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Abstract

Partial multi-view clustering is a challenging and practical re-
search problem for data analysis in real-world applications,
due to the potential data missing issue in different views.
However, most existing methods have not fully explored the
correlation information among various incomplete views. In
addition, these existing clustering methods always ignore dis-
covering discriminative features inside the data itself in this
unsupervised task. To tackle these challenges, we propose
Partial Multi-View Clustering via Self-Supervised Network
(PVC-SSN) in this paper. Specifically, we employ contrastive
learning to obtain a more discriminative and consistent sub-
space representation, which is guided by a self-supervised
module. Self-supervised learning can exploit effective cluster
information through the data itself to guide the learning pro-
cess of clustering tasks. Thus, it can pull together embedding
features from the same cluster and push apart these from dif-
ferent clusters. Extensive experiments on several benchmark
datasets show that the proposed PVC-SCN method outper-
forms several state-of-the-art clustering methods.

Introduction
Multi-view data contain multiple features from different
views, such as sensors, modalities, viewpoints, sources,
etc. Nowadays, multi-view data become quite ubiquitous in
practice due to abundant multi-media data collection equip-
ment. For example, a video has image view, text view, and
audio view (Wang et al. 2023a). However, it is difficult to
process multi-view data because of the lack of reliable la-
bels. A basic solution is to employ multi-view clustering
(MVC) (Li et al. 2019; Wen et al. 2022; Xu et al. 2022)
to separate the unlabeled multi-view data to different groups
where data in the same groups may belong to the same class
with high probability. Owing to its promising performance,
MVC has been well researched, and numerous MVC meth-
ods (Tao et al. 2020; Zhang et al. 2017; Jiang et al. 2022) are
proposed. Traditional MVC methods are based on subspace
learning, graph learning, spectral learning, and non-negative
matrix factorization. For example, (Gao et al. 2015) pro-
poses multi-view subspace clustering (MVSC) which per-
forms clustering on a consistent structure learned from the
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Figure 1: The illustration of changes in cluster assignments,
where solid points and hollow points with the same shape
represent different views, and different shapes represent dif-
ferent clusters.

subspace of each view; (Wang et al. 2018b) develops multi-
view spectral clustering by utilizing low-rank matrix factor-
ization. Though they are effective in multi-view data, they
are unable to capture complex features of multi-view data.
To overcome the weakness and inspired by deep learning,
deep MVC methods (Chen et al. 2023; Wang et al. 2020a)
are explored to capture non-linear relationships of multi-
view data. For example, (Li et al. 2019) designed deep MVC
via adversarial networks; (Andrew et al. 2013) developed
deep canonical correlation analysis (CCA) method for cross-
view data (Gao et al. 2020).

Although MVC methods have achieved successful results,
they cannot work well on the multi-view data, of which
some samples lack information in one or two views, i.e.,
partial/incomplete multi-view data (Xu, Tao, and Xu 2015;
Wang et al. 2021; Zhang et al. 2020). This makes these meth-
ods difficult to apply in real-world applications since partial
multi-view data is inevitable in practice because of noises,
sensor failure, and transmission loss. To tackle this problem,
several partial multi-view clustering (PMVC)/incomplete
multi-view clustering (IMC) methods (Liu et al. 2018; Shao
et al. 2016) are proposed. Original PMVC methods are
mainly designed for two-view data (Zhao, Liu, and Fu 2016;
Wang et al. 2018a, 2023b). For example, (Li, Jiang, and
Zhou 2014) uses NMF and ℓ-norm to obtain a complete sub-
space for partial two-view clustering, named PVC. To well
process partial multi-view data with more than two views,
(Shao, He, and Philip 2015) develops multiple incomplete
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views clustering (MIC) via weighted NMF with ℓ2,1-norm
regularization; (Wen, Xu, and Liu 2018) proposed incom-
plete multi-view spectral clustering by adaptive graph learn-
ing (IMSC). These methods have made great progress in par-
tial multi-view clustering. To further excavate complex fea-
tures of partial multi-view data with deep learning, (Wang
et al. 2018a) employs generative adversarial network (GAN)
to integrate clustering with missing sample completion and
further alleviate performance degradation due to data miss-
ing.

