikov, Nair, and Levine 2021): an in-
sample learning-based method, (2) TD3-BC (Fujimoto and
Gu 2021): a policy constraint-based method, and (3) CQL
(Kumar et al. 2020): a value regularization-based method.

Settings We compare SUF-IQL with PEX and PROTO, as
they are built upon IQL and an enhanced version of IQL
(Garg et al. 2022), respectively. PEX and PROTO are im-
plemented on the author-provided codes without additional
hyperparameter adjustments. For IQL-based methods, we
perform 1 million update steps for offline pre-training and
then 0.3 million environment steps for online fine-tuning.
We compare SUF-TD3-BC and SUF-CQL with APL and
SUNE, as they are built upon both TD3-BC and CQL. Since
APL and SUNE have not been open-sourced until now, we
directly use their final returns reported in (Guo et al. 2023).
For SUF-TD3-BC and SUF-CQL, we perform 1 million pre-
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Figure 3: (a) Aggregated learning curves of interquartile
mean (IQM) normalized return and (b) aggregated met-
rics over 5 seeds on 12 MulJoCo tasks from D4RL, with
pointwise 95% stratified bootstrap confidence intervals, fol-
lowing the method by (Agarwal et al. 2021). Dashed line
IQL-0Offline shows the initial pre-training performance.

training steps and 0.1 million fine-tuning steps to ensure
consistency with the reported returns in (Guo et al. 2023).

Performance Comparison

We present the aggregated performance for all 12 tasks in
Figures 3, and the final return on different backbones in Ta-
ble 1. Moreover, we present the results at 1 million steps
to evaluate the asymptotic performance in Table 2. The re-
turn values have been normalized following (Fu et al. 2020),
where 0 and 100 represent the performances of random and
expert policy, respectively. All learning curves for each task
are provided in Supplementary Material.

For IQL-based methods, all baselines improve the initial
pre-trained performance to some extent, as shown in Fig-
ure 3(a). Among them, retaining the same offline constraints,
IQL exhibits inefficient improvement. PEX enhances explo-
ration by initializing a random policy, resulting in higher
final performance but lower initial performance than IQL.
PROTO gradually relaxes the constraint strength through
iterative policy regularization, leading to relatively effec-
tive improvement. In contrast, in a completely unconstrained
way, SUF significantly outperforms the competitive base-
lines in efficiency. Simultaneously, SUF eliminates policy
collapse during unconstrained fine-tuning, ensuring stable
improvement. Figure 3(b) and Table 2 highlight SUF’s su-
periority across various statistical metrics and in asymptotic
performance, respectively.

Further, Table 1 demonstrates SUF’s adaptability. When
combined with different offline RL backbones, SUF con-
sistently outperforms SOTA baselines. Note that APL and
SUNE introduce complex techniques to constrained fine-
tuning, resulting in increased parameters and complexity.
Specifically, APL pre-trains 5 ensembled value networks
and then fine-tunes them in the online phase, and SUNE
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Tasks IQL-based (0.3 million) TD3-BC-based (0.1 million) CQL-based (0.1 million)
PEX PROTO SUF APL SUNE SUF APL SUNE SUF
halfcheetah-r 60+7 8944 90+2 70+5 772 59+7 68+10 6919 70+4
halfcheetah-m 70+4 90+3 97+2 81+2 81+3 81+4 45439 80+1 78+t1
halfcheetah-mr 54+1 7613 8542 7241 7043 7413 79+1 7642 7443
hopper-r 25+13 44425 105+3 27+14  39+15  90+19 | 42422 44412  100+3
hopper-m 96+7 80135 109+2 7724 10246  105+2 10343  104+1 87+18
hopper-mr 96+12 85+19 110+2 | 10110 101+£7 106+£2 | 97410 10249  104+6
walker2d-r 12+2 23+13 77+5 1444 1445  66+24 6+2 15+6 41+18
walker2d-m 89+19 77+33 123+2 98+14  114+2 11143 75+26  86+13 115414
walker2d-mr 88+12 107+6 117+4 108+4  109+2 107+2 | 103£19 108+4  113+3
ant-r 80423 93+19  116+19 - - 85+2 - - 5848
ant-m 105414 146+3 156+1 - - 13748 - - 14243
ant-mr 105413 14444 151+1 - - 13547 - - 1361
Total 880 1054 1336 648 707 799 618 684 782

Table 1: Comparison of the average normalized return of each method based on different offline RL backbones. + cap-
tures the standard deviation over 5 seeds. The highest-performing returns are in bold. r = random, m = medium, mr =
medium-replay. Note that APL and SUNE do not report their performance for ant, thus we excluded these three tasks
from the computation for the total return of SUF-TD3-BC and SUF-CQL.
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Environment Steps (1e6) Environment Steps (1e6)

Figure 4: The impact of unconstrained fine-tuning on SUF
in walker2d-medium (left) and ant-medium (right).
Cons denotes constrained fine-tuning (i.e., vanilla IQL).

trains an additional VAE density estimator. In contrast, SUF
neither changes the existing pre-training process nor intro-
duces extra training components. Our results indicate the un-
necessity of many complex techniques employed in offline-
to-online RL.

