
Graph Learning in 4D: A Quaternion-Valued Laplacian to Enhance Spectral GCNs

Stefano Fiorini1, Stefano Coniglio2, Michele Ciavotta3, Enza Messina3

1 Italian Institute of Technology, Genoa, Italy
2 University of Bergamo, Bergamo, Italy

3 University of Milano-Bicocca, Milan, Italy
stefano.fiorini@iit.it, stefano.coniglio@unibg.it, michele.ciavotta@unimib.it, enza.messina@unimib.it

Abstract

We introduce QuaterGCN, a spectral Graph Convolutional
Network (GCN) with quaternion-valued weights at whose core
lies the Quaternionic Laplacian, a quaternion-valued Lapla-
cian matrix by whose proposal we generalize two widely-used
Laplacian matrices: the classical Laplacian (defined for undir-
ected graphs) and the complex-valued Sign-Magnetic Lapla-
cian (proposed to handle digraphs with weights of arbitrary
sign). In addition to its generality, our Quaternionic Laplacian
is the only Laplacian to completely preserve the topology of a
digraph, as it can handle graphs and digraphs containing anti-
parallel pairs of edges (digons) of different weights without
reducing them to a single (directed or undirected) edge as done
with other Laplacians. Experimental results show the superior
performance of QuaterGCN compared to other state-of-the-art
GCNs, particularly in scenarios where the information the
digons carry is crucial to successfully address the task at hand.

Introduction
Deep Learning (DL) has recently achieved a striking suc-
cess, contributing to the advancement of several research
areas such as natural language processing (Vaswani et al.
2017), business intelligence (Khan et al. 2020), and cyberse-
curity (Dixit and Silakari 2021), only to name a few. While
many of the most popular DL architectures are designed to
process data arranged in grid-like structures (such as RGB
pixels in 2D images and video streams), many real-world phe-
nomena are ruled by more general relationships that are better
represented by a graph (Bronstein et al. 2017). For example,
e-commerce relies on graphs to model the user-product in-
teraction to make recommendations, drug discovery models
molecule bioactivity via interaction graphs, and information
discovery uses multi-relational knowledge graphs to extract
information between the entities (Ye et al. 2022).

Graph Convolutional Networks (GCNs) model the inter-
action between the entities of a complex system via a graph-
based convolution operator. They are the primary tool for
machine learning tasks on data that enjoy a graph-like struc-
ture. In spatial GCNs, the convolution operator is defined
as a localized aggregation operator (Xu et al. 2018). There
are various implementations and extensions of this operator.
E.g., in attention-based GCNs the convolutional operator

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is used to dynamically learn attention scores on the graph
edges (Veličković et al. 2018), while, in recurrence-based
GCNs, the operator leverages gated recurrent units to capture
edge-specific information and temporal dependencies during
message passing (Li et al. 2016).

While spatial GCNs rely on different heuristics for the
definition of their convolution operator, spectral GCNs are
solidly grounded in signal and algebraic graph theory. They
rely on a convolution operator based on a Fourier transform
applied to the eigenspace of the Laplacian matrix of the
graph (Kipf and Welling 2017; He et al. 2022c; Wu et al.
2022) to capture the global structure of the graph. Spectral
GCNs have been shown to achieve superior performance to
their spatial-based counterpart in a number of papers, see,
e.g., (Zhang et al. 2021b; Fiorini et al. 2023). Our focus in
the paper will be on extending the applicability of spectral
GCNs. Spatial GCNs will be considered only for comparison
purposes within computational experiments.

Despite the growing interest in academia and industry alike
for neural-network methods suitable for progressively more
general classes of graphs, the literature on spectral GCNs
has only recently begun to include extensions beyond the
basic case of unweighted, undirected graphs. As a result, the
adoption of spectral CGNs in learning tasks involving graphs
such as those featuring directed edges, digons, and edges
with negative weights (He et al. 2022c; Wu et al. 2022) is still
limited. To (partially) address such limitations, alternative no-
tions of the Laplacian matrix have been put forward, among
which the Magnetic Laplacian (Lieb and Loss 1993), which
was originally proposed in physics and first used within a
spectral GCN in (Zhang et al. 2021b), albeit with the limit-
ation of only handling digraphs non-negative edge weights.
Spectral-based GCNs suitable for digraphs with weights of
unrestricted sign have been proposed only recently. Three
such networks are SigMaNet (Fiorini et al. 2023) (based
on the therein proposed Sign-Magnetic Laplacian), MSG-
NN (He et al. 2022a) (based on an extension of the Magnetic
Laplacian), and the network proposed in (Ko 2022).

Graphs with digons (pairs of antiparallel directed edges)
occur in many important applications including, e.g., traffic
and networking and, so far, have eluded every spectral-based
GCN proposed in the literature. Indeed, to the best of our
knowledge none of the known spectral-based GCNs can
handle graphs with digons with arbitrary weights and signs

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12006

without collapsing them to single edges (either directed or
undirected), which often results in destroying any topological
information such digons may carry.