However, these PMVC methods still have two limitations.
First, existing methods cannot learn an accurate common
clustering structure from partial multi-view data with large
difference among each view. Thus, how to further explore
the hidden correlation of each view with large difference still
lacks exploration. Second, since clustering is an unsuper-
vised method, existing PMVC methods ignore the discrimi-
native information in samples. Though some MVC methods
consider using self-supervised method (Sun et al. 2019) to
improve clustering performance, there is little research on
partial multi-view clustering. As a result, existing PMVC
methods cannot capture enough category information for
better clustering performance.

To overcome these limitations above, in this paper, we
propose a novel Partial Multi-view Clustering via Self-
Supervised Network (PVC-SSN). More specifically, we uti-
lize a deep multi-view contrastive encoder network to reduce
the difference of latent subspace by maximizing the consis-
tency among multiple views. Among this latent subspace,
the self-expression layer is embedded to learn a consistent
subspace representation. Moreover, multi-view decoder net-
work is designed to obtain reconstructed samples, which can
ensure the validity of subspace representation. Fig. 1 illus-
trates the contributions of our model. In summary, the con-
tributions of our PVC-SSN method are as follows:
• We propose a partial multi-view clustering via self-

supervised network (PVC-SSN), which could maximize
the feature consistency of partial multi-view data, and
further learn a more discriminative subspace representa-
tion by introducing contrastive learning.

• We design a self-supervised module to guide the selec-
tion of positive/negative samples for contrastive learning.
Furthermore, we construct a fusion mechanism that can
adaptively weight representations from different views
and finally obtain a discriminative common representa-
tion.

• Extensive experiments on several benchmark datasets
show that the proposed PVC-SSN method outperforms
several state-of-the-art clustering methods.

Methodology
Notations
Given a set of unlabeled complete multi-view data X =
{X1,X2, ...,Xv}, Xi ∈ Rdi×n, where n and di are re-
spectively the total number of samples and the feature di-
mension corresponding to each view. For all samples, we
randomly remove a certain percentage of samples and di-
vide the remaining data into two parts: paired data(samples

are available for all views) Xi
p = (xi

1, xi2, ..., xi
p) ∈

Rdi×p, i = 1, 2, ..., v and unpaired data (samples are avail-
able for one view only) Xi

u = (xip+1, xi
p+2, ..., xip+u) ∈

Rdi×u, i = 1, 2, ..., v, where p and u are samples of paired
and unpaired data. For each view, we construct a view en-
coder Ei, i = 1, 2, ..., v, a corresponding contrastive head
Gi, i = 1, 2, ..., v, and a corresponding view decoder Di, i =
1, 2, ..., v.

Network Architecture
Fig.2 illustrates the overall pipeline of our method, which
consists of three key components: (a) multi-view contrastive
encoder network, (b) self-expression learning layer, (c)
multi-view decoder network. First, we send partial multi-
view data [Xi

p,X
i
u] to multi-view contrastive encoder net-

work and obtain latent subspace features [Zi
p,Z

i
u]. Since it is

crucial to learn a better similarity for multi-view data in the
subspace clustering task, we thus maximize the consistency
of latent representations from different views via multi-view
contrastive loss, which makes representations more discrim-
inative and cluster-friendly. In the latent space, we perform
a feature fusion operation to eliminate redundant informa-
tion and obtain a stronger feature representation Z. To ob-
tain a shared subspace representation, we then perform self-
expressive property on the feature Z. To make the feature
obtain a remarkable clustering structure, we use the pseudo-
labels P obtained from the self-expression coefficient ma-
trix S to guide the construction of positive/negative pairs for
contrastive learning. The label information can effectively
guide the training process to learn a better cluster representa-
tion. Finally, we add a multi-view decoder network to ensure
the validity of subspace representation.