Ablation Study

In this subsection, we investigate the contributions of each
component in SUF: Unconstrained fine-tuning (denoted as
Uncons), modified Critic UTD (denoted as GG, set to 20)
and Actor UTD (denoted as G, set to 1/4). To this end,
we evaluate SUF-IQL and its variants on two typical tasks:
walker2d-mediumand ant —-medium.
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to right, we present the learning curves of normalized re-
turn, ANB, and SNB on walker2d-medium (top) and
ant-medium (bottom).

Unconstrained Fine-Tuning Figure 4 demonstrates the
criticality of unconstrained fine-tuning in SUF. Due to the
restricted exploration depicted in Figure 1(b), constrained
method exhibits limited efficiency during fine-tuning, even
with the same modifications to G. and GG, as in SUF. Note
that SUF is designed for stabilizing unconstrained fine-
tuning, rendering the modifications of G, and GG, ineffec-
tive in constrained method. However, despite enabling ef-
fective improvement, unconstrained fine-tuning still suffers
from severe policy collapse at the initial stage if G. and G,
are not appropriately modified.

Modifications of UTD To illustrate how SUF mitigates
policy collapse while improving efficiency, we present the
ANB and SNB in Figure 5, computed in the same way as the
results in Figure 1(c-d). Under the premise of unconstrained
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Figure 6: Heat maps depicting the final return (left) and
NCD (right) across different values of Critic UTD G,
and Actor UTD G, on walker2d-medium (top) and
ant-medium (bottom). Lower NCD is better.

fine-tuning, the conventional UTD settings (G, = G, = 1)
severely hinder the fitting of value networks on OOD data,
resulting in excessive value bias. Figure 5 demonstrates that
both increasing GG, and decreasing GG, eliminate the policy
collapse to some extent. Specifically, increasing G expe-
dites the fitting of the value network, leading to reduced
value bias on OOD data and improved efficiency. Decreas-
ing GG, improves the accuracy of policy updates and signifi-
cantly reduces the SNB of the value network.

Ultimately, the synergistic integration of unconstrained
fine-tuning and UTD modifications enables SUF to al-
most eliminate the policy collapse completely during uncon-
strained fine-tuning, ensuring both efficiency and stability.

Hyperparameter Analysis

In this subsection, we analyze the impact of hyperparameters
in SUF on the efficiency and stability of fine-tuning. SUF
introduces two hyperparameters: Critic UTD G, and Actor
UTD G, . To quantify the degree of policy collapse, we de-
fine the Normalized Cumulative Performance Drop (NCD)

as:

1 T

T+1 Pt

R(0) — R(t)

I(R(0) > R(t)) RO

“

where R(-) is a function representing the performance of
policy across environment steps ¢. R(0) represents the ini-
tial pre-training performance. 7' is the total fine-tuning steps.
I(+) is an indicator function, which takes the value 1 when
the condition is satisfied and O otherwise.

We visualize the heat maps of the final return and NCD
across different values of G, and G, which reflect the ef-
ficiency and stability of fine-tuning, respectively. As shown
in Figure 6, increasing G, proves efficient and stable, but
too high G, brings little gain. Decreasing G, reduces NCD
significantly, but too low GG, may hurt efficiency. In practice,
we recommend setting G and G, based on specific scenario
requirements. For example, selecting a relatively low G, for
stability-focused tasks and avoiding setting GG, too low for
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Aggregated Performance
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Figure 7: Aggregated performance over all 12 tasks with dif-
ferent sampling ratios of offline data. p=0 denotes no access
to offline datasets.

efficiency-focused tasks. In this work, we consistently set
G. =20 and G. = 1/4 across diverse backbones, environ-
ments, and datasets throughout fine-tuning for simplicity.

Sensitivity Analysis

In this subsection, we investigate how the sampling ratio of
offline data (denoted as p) affects SUF. During online fine-
tuning, data for parameter updating are sampled from the of-
fline dataset D following a Bernoulli distribution with prob-
ability p, and sampled from the online replay buffer B with
probability 1 — p.

Figure 7 demonstrates the robustness of SUF across a
wide range of p, even in the absence of offline data (p=0).
The success of SUF highlights the importance of accurate
value estimates on OOD data generated during the online
phase. However, higher p (e.g., 0.7) leads to increased up-
dates on data from offline datasets, resulting in relatively in-
ferior performance. In this work, we set p = 0.5 to maintain
consistency with the compared baselines (Zhang, Xu, and
Yu 2022; Li et al. 2023; Zheng et al. 2023).

Conclusion and Future Work

In this paper, we circumvent the efficiency-stability dilemma
in offline-to-online RL through a novel perspective: elimi-
nating the policy collapse without imposing constraints. We
point to the mismatch between unconstrained fine-tuning
and conventional RL training framework as the culprit for
such policy collapse. To this end, we propose SUF, a stream-
lined framework for unconstrained fine-tuning that ensures
both efficiency and stability. We conduct comprehensive ex-
periments and ablation studies, demonstrating the remark-
able adaptability and superior performance of SUF.

However, for simplicity, we maintain the same UTD con-
figuration for SUF across various environments and datasets,
which may not be optimal. In addition, considering that pol-
icy collapse typically arises at the initial stage of uncon-
strained fine-tuning, employing dynamic UTD (e.g., anneal-
ing) appears to be more reasonable. In the future, a promis-
ing and interesting solution is to explore an adaptive UTD
framework for both actor and critic, based on the properties
of distinct offline datasets and pre-trained policies.
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