In this work, we extend the theory of spectral GCNs to
digraphs with unrestricted edge weights also including di-
gons. This is achieved by introducing the Quaternionic Lapla-
cian Lϙ, the first, to our knowledge, graph Laplacian matrix
with quaternion-valued entries.1 We prove that Lϙ general-
izes different previously proposed Laplacians (both real- and
complex-valued), that it satisfies all the properties that are
needed to build a convolutional operator around it, and that it
can naturally represent digons in such a way that the graph
can be fully reconstructed from it without any loss of topo-
logical information. Around the Quaternionic Laplacian, we
design QuaterGCN, a spectral GCN which relies on both Lϙ

and quaternion-valued network weights.
While some GCNs employing quaternion weights have

been recently proposed (Nguyen, Phung et al. 2021; Wang
et al. 2022; Le, Tran, and Le 2023), only QGNN, proposed
by Nguyen, Phung et al. (2021), is spectral based. As QGNN
relies on the classical convolution operator of Kipf and
Welling (2017) bases on the classical (real-valued) graph
Laplacian, it fails to fully capture the whole graph topology
unless the graph has non-negative edge weights and is undir-
ected (which implies that it contains no digons).

We summarize the differences between the Quaternionic
Laplacian Lϙ we introduce in this work and previous pro-
posals in Table 1. For each Laplacian, the table reports the
paper in which it was proposed or used within a spectral GCN
and the corresponding symbol (which is often reused with
some overload). It also indicates the type of number system
associated with each Laplacian and its capability to handle
edges with negative weights and digons.

Main Contributions of the Work
• We propose the quaternion-valued Quaternionic Lapla-

cian matrix Lϙ, which naturally captures the presence
of digons of different weight (asymmetric) without redu-
cing them to a single edge as done in many previously-
proposed Laplacians.

• We prove that Lϙ generalizes both the standard Laplacian
and the Sign-Magnetic Laplacian, as it coincides with the
former when G is undirected and with the latter when G
features directed edges with weights of arbitrary sign and
all its digons have the same weight (symmetric).

• We incorporate Lϙ into QuaterGCN, a spectral-based
GCN that includes quaternion-valued convolutional layers
and quaternion-valued network weights.

• Our experiments demonstrate that QuaterGCN consist-
ently outperforms state-of-the-art spatial and spectral
GCNs, particularly on tasks and datasets where the in-
formation carried by the digons is critical.

Preliminaries and Previous Works
Let G = (V,E) be an undirected graph with n = |V | ver-
tices without weights nor signs associated with its edges

1The letter ϙ in Lϙ is an archaic Greek letter often replaced in
modern text by the Latin letter "q" as in "quaternion".

and let A ∈ {0, 1}n×n be its adjacency matrix. The clas-
sical Laplacian matrix L ∈ Zn×n

+ of G is defined as
L := D − A, where D := diag(Ae) is the degree mat-
rix of G, e is the all-one vector of appropriate size, and the
operator diag builds a diagonal matrix with the argument on
the main diagonal. The normalized version of L is defined as
Lnorm := D− 1

2 (D −A)D− 1
2 = I −D− 1

2AD− 1
2 .

For a spectral convolution operator to be well-defined, the
graph Laplacian must fulfill three properties:P.1) it must be
diagonalizable, i.e., it must admit an eigenvalue decomposi-
tion; P.2) it must be positive semidefinite; P.3) its spectrum
must be upper-bounded by 2 (Kipf and Welling 2017).

While L and Lnorm always satisfy such properties if G is
undirected (i.e., A is symmetric) and has nonnegative edge
weights (i.e., A is component-wise nonnegative), this is not
always the case for more general graphs. When G is a digraph,
L is sometimes defined as a function of As := 1

2 (A
⊤ + A)

and Ds := Diag(Ase), rather than of A and D. This is,
e.g., the case of QGNN (Nguyen, Phung et al. 2021). While
such a choice preserves the mathematical properties of L, it
significantly alters the topology of the graph. Indeed, when
general graphs are considered, the following issues may arise:

• Issue 1. If G is a digraph, defining L as a function of As

is equivalent to transforming the original graph into an
undirected version of it, losing any directional information
the original graph contained.

• Issue 2. If G features negative-weighted edges, neither
A nor As belong, in general, to Zn×n

+ . This can lead to
Duu < 0 for some u ∈ V , in which case L is not well
defined in Zn×n

+ due to D− 1
2 being irrational.

• Issue 3. If G contains asymmetric digons, the weight
asymmetry is completely lost in As, since the latter only
features the average of the two weights. For example, in
an author-citation graph, a digon representing two authors,
the first one citing the second one 50 times while being
cited by them only 2 times, would be identical to the
two authors symmetrically citing each other precisely 26
times.