Multi-view Contrastive Encoder Network We design a
multi-view contrastive encoder network to transform multi-
view data into low-dimensional latent space. Given partial
data Xi = [Xi

p,X
i
u] ∈ Rdi×(p+u), i = 1, 2, ..., v, we con-

struct a multi-view encoder network Ei and transform i-th-
view data into low-dimensional subspace by the mapping
function Zi = f(Xi, θ) = [Zi

p,Z
i
u] ∈ Rc×(p+u) is i-th-

view subspace feature and θ is the network parameter ma-
trix. After obtaining the low-dimensional feature represen-
tation of each single-view data, we do not directly devise a
contrastive work to contrast paired features Zi

p of multiple
views. Instead, we design a one-layer nonlinear contrastive
head Gi to map the paired features to contrastive embedding
features via Qi

p = gi(Z
i
p) ∈ Rk×p, where k is the number

of clusters. Furthermore, we normalize the output of the con-
trastive head and perform supervised contrastive learning in
the contrastive embedding space.

Self-expression Learning Layer The latent subspace fea-
tures Zi = [Zi

p,Z
i
u] ∈ Rc×(p+u), i = 1, 2, ..., v can be ob-

tained from multi-view contrastive encoder network, which
the paired data

{
Z1

p,Z
2
p, ...,Z

v
p

}
are fused into a common

subspace representation Zp in the weighted fusion man-
ner. In the process of fusion, we first initialize the same
weight parameters as 1/v for each view and adaptively
learn the weight of each view during the training process.
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Figure 2: The framework of our proposed model PVC-SSN. It consists of a multi-view contrastive encoder, a self-expression
layer, and a multi-view decoder. The multi-view contrastive encoder is responsible for encoding the original high-dimensional
samples into low-dimensional subspace features; the self-expression network is responsible for learning a sample correlation
coefficient matrix for spectral clustering; the multi-view decoder restores the subspace features to the original input data.

Afterwards, we fuse all views by
v∑

i=1

αiZ
i
p/

v∑
i=1

αi. We fi-

nally splice the unpaired data {Z1
u,Z

2
u,...,Z

v
u} with the com-

mon representation Zp to obtain an overall subspace feature
Z = [Zp,Z

1
u, ...,Z

v
u] ∈ Rc×n. The self-expression learning

is used to learn a subspace distributed representation i.e., the
self-expression coefficient matrix and can be considered as
the matrix multiply, i.e., Z = ZS, where S ∈ Rn×n is the
self-expression coefficient matrix and it has the property of
being distributed in blocks. Then we can leverage the matrix
S to construct the affinity matrix C, i.e., C = 1

2 (|S|+ |S|⊤).
Finally, we conduct spectral clustering on the affinity matrix
C to obtain clustering result P, which will be fed back to the
multi-view contrastive encoder network to guide the learn-
ing of common representation.

Multi-view Decoder Network We employ the decoding
networks to reconstruct the input data to ensure that the
potential subspace features that are learned from the en-
coding networks can well reflect the structural character-
istics of the original data. More specifically, the repre-
sentation ZS will be divided to multiple representations
[(ZS)ip, (ZS)

i
u], i = 1, 2, ..., v, which are sent to the corre-

sponding decoder network and we will obtain reconstruction
data X̃i = fd([(ZS)

i
p, (ZS)

i
u]).

Objective Function

According to the proposed framework, the objective func-
tion of the model consists of three parts: multi-view con-
trastive loss, self-expression loss, and reconstruction loss.
The following will introduce these loss functions in turn.

Multi-view Contrastive Loss For our encoders to better
learn discriminative information of different categories, su-
pervised contrastive learning is applied into our encoder net-
work to maximize the agreement of positive pairs and to
minimize the agreement of negative pairs. Previous work has
used data augmentation to obtain positive and negative pairs
in the latent space, and then update the network via a self-
supervised contrastive loss. In this work, we use the cluster-
ing results obtained in the last iteration to construct positive
and negative sample pairs, so that samples of the same clus-
ter are positive samples, and samples of different clusters are
negative samples. Given a sample xi

a of the object a from
the i-th view paired data Xi

p, we can obtain its correspond-
ing representation zia and contrastive embedding feature qia
via the i-th view contrastive head map qia = gi(z

i
a). Then

we can obtain the i-th view contrastive embedding features
Qi

p= (qi1, q
i
2, ..., q

i
p) and construct a multi-view contrastive

embedding space Q = (Q1
p,Q

2
p, ...,Q

v
p) ∈ Rk×pv . We con-

struct positive pair with qia and other feature points of the
same class as qia in embedding space. Specifically, we de-
fine the set of positive samples of qia as B(qia) ≡ {qjb ∈ Q :

qjb ̸= qia, yb = ya}, where ya and yb represent the label of
the object a and b. The set of positive and negative samples
of qia is defined as C(qia) ≡ {qkc ∈ Q : qkc ̸= qia}. Therefore,
C(qia) minus B(qia) is equal to the set of negative samples.
Finally, we get our multi-view contrastive loss as follows

Lmcl =
v∑

i=1

p∑
a=1

−1

|B(qia)|
∑
B(qia)

log
exp

(
qia · q

j
b/τ

)
∑

C(qia)

exp (qia · qkc /τ)
,

(1)
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where |B(qia)| is the number of positive samples of qia and
τ denotes a temperature parameter to control the degree of
attention to hard negative pairs. In our experiments, we let
τ = 0.1. Note that each feature point in the embedding space
has been normalized.

Self-expression Loss Through the self-expression learn-
ing layer, the self-expression coefficient matrix S can be
learned, and subspace feature Z is estimated, i.e., Z = ZS.
The self-expression learning function is expressed as follows

Lse =
1

2
||Z− ZS||2F + ||S||2F s.t. diag(S) = 0, (2)

where ||·||2F is the square of the Frobenius norm, and diag(·)
refers to extracting the diagonal elements of the matrix. The
constraint diag(S) = 0 aims to prevent the trivial solutions
of S = I.

Reconstruction Loss To ensure the validity of subspace
representation, we use the mean square error between input
original data Xi and reconstructed data X̃i as reconstruc-
tion loss of the v-th view. The above reconstruction loss is
defined as

Lre =

v∑
i=1

||Xi − X̃i||2F, (3)

Overall Objective Combining Eqs. (1) and (2) can get the
loss of pre-training stage as follows

Lpre = Lre + Lse, (4)

In the normal training stage, by integrating reconstruction
loss, self-expression loss and multi-view contrastive loss, we
have the following objective function of PVC-SSN

L = Lre + λ1Lse + λ2Lmcl, (5)

where λ1 and λ2 are trade-off parameters to adjust the im-
pact of each term in all objective functions. Lre, Lse, and
Lmcl represent the reconstruction loss, the self-expression
learning loss and the multi-view contrastive loss for our
PVC-SSN method, respectively.

Experiments
Experimental Settings
Databases To evaluate the effectiveness of the proposed
PVC-SSN method, we conduct experiments on three bench-
mark datasets, i.e, BDGP (Cai et al. 2012), MNIST (LeCun
1998) and HW (van Breukelen et al. 1998).

• BDGP dataset: This dataset has a total of 2500 samples,
which are divided into 5 categories. The image and text
modalities of each sample are represented by 1 × 1750
and 1× 79 vectors, respectively.

• MNIST dataset: MNIST collects 70000 handwritten
digits from 0 to 9, which are divided into training set
and testing set. In our experiment, only the training set
of 4000 handwritten digits is used. We extract its original
image, edge, LBP and encoder features for our experi-
mental four views.