Issue 1 was first addressed by Zhang et al. (2021b,a) by
introducing Magnet, a spectral GCN relying on the Magnetic
Laplacian L(q). Such a Laplacian is a complex-valued exten-
sion of L to unweighted directed graphs, and was originally
proposed within an electro-magnetic charge model by Lieb
and Loss (1993). It is defined as follows:

L(q) := Ds −H(q), with

H(q) := As ⊙ exp
(
iΘ(q)

)
, Θ(q) := 2πq

(
A−A⊤) ,

where ⊙ denotes the Hadamard product, i =
√
−1, Θ

is a phase matrix that encodes the edge directions, and
exp

(
iΘ(q)

)
:= cos(Θ(q)) + i sin(Θ(q)), where cos and sin

are applied component-wise. The parameter q ∈ R+
0 is usu-

ally chosen in
[
0, 1

4

]
or

[
0, 1

2

]
(Zhang et al. 2021b; Fanuel,

Alaíz, and Suykens 2017). Choosing q = 0 implies Θ(q) = 0
and thus L(q) boils down to the Laplacian matrix L defined
on As (in which case the directionality of G is lost).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12007

Laplacian Number Allows Negative Allows Digons?
Symbol Proposed in System Edge Weights? if w1 = w2 if w1 = −w2 if w1 ̸= w2 if w1 ̸= −w2

L Kipf and Welling (2017) IR ✕ ✓ ✕ ✕ ✕

L(q) Zhang et al. (2021b) IC ✕ ✓ ✕ ✕ ✕
Lσ Fiorini et al. (2023) IC ✓ ✓ ✕ ✕ ✕

L(q) He et al. (2022a) IC ✓ ✓ ✕ ✕ ✕

L(q) Ko (2022) IC ✓ ✓ ✓ ✕ ✕
Lϙ This paper IH ✓ ✓ ✓ ✓ ✓

Table 1: Main differences between Laplacian matrices used in spectral GCN literature. For a graph with edge set E, w1 and w2

denote the weights of the digons (u, v), (v, u) ∈ E.

Issue 2 was first addressed by Fiorini et al. (2023) via the
introduction of the spectral GCN SigMaNet and the Sign-
Magnetic Laplacian Lσ. Unlike L(q), Lσ is well defined for
graphs with negative edge weights and enjoys some robust-
ness properties to weight scaling (which in L(q) could artifi-
cially alter the sign pattern of Θ and thus the directionality
of the edges). Lσ is defined as follows:

Lσ := D̄s −Hσ, with

Hσ := As ⊙
(
ee⊤ − sgn(|A−A⊤|) + i sgn

(
|A| − |A⊤|

))
,

where D̄s := Diag(|As| e) and sgn : IR → {−1, 0, 1} is the
signum function applied component-wise. After Fiorini et al.
(2023), He et al. (2022a) extended the Magnetic Laplacian
as a function of D̄s := Diag(|A|+|A|⊤

2 e) rather than Ds.
This Laplacian is well-defined for graphs with negative edge
weights, but it still suffers from the scaling issue pointed out
by Fiorini et al. (2023) which Lσ avoids.

Issue 3, to the best of our knowledge, has not yet been
addressed. We set ourselves out to do so in this paper.

A Quaternion-Valued Laplacian
In this section, we introduce the Quaternionic Laplacian
matrix, a positive semidefinite quaternion-valued Hermitian
matrix which fully captures the directional and weight inform-
ation of a digraph, even in the presence of digons, without
restrictions on the sign or magnitude of the edge weights.

The Quaternion Number System
Quaternions are an extension of complex numbers to three
imaginary components (Hamilton 1866). They are often used
in quantum mechanics, where they lead to elegant expres-
sions of the Lorentz transformation, which forms the basis
of modern relativity theory (Jia 2008). In computer graphics,
quaternions are commonly used to represent and manipulate
3D objects for rotation estimation and pose graph optimiza-
tion (Carlone et al. 2015).

Formally, a quaternion q ∈ IH takes the form q = q0 +
iq1 + jq2 + kq3, where q0, q1, q2 and q3 are real numbers
and i, j, and k are three imaginary units satisfying i2 =
j2 = k2 = ijk = −1. The four basis elements are 1, i, j,
and k. The conjugate of q is q̄ ≡ q∗ = q0 − iq1 − jq2 −
kq3. q is called imaginary if its real part q0 is zero. The
multiplication of quaternions satisfies the distribution law
but is not commutative. A quaternion-valued matrix Q =

(quv) ∈ IHm×n reads Q = Q0 + iQ1 + jQ2 + kQ3, with
Q0, Q1, Q2, Q3 ∈ IRm×n. Q⊤ = (qvu) is the transpose of Q.
Q̄ = (q̄uv) is the conjugate of Q. Q∗ = (q̄vu) = Q̄⊤ is the
conjugate transpose of Q. A square quaternion matrix Q ∈
IHn×n is called Hermitian if Q∗ = Q and skew-Hermitian if
Q∗ = −Q. We denote the real part and the three imaginary
parts of a quaternion q ∈ IH by ℜ(q), ℑ1(q), ℑ2(q), and
ℑ3(q).