Algorithm 1: PVC-SSN

Input: Partial multi-view data: Xi = [Xi
p,X

i
u] ∈

Rdi×(p+u), i = 1, 2, ..., v; Learning rate: 0.0001.
while pre-training not converge do
(1) Pre-train the networks using Eq. (4);
(2) Optimize network parameters θe1 , θe2 of encoders and
θd1

, θd2
of decoders;

(3) Save the cluster assignments as initial pseudo-labels.
end pre-training
while training not converge do:;
(3) Formally train the network using Eq. (5);
(4) Adjust trade-off parameters: λ1, λ2, λ3;
(5) Update network parameters: θi, i = 1, 2, ..., v;
(6) Update the self-expression coefficient matrix: S.
end training
(7) return the self-expression coefficient matrix S;
(8) Compute the affinity matrix C = 1

2 (|S|+ |S|⊤);
(9) Perform spectral clustering on the affinity matrix C.

• HW dataset: The dataset collects 2000 digits from 0
to 9, in which each class has 200 samples with 6 kinds
of features. These features include 216 profile correla-
tions (FAC), 76 Fourier coefficients for two-dimensional
shape descriptors (FOU), 64 Karhunen-Loeve coeffi-
cients (KAR), 240 pixel feature (PIX), 47 rotational in-
variant Zernike moment (ZER), 6 morphological features
(MOR). In our experiment, only the first three view of
HW dataset is used.

Comparison Methods In the experiments, we compare
the proposed PVC-SSN model with several state-of-the-art
methods including: (1) one single-view clustering method:
Spectral Clustering (SC) (Ng, Jordan, and Weiss 2002); (2)
three multi-view clustering methods: Auto-weighted Mul-
tiple Graph Learning (AMGL) (Nie et al. 2016), Robust
Multi-view Spectral Clustering (RMSC) (Xia et al. 2014),
Feature Concatenation Spectral Clustering (ConSC) (Ku-
mar, Rai, and Daume 2011); (3) four incomplete data
clustering methods: Incomplete Multi-Modal Visual Data
Grouping (IMG) (Zhao, Liu, and Fu 2016), Multi-View
Clustering using Graph Regularized NMF (GPVC) (Rai
et al. 2016), Generative Partial Multi-View Clustering
(PVC-GAN) (Wang et al. 2018a), and Incomplete Cross-
Modal Subspace Clustering (iCmSC) (Wang et al. 2020b),
and several classical clustering methods.

Evaluation Metric We measure the performance of com-
parison methods and our proposed method using the cluster
accuracy (ACC) (Cai, He, and Han 2005) and the normalized
mutual information(NMI) (Estévez et al. 2009). For partial
multi-view data clustering task, we set five groups of miss-
ing ratios as (0.1, 0.3, 0.5, 0.7, 0.9) for each dataset in our
experiments. Under the same missing ratio, we randomly
miss 10 times for complete data and run them to average the
ACC and NMI values. The data with high similarity should
be clustered into the same group, and different data into dif-
ferent groups. Therefore, the bigger the values of ACC and
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Methods
Missing rate

0.9 0.7 0.5 0.3 0.1

SC1 0.3296±0.0054 0.3539±0.0054 0.3845±0.0067 0.4103±0.0042 0.4404±0.0039
SC2 0.4748±0.0131 0.5169±0.0174 0.5692±0.0159 0.6139±0.0121 0.6716±0.0136
AMGL 0.2524±0.0349 0.2357±0.0180 0.2538±0.0155 0.2807±0.0125 0.2958±0.01952
RMSC 0.3395±0.0050 0.3683±0.0051 0.3907±0.0045 0.4233±0.0048 0.4499±0.0022
ConSC 0.2781±0.0411 0.2230±0.0148 0.2139±0.0078 0.2106±0.0058 0.2884±0.0896
GPVC 0.5015±0.0438 0.5424±0.0537 0.6277±0.0402 0.6833±0.0931 0.7546±0.1091
IMG 0.4373±0.0100 0.4508±0.0254 0.4868±0.0147 0.5055±0.0131 0.5176±0.0415
PVC-GAN 0.5210±0.0090 0.6711±0.0107 0.8631±0.0043 0.9154±0.0107 0.9498±0.0026
iCmSC 0.5901±0.0079 0.7477±0.0043 0.8845±0.0030 0.9210±0.0013 0.9569±0.0031
PVC-SSN 0.6032±0.0144 0.8036±0.0109 0.9156±0.0087 0.9304±0.0073 0.9616±0.0035

Table 1: The clustering accuracy rate(ACC)(%) on BDGP dataset for two views.