The Quaternionic Laplacian
Let us now introduce the Quaternionic Laplacian, which we
denote by Lϙ. First, we introduce the following matrices:

• Let T := sgn(|A|) ∈ {0, 1}n×n be a binary matrix that
encodes the graph’s topology, with Tuv = 1 if G contains
an edge from node u to node v and Tuv = 0 otherwise.

• Let O := T ⊙ T⊤ ∈ {0, 1}n×n be the binary matrix
that encodes the topology of the subgraph of G that only
contains digons (by definition, O is symmetric and Ouv =
Ovu = 1 iff Tuv = Tvu = 1).

• Let N := sgn(|A−A⊤|) ∈ {0, 1}n×n be a binary matrix
that encodes the topology of the subgraph of G obtained
by dropping any symmetric digons (by definition, Nuv =
0 if Auv = Avu and Nuv = Tuv otherwise).

• Let R := sgn(|A| − |A⊤|) ∈ {−1, 0, 1}n×n be a
signed binary matrix in which every asymmetric digon
(u, v), (v, u) is reduced to a single edge in the direction
of the largest absolute weight (Ruv = Tuv if Auv > Avu,
Ruv = −Tuv if Auv < Avu, and Ruv = 0 otherwise).

With these definitions, we introduce the four matrices
H0, H1, H2, H3, whose elements are valued in {-1, 0, 1}:

H0 := ee⊤ −N H1 := R⊙
(
ee⊤ −O

)
H2 := O ⊙N ⊙

(
U(T)− L(T⊤)

)
H3 := −H2,

where U and L are the unary operators that construct an
upper- or lower-triangular matrix from the upper or lower
triangle of the matrix given to them as input.

H0 only encodes G’s symmetric digons, H1 encodes all
of G’s edges excluding digons, and H2 and H3 encode G’s
asymmetric digons in a skew-symmetric way. We remark
that the three matrices H1, H2, H3 are skew-symmetric by
construction (i.e., H1

uv = −H1
vu, H2

uv = −H2
vu, H3

uv =
−H3

vu for all u, v ∈ V), whereas H0 is symmetric.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12008

Based on the four matrices H0, H1, H2, H3, we now
define the Quaternionic Laplacian as follows:

Lϙ := D̄s −Hϙ, with

Hϙ = A1
s ⊙ (H0 + iH1) + jA2

s ⊙H2 + kA3
s ⊙H3, (1)

with A1
s := A+A⊤

2 , A2
s := U(A)+L(A⊤)

2 , A3
s :=

L(A)+U(A⊤)
2 , and D̄s := Diag(|A1

s| e). Its normalized ver-
sion reads:

Lϙnorm := D̄
− 1

2
s LϙD̄

− 1
2

s = I − D̄
− 1

2
s HϙD̄

− 1
2

s . (2)

On the Nature of the Elements of Hϙ

Let us illustrate how the topology of G and its weights are
mapped into the matrix Hϙ.

1. For every edge (u, v) ∈ E with (v, u) /∈ E (i.e., not
contained in a digon) Hϙuv = −Hϙvu = 0+ i 12Auv + j0+
k0 holds. Thus, the edge is purely mapped in the first
imaginary component (i) of Hϙ.

2. For every symmetric digon (u, v), (v, u) ∈ E with Auv =
Avu, Hϙuv = Hϙvu = 1

2 (Auv +Avu)+ i0+ j0+k0 holds.
Thus, such digons are encoded purely in the real part of
Hϙ (as if they coincided with an undirected edge).

3. For every asymmetric digon (u, v), (v, u) ∈ E with
Auv ̸= Avu, Hϙuv = −Hϙvu = 0+ i0+ j 12Auv − k 1

2Avu

(if u < v) and Hϙuv = −Hϙvu = 0+ i0− j 12Auv+k 1
2Avu

(if u > v) hold. Such digons are thus encoded purely in
the second and third (j and k) imaginary components.

Lϙ realizes the same mapping as Lσ in cases 1 and 2, but
not in case 3. In such a case, while in Lσ every asymmetric
digon is mapped into a single directed edge in the direction
of largest magnitude (thus losing parts of it topology), in Lϙ

the topology of such a digon is completely preserved.
For each u, v ∈ V , the three imaginary parts of Lϙ are

orthogonal: if u and v share only one edge, this edge is
reported in the imaginary component i; if they share two
edges of different weights, the two edges are reported in the
imaginary components j and k; if they share two edges of the
same weight, the edges are reported as a single undirected
edge in the real component of Lϙ; if the two nodes share no
edges, nothing is reported.

From a Graph to Its Quaternionic Laplacian
As an illustrative example, consider the graph depicted in
Figure 1, together with its weighted adjacency matrix. The
graph has the following characteristics:

1. A single undirected edge (1, 2) (which is equivalent to a
symmetric digon).

2. A directed edge (3, 1).
3. Two asymmetric digons, (2, 4)−(4, 2) and (3, 4)−(4, 3),

with different weights that share the same sign.

For this graph, Lϙ reads:

Lϙ := D̄s −Hϙ, with

Hϙ := A1
s ⊙ (H0 + iH1) + jA2

s ⊙H2 + kA3
s ⊙H3,

1 2

3 4

1

3 31
1

5

A =

0 1 0 0
1 0 0 3
3 0 0 1
0 1 5 0

Figure 1: Graph and Adjacency Matrix.

with A1
s =

 0 1 1.5 0
1 0 0 2
1.5 0 0 3
0 2 3 0

, A2
s =

 0 0.5 0 0
0.5 0 0 1.5
0 0 0 0.5
0 1.5 0.5 0

,

A3
s =

 0 0.5 1.5 0
0.5 0 0 0.5
1.5 0 0 2.5
0 0.5 2.5 0

 , and

H0 =

1 1 0 1
1 1 1 0
0 1 1 0
1 0 0 1

, H1 =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

,

H2 =

0 0 0 0
0 0 0 1
0 0 0 1
0 −1 −1 0

, H3 =

0 0 0 0
0 0 0 −1
0 0 0 −1
0 1 1 0

 .

We note that H0 contains a 1 for each edge that does not
belong to a digon with different weights or to a single directed
edge without an antiparallel one. It features an all-1 diagonal,
whose values would become zeros after the multiplication
by A1

s. H1 contains a ±1 for each undirected edge with a
positive sign for the actual edge direction and a negative one
for the inverse direction. H2 and H3 contain a 1 for each pair
of edges belonging to a digon with different edge weights.
By construction, H3 is the opposite of H2.
Lϙ thus the reads:

Lϙ =

 2.5 −1 i 1.5 0
−1 3 0 −j 1.5 + k 0.5

−i 1.5 0 4.5 −j 0.5 + k 2.5
0 j 1.5− k 0.5 j 0.5− k 2.5 5

 .

By inspecting Lϙ, one can observe that it encodes the ele-
ments of the graph in the following way:

1. The undirected edge is encoded via the real component
Lϙ12 = Lϙ21 = −1;

2. The directed edge is encoded via the i component, Lϙ13 =
Lϙ31 = i 1.5;

3. The two digons with different weights that share the same
sign are encoded via the j and k components:

(a) Lϙ24 = −Lϙ42 = −j 1.5 + k 0.5;
(b) Lϙ34 = −Lϙ43 = −j 0.5 + k 2.5.

Relationship Between Lϙ and Other Laplacians
The Quaternionic Laplacian is designed in such a way that it
satisfies several desirable properties which we now illustrate.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12009

For undirected graphs with positive edge weights, Lϙ gen-
eralizes the classical Laplacian L:

Theorem 1. Lϙ = L for every graph with A symmetric and
nonnegative and Dvv > 0 for all v ∈ V .

For digraphs with arbitrary edge weight featuring, if any,
symmetric digons, Lϙ generalizes the Sign-Magnetic Lapla-
cian Lσ:

Theorem 2. Lϙ = Lσ if, for all u, v ∈ V , either Auv = 0
or Auv = Avu.

As Lσ coincides with L(q) with q = 1
4 (Fiorini et al. 2023),

the following holds:

Corollary 1. Lϙ = L(q) with q = 1
4 for every digraph with

A ∈ {0, 1}n×n containing, if any, symmetric digons.

If the graph does not feature any symmetric digons, the
matrix Hϙ from which Lϙ is defined coincides with a linear
combination of Lσ with a Hermitian matrix encoding the
asymmetric digons:

Theorem 3. Consider a weighted digraph without symmet-
ric digons and let Hm :=

(
A2

s ⊙H2
1 +A3

s ⊙H3
1

)
, where

H2
1 = N ⊙

(
U(T) − L(T⊤)

)
and H3

1 = −H2
1 . We have

H0 = 0 and Hϙ = Hσ⊙
(
ee⊤ −O

)
+O⊙Hm. Thus, each

component of Hϙuv is a linear combination of the component
Hσ

uv of the Sign-Magnetic Laplacian Hσ and the component
Hm

uv of the quaternionic Hermitian matrix Hm.

Spectral Properties of Lϙ

As Hϙ is Hermitian by construction, Lϙ and Lϙnorm are
Hermitian as well. As any Hermitian quaternion matrix Q
is diagonalizable via the (right) eigenvalue decomposition
Q = U∗ΛU (see Qi and Luo (2021) for a proof), Lϙ and
Lϙnorm satisfy the property P.1. Both matrices admit exactly n
right eigenvalue-eigenvector pairs, all of which are real:

Theorem 4. Lϙ and Lϙnorm are positive semidefinite.

The right eigenvalues of the normalized version of Lϙ are
upper bounded by 2:

Theorem 5. λmax(L
ϙ

norm) ≤ 2, where λmax denotes the (real)
right eigenvalue of largest value.

These theorems show that Lϙ and Lϙnorm enjoy the two re-
maining properties P.2 and P.3. Thus, Lϙnorm can be employed
for the definition of a convolution operator, as shown in the
following section.