Methods
Missing rate

0.9 0.7 0.5 0.3 0.1

SC1 0.4398±0.0140 0.4665±0.0098 0.4731±0.0202 0.5070±0.0355 0.5430±0.0220
SC2 0.3324±0.0147 0.3366±0.0172 0.3532±0.0149 0.3696±0.0074 0.3769±0.0120
SC3 0.4159±0.0193 0.4429±0.0086 0.4811±0.0129 0.4901±0.0129 0.5083±0.0195
SC4 0.3088±0.0068 0.3186±0.0115 0.3310±0.0154 0.3522±0.0102 0.3791±0.0142
AMGL 0.1558±0.0155 0.1412±0.0218 0.1524±0.0343 0.2415±0.0631 0.3346±0.0288
RMSC 0.3492±0.0077 0.4150±0.0294 0.4575±0.0233 0.4960±0.0174 0.5144±0.0204
ConSC 0.3704±0.0275 0.3581±0.02318 0.3674±0.0131 0.4137±0.0396 0.5088±0.0299
GPVC 0.3525±0.0238 0.3864±0.0104 0.4238±0.0446 0.4401±0.0150 0.4644±0.0423
IMG 0.4655±0.0186 0.4640±0.0213 0.4613±0.0146 0.4592±0.0146 0.4622±0.0151
PVC-GAN 0.4517±0.0086 0.4836±0.0071 0.5280±0.0078 0.5202±0.0070 0.5340±0.0073
iCmSC 0.5089±0.0074 0.5665±0.0163 0.5834±0.0089 0.6012±0.0068 0.6319±0.0097
PVC-SSN 0.5775±0.0094 0.5835±0.0073 0.6277±0.0104 0.6335±0.0098 0.6787±0.0136

Table 2: The clustering accuracy rate(ACC)(%) on MNIST dataset for four views.

NMI are, the better the clustering performance of the corre-
sponding method will be.

Experimental Environment We implement our method
with the public toolbox of PyTorch and other partial data
clustering methods with MATLAB on the same environ-
ment. All the experiments are run on the platform of Ubuntu
Linux 16.04 with NVIDIA Titan Xp Graphics Processing
Units (GPUs) and 64 GB memory size. Moreover, we use
Adam (Kingma and Ba 2014) optimizer with the learning
rate of 0.0001 and other default settings to train our model.

Experimental Results
ACC with Comparison Methods We conduct experi-
ments with nine comparison algorithms on three public
datasets and report experimental results in Table 1, 2, and 3,
the best results are highlighted in bold. From these results,
we can observe the following points: 1) The ACC results
of our proposed method PVC-SSN are almost higher than
all the other comparison methods. It is noteworthy that the
ACC values of our method PVC-SSN is 2% − 7% higher
than the highest competing algorithm iCmSC for different
missing ratios on the MNIST dataset. The results demon-

strate that our method can achieve better clustering than
other comparison methods. 2) For partial data clustering,
the methods GPVC and IMG are only suitable to the case
of two-view data and our method can not only be easily
extended to multi-view data, but also can achieve better
clustering performance. The methods AMGL, RMSC and
ConSC can achieve better clustering performance with com-
plete multi-view data but are not satisfactory with the lack
of partial multi-view data. 3) PVC-GAN achieves more re-
markable clustering results than most of the other compar-
ison methods. However, it focuses on generating the miss-
ing data via GAN and ignores the slim relationships among
partial multi-view data, which causes the clustering perfor-
mance low. Our method uses supervised contrastive loss to
reduce the intra-cluster feature point distance while increas-
ing the inter-cluster feature point distance, which makes the
learned feature subspace more discriminative. 4) Most meth-
ods ignore the category information of partial multi-view
data, which hampers further improvement of clustering per-
formance. Whereas our method PVC-SSN could preserve
category information embedded in multi-view data via feed-
back on clustering results and use it to guide the learning
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Methods
Missing rate