QuaterNet: A Spectral GCN Based on Lϙ

Following Hammond, Vandergheynst, and Gribonval (2011)
and Kipf and Welling (2017), we define the convolution
operation of a signal x ∈ IRn and a filter y ∈ IRn as

y ∗ x = Y x = (θ0I − θ0(L
ϙ

norm − I))x = θ0(2I − Lϙnorm)x. (3)

The equation is obtained by approximating the Fourier trans-
form on the graph Laplacian with Chebyshev’s polynomial
(of the first kind) of order 1.

Due to Theorems 4 and 5, Lϙnorm enjoys properties P.1, P.2,
and P.3. Thus, Y is a well-defined convolution operator and,

by definition of Lϙnorm, we have:

y ∗ x = Y x = θ0(2I − (I − D̄
− 1

2
s HϙD̄

− 1
2

s)x

= θ0(I + D̄
− 1

2
s HϙD̄

− 1
2

s)x. (4)

Following Kipf and Welling (2017) to avoid numerical in-
stabilities, we apply Eq. (4) with D̃

− 1
2

s H̃ϙD̃
− 1

2
s rather than

I+D̄
− 1

2
s HϙD̄

− 1
2

s , where H̃ϙ and D̃s are defined as a function
of Ã := A+ I rather than A.

We generalize the feature vector signal x ∈ IHn×1 to a
feature matrix signal X ∈ IHn×c with c input channels (i.e.,
a c-dimensional feature vector for every node of the graph).
Let Θ ∈ IHc×f be a matrix representing the parameters of an
f -dimensional filter and let ϕ be an activation function (such
as the ReLU) applied component-wise to the input matrix.

In QuaterGCN, we define the convolutional layer as the
following mapping from X to Zσ(X) ∈ IHn×f :

Zϙ(X) = ϕ(D̃
− 1

2
s H̃ϙD̃

− 1
2

s XΘ) = ϕ(XϙΘ).

Since XϙΘ is a quaternion-valued matrix and traditional
activation functions require a real argument, we follow the
approach of Parcollet et al. (2019) and apply the activation
function ϕ to each element of its quaternionic input as

ϕ : (a+ ib+ jc+ kd) 7→ ϕ(a) + iϕ(b) + jϕ(c) + kϕ(d).

Thanks to this, the output Zϙ(X) of the convolutional layer
is quaternion-valued. As usually done in spectral GCNs, we
lastly adopt an unwind layer by which we transform the
matrix Zϙ(X) ∈ IHn×f into the 4-times larger real-valued
matrix, i.e. matrix of dimension n× 4f ,(

ℜ(Zϙ(X)) | ℑ1(Z
ϙ(X)) | ℑ2(Z

ϙ(X)) | ℑ3(Z
ϙ(X))

)
.

As stated by Parcollet, Morchid, and Linarès (2020) and
Nguyen, Phung et al. (2021), the adoption of quaternion
algebra in the product XϙΘ leads to an extensive interaction
among the components of Xϙ which is likely to lead to more
expressive vector representations than those achieved with
real- and complex-valued networks.

Based on the task at hand (see next section), after the
convolution layer we described before QuaterGCN features
either a linear layer with weights W or a 1D convolution.
Considering, for example, a node-classification task of pre-
dicting which of a set of unknown classes a graph vertex
belongs to, QuaterGCN implements the function

softmax
(

unwind
(
Zϙ(2)

(
Zϙ(1)

(
X(0)

)))
W

)
,

where X(0) ∈ IHn×c is the input feature matrix, Zϙ(1) ∈
IHn×f1 and Zϙ(2) ∈ IHn×f2 are two convolutional layers,
W ∈ IR4f2×d are the weights of the linear layer (with d being
the number of classes), and softmax : IRn×d → [0, 1]n×d is
the normalized exponential activation function typically used
to recover the node classes.

Complexity of QuaterGCN
For a graph with n nodes with a c-dimensional fea-
ture vector each, the complexity of QuaterGCN,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12010

with two convolutional layers with f1 and f2 filters
each, is O

(
nc(n+ f1) + nf1(n+ f2) +mtrainf2d

)
for an edge-classification task and
O (nc(n+ f1) + nf1(n+ f2) + nf2d) for a node-
classification one, where d is the number of classes
(see the next section for more details on these tasks). Such
a complexity is quadratic in the number of nodes n and it
coincides with MagNet’s, MSGNN’s, and SigMaNet’s. As
the scalar-scalar product between two quaternions requires 8
multiplications and 7 additions between real numbers rather
than 4 multiplications and 3 additions for the complex case
and a single multiplication for the real case, the least-efficient
operation carried out by QuaterGCN can be up to 64 times
slower than it would be if the network featured real-only
numbers. While apparently large, such a quantity is constant
w.r.t. the size of the graph, which implies that QuaterGCN
scales comparably to previous proposals in the literature.

Numerical Experiments
We compare QuaterGCN with state-of-the-art GCNs across
four tasks: node classification (NC), three-class edge pre-
diction (3CEP), four-class edge prediction (4CEP), and five-
class edge prediction (5CEP). Throughout this section, the
tables report the best results in boldface and the second-best
are underlined. The datasets and the code we used are pub-
licly available at https://github.com/Stefa1994/QuaterGCN.