0.9 0.7 0.5 0.3 0.1

SC1 0.4633±0.0109 0.4943±0.0149 0.5272±0.0084 0.5402±0.0125 0.5871±0.0127
SC2 0.4775±0.0127 0.5113±0.0101 0.5446±0.0117 0.5871±0.0068 0.6266±0.0170
SC3 0.4863±0.0122 0.5188±0.0112 0.5664±0.0143 0.6114±0.0189 0.6613±0.0178
AMGL 0.6056±0.0489 0.6828±0.0564 0.7370±0.0281 0.7506±0.0320 0.7594±0.0211
RMSC 0.4642±0.0159 0.5293±0.0096 0.5925±0.0154 0.6507±0.0202 0.7154±0.0375
ConSC 0.5063±0.0325 0.5438±0.0272 0.5982±0.0246 0.6982±0.0481 0.7916±0.0299
GPVC 0.3238±0.0087 0.3077±0.0078 0.3419±0.0148 0.4236±0.0168 0.5370±0.0261
IMG 0.5350±0.0192 0.5455±0.0262 0.5457±0.0193 0.5529±0.0166 0.5633±0.0213
PVC-GAN 0.6546±0.0088 0.8517±0.0177 0.9069±0.0074 0.9342±0.0144 0.9425±0.0081
iCmSC 0.7610±0.0062 0.8205±0.0097 0.9158±0.0085 0.9450±0.0059 0.9500±0.0064
PVC-SSN 0.8245±0.0057 0.8835±0.0132 0.9415±0.0046 0.9520±0.0066 0.9485±0.0052

Table 3: The clustering accuracy rate(ACC)(%) on HW dataset for three views.

Missing Rate 0.9 0.7 0.5 0.3 0.1
PVC 0.5256 0.7016 0.8272 0.8912 0.9404
PVC-SSN 0.6032 0.8036 0.9156 0.9304 0.9616

Table 4: The ablation study of our method under different
missing rates in terms of clustering accuracy rate on the
BDGP dataset.

of subspace features, which is also why our method could
outperform other competing methods.

Ablation Study In the subsection, we perform ablation
studies on two versions of our method to study the im-
portance of each component. We design two sub-modules
i.e., PVC and PVC-SSN to elaborate the role of the main
components. PVC is the sub-module without the multi-
view contrastive module and PVC-SSN is our method. We
conduct the ablation experiments under the missing ratio
(0.1, 0.3, 0.5, 0.7, 0.9) on BDGP dataset, whose results are
presented in Table 4. We can observe that the clustering per-
formance is lowest without the multi-view contrastive mod-
ule. When we embed the multi-view contrastive loss into the
embedding space, the clustering performance is better be-
cause we maximize the agreement between feature points
of the same cluster among partial multi-view data to learn a
more consistent subspace representation. In fact, the multi-
view contrastive encoder network contains category infor-
mation and we feedback them to downstream training pro-
cess, which can effectively guide the subspace feature learn-
ing. The experiment results demonstrate that the multi-view
contrastive module plays an important role in our method.

Analysis of Subspace Feature In this subsection, we
study the impact of different methods on the subspace fea-
tures Z. In order to show a t-SNE (Van der Maaten and Hin-
ton 2008) visualization for feature embeddings in terms of
different methods on the BDGP dataset with the missing ra-
tio of 0.1, Figure 3 is given, in which different colors indi-
cated different labels. The figure shows that our proposed
PVC-SSN method has a more distinct and clear data dis-

Figure 3: Visualization of the subspace features given by dif-
ferent methods with t-SNE on BDGP dataset with the miss-
ing ratio of 0.1, where (a) SC1, (b) SC2, (c) PVC, (d) GPVC,
(e) IMG, (f) PVC-GAN, (g) iCmSC, and (h) PVC-SSN.

tribution than other traditional clustering methods and most
of deep clustering methods. This clearly confirms that the
multi-view contrastive loss can make the subspace more
friendly to the clustering task and can make the represen-
tation Z more discriminative.