We experiment on the six widely-used real-world direc-
ted graphs Bitcoin-OTC, Bitcoin Alpha, WikiRfa,
Telegram, Slashdot, and Epinions (see Kumar et al.
(2016); Bovet and Grindrod (2020); West et al. (2014);
Leskovec, Huttenlocher, and Kleinberg (2010)). The first
three feature edge weights of unrestricted sign and mag-
nitude; the fourth contains graphs with positive edge weights,
while the last two have graphs with weights satisfying
A ∈ {−1, 0,+1}n×n.

To study the relationship between performance and graph
density, we also employ DBSM graphs: synthetic digraphs
with positive random weights already used by Fiorini et al.
(2023). They are generated via a direct stochastic block model
(DSBM) with edge weights greater than 1 and a different num-
ber of nodes per cluster (N) and number of clusters (C). Inter-
and intra-cluster edges are created with, respectively, probab-
ility αuv and αuu, and a connected pair of nodes {u, v} with
u < v shares the edge (u, v) with probability βuv and (v, u)
with probability 1− βuv .

As the DBSM graphs are digons-free, we introduce a second
class of synthetic digraphs with a variable percentage of
digons δ ∈ (0, 1) with positive random weights between 2
and 4: Di150 (150 nodes) and Di500 (500 nodes). Di150
features graphs with N = 150, C = 5, αuu = 0.1, βuv =
0.2, and αuv = 0.6. Di500 contains graphs with N = 500,
C = 5, αuu = 0.1, βuv = 0.2, and αuv = 0.1. Notice that
Di500 is sparser than Di250.

Node Classification Task (NC)
The task is to predict the class of each node. We consider
the Telegram dataset and the 9 aforementioned synthetic
datasets, i.e., every dataset except for those that lack a pre-
determined node class.

We compare QuaterGCN with: (i) the three spectral
GCNs designed for undirected graphs: ChebNet (Deffer-
rard, Bresson, and Vandergheynst 2016) and GCN (Kipf
and Welling 2017) and the spectral GCN with quaternionic
weights QGNN designed for undirected graphs (Nguyen,
Phung et al. 2021); (ii) the four spectral GCNs designed for
directed graphs: DGCN (Tong et al. 2020b), DiGraph (Tong
et al. 2020a), DiGCL (Tong et al. 2021), MagNet (Zhang
et al. 2021b), and SigMaNet (Fiorini et al. 2023); and (iii)
the five spatial GCNs: APPNP (Klicpera, Bojchevski, and
Günnemann 2019), SAGE (Hamilton, Ying, and Leskovec
2017), GIN (Xu et al. 2018), GAT (Veličković et al. 2018),
and SSSNET (He et al. 2022b). The experiments are run
with 10-fold cross-validation with a 60%/20%/20% split for
training, validation, and testing.

Table 2 and 3 show that QuaterGCN achieves a remark-
able performance across all datasets, being the best method
in 9 cases out of 10. The percentage difference between
QuaterGCN and the second-best performer ranges from 0.2%
(for DBSM with αuv = 0.1) to 242.81% (for Di500 with
δ = 0.7). The average performance improvement of Quater-
GCN across all datasets is 68.27%. QuaterGCN consistently
outperforms the state of the art on, in particular, Di500
and Di150, where it achieves an average improvement w.r.t.
the second-best performer of 28.19% on the Di150 dataset
and of 175% on the Di500 one. The larger improvement of
QuaterGCN and, in particular, the overall weaker perform-
ance of every other method on the Di500 dataset seems to
be correlated with the dataset being sparser than the smaller
Di150, which suggests that the learning task is harder. The
difference between QuaterGCN and QGNN (the only avail-
able GCN with quaternion-valued weights which, though,
employs the classical real-valued Laplacian), is substantial,
as QuaterGCN outperforms QGNN by 309% on average. As
the two networks share a similar architecture, we attribute
such a large difference to QuaterGCN’s convolution being
done via our proposed Quaternionic Laplacian Lϙ.

Three-Class Edge Prediction Task (3CEP)
The task is to predict whether (u, v) ∈ E, (v, u) ∈ E, or
(u, v) /∈ E ∧ (v, u) /∈ E. In order to maximize the num-
ber of spectral methods we can compare to, for this task
our analysis focuses on the datasets with positive weights,
i.e., Telegram, DSBM, Di150, and D500. Following
Fiorini et al. (2023), we also consider Bitcoin Alpha∗

and Bitcoin OTC∗, obtained by removing any negative-
weight edge from Bitcoin Alpha and Bitcoin OTC.

We compare QuaterGCN to the same methods we con-
sidered for the NC task. We run the experiments with 10-fold
cross-validation with an 80%/15%/5% split for training, test-
ing, and validation, preserving graph connectivity.