Impact of Different Parameters In our PVC-SSN model,
λ1 and λ2 are two important hyper-parameters, which bal-
ances the role among different sub-modules. In order to
test the parameter sensitivity, we conduct experiments on
the influence of parameters on clustering performance un-
der the missing ratio 0.9 on HW and MNIST datasets. In
experiments, we set the ranges of parameters λ1 and λ2 to
[0.01, 0.1, 1, 10, 100]. As shown in Fig. 4, we can observe
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Figure 4: Parameters analysis on HW dataset and MNIST
dataset with the missing ratio as 0.9. The clustering perfor-
mance ACC and NMI on HW are shown in (a) and (b), and
the clustering performance ACC and NMI on MNIST are
shown in (c) and (d)

Methods GPVC IMG
PVC-
GAN

iCmSC
PVC-
SSN

Time(s) 10879 25721 74582 66010 46232

Table 5: The running time of all methods on BDGP dataset.

that the clustering performance of our proposed method
changes a little with the fluctuation of parameters, which
demonstrates our method PVC-SSN is robust for parameter
changes. However, these parameters have a certain influence
on clustering performance. As illustrated as Fig. 4, PVC-
SSN achieves the best clustering result when λ1 = 0.01 and
λ2 = 0.1 on HW dataset and it has the best clustering result
when λ1 = 100 and λ2 = 10 on MNIST dataset.

Convergence Analysis In this subsection, we plot the
change of overall loss value under the missing ratios 0.1
on BDGP, MNIST and HW datasets to investigate the con-
vergence of our proposed method PVC-SSN. We conduct
the convergence experiments with 2000 epochs on BDGP
dataset and with 1000 epochs on MNIST dataset and HW
dataset. In this case, the loss value on BDGP is recorded
every 40 epochs and the loss value on MNIST and HW
is recorded for per 20 epochs. As the curves depicted in
Fig. 5, the clustering loss decreases and tends to stabilize as
the epochs increase, which demonstrates that our proposed
method has better convergence. Specifically, we can observe
that on the BDGP dataset, the loss value drops rapidly in
the first 1000 epochs, while on the MNIST dataset, the loss
value drops rapidly in the first 600 epochs, and on the HW

dataset, the loss value drops rapidly in the first 400 epochs.
Therefore, our proposed optimization algorithm is reliable
and converges quickly.

Figure 5: The convergence curves. Subfigure (a), (b), and
(c) present the decrease of the overall loss for our proposed
PVC-SSN method on BDGP, MNIST and HW dataset with
the missing ratio of 0.1.

Time Complexity Comparison In this subsection, we re-
port the running time in seconds of different deep partial
multi-view clustering methods on BDGP dataset, as shown
in Table 5. For a fair comparison, we test the running time of
all deep clustering methods for 10000 epochs. From the re-
sults, we can see that the training time of our method is lower
than both iCmSC and PVC-GAN. Therefore, the computa-
tion complexity of PVC-SSN is reasonable and its clustering
performance is excellent.

Conclusion
In this paper, we propose a multi-view clustering network for
partial multi-view data, named PVC-SSN, which embeds an
effective contrastive learning module to explore the consis-
tent feature from the same cluster among partial multi-view
data and learn more discriminative subspace representation.
Inspired by self-supervised learning, we use the clustering
results obtained from the shared self-expression coefficient
matrix to construct positive and negative sample pairs. The
reported results demonstrate the superiority of our method
when compared with other outstanding methods. This work
focuses on partial multi-view clustering, and in the future,
we will extend it to partial multi-view classification.
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