The results are reported in Table 4. Those obtained on the
Di500 dataset are omitted as on it every method achieves the
same performance of about 30% (equal to a uniform random
predictor). The table shows that QuaterGCN outperforms
the other methods on 7 datasets out of 9. Compared with the
second-best model, QuaterGCN achieves an average perform-
ance improvement of 0.98%, with a maximum of 3.60% and
a minimum of 0.02%.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12011

Node classification
DBSM Di500

Telegram αuv = 0.05 αuv = 0.08 αuv = 0.1 δ = 0.2 δ = 0.5 δ = 0.7

ChebNet 61.73±4.25 20.06±00.18 20.50±00.77 19.98±00.06 19.90±0.24 20.00±0.00 19.94±0.13
GCN 60.77±3.67 20.06±00.18 20.02±00.06 20.01±00.01 20.04±0.12 20.10±0.30 20.08±0.30
QGNN 51.35±9.10 20.03±00.12 20.01±00.02 19.99±00.07 20.23±0.21 19.94±0.18 20.00±0.00

APPNP 55.19±6.26 33.46±07.43 34.72±14.98 36.16±14.92 20.64±1.32 20.16±0.37 20.10±0.30
SAGE 65.38±5.15 67.64±09.81 68.28±10.92 82.96±10.98 23.68±3.83 20.44±0.95 20.02±0.14
GIN 72.69±4.62 28.46±08.01 20.12±00.20 20.98±08.28 20.14±0.42 19.88±0.36 20.00±0.00
GAT 72.31±3.01 22.34±03.13 21.90±02.89 21.58±01.80 19.90±0.20 20.04±0.28 20.16±0.42
SSSNET 24.04±9.29 91.04±03.60 94.94±01.01 96.77±00.80 31.41±5.91 22.34±1.31 21.13±1.03

DGCN 71.15±6.32 30.02±06.57 30.22±11.94 28.40±08.62 20.10±0.30 20.00±0.00 20.00±0.00
DiGraph 71.16±5.57 53.84±14.28 38.50±12.20 34.78±09.94 32.82±2.14 24.44±2.33 20.76±1.34
DiGCL 64.62±4.50 19.51±01.21 20.24±00.84 19.98±00.45 20.00±0.00 20.00±0.00 20.00±0.00
MagNet 55.96±3.59 78.64±01.29 87.52±01.30 91.58±01.04 31.46±2.20 22.74±1.12 20.88±1.62
SigMaNet 74.23±5.24 87.44±00.99 96.14±00.64 98.60±00.31 31.26±2.08 22.32±1.69 19.94±1.07

GraQuaterGCN 75.58±3.85 87.46±00.73 96.44±00.12 98.80±00.20 64.28±1.04 70.60±1.62 71.58±1.52

Table 2: Accuracy (%) on the node classification task.

Node classification
Di150

δ = 0.2 δ = 0.5 δ = 0.7

ChebNet 19.93±00.20 20.00±00.00 20.00±00.00
GCN 20.00±00.00 20.00±00.00 20.07±00.20
QGNN 19.87±00.40 19.93±00.20 20.00±00.00

APPNP 22.87±08.60 21.07±03.20 20.00±00.00
SAGE 78.40±14.35 33.20±14.10 20.33±01.69
GIN 24.67±06.76 28.13±08.87 23.67±06.24
GAT 51.20±10.18 29.33±10.05 21.40±03.78
SSSNET 92.71±12.48 86.18±17.77 61.78±24.44

DGCN 26.87±08.43 21.87±05.60 20.00±00.00
DiGraph 97.40±01.01 88.27±03.14 58.93±08.47
DiGCL 20.00±00.00 20.00±00.00 20.00±00.00
MagNet 97.87±01.90 74.53±10.43 31.13±06.65
SigMaNet 74.67±04.15 49.60±03.07 24.67±04.40

QuaterGCN 99.73±00.33 99.85±00.13 99.93±00.03

Table 3: Accuracy (%) on the node classification task.

Differently from the NC task, in the 3CEP task the dif-
ference in performance between the methods is smaller, as
already observed by Zhang et al. (2021b) and Fiorini et al.
(2023). Nevertheless, the results indicate that the advantages
provided by the Quaternionic Laplacian are still event, albeit
being of smaller magnitude.

Focusing on QGNN, QuaterGCN outperforms it on 9 out
of 10 datasets by an average of 25.58%. This further rein-
forces that the better performance of QuaterGCN is largely
due to it relying on our proposed Laplacian matrix Lϙ rather
than on the mere adoption of quaternionic weights as done in
QGNN with the classical Laplacian.

Table 4 suggests that simpler methods designed for undir-
ected graphs perform increasingly better when δ increases
on the Di150 dataset. This is likely due the fact that
these graphs feature a small difference in edge weight. If

Auv ≃ Avu, not much is lost if the (almost symmetric) di-
gon (u, v), (v, u) is reduced to a single undirected edge of
weight 1

2 (Auv+Avu), as done when, e.g., using the classical
real-valued Laplacian matrix, as this would only lead to a
small loss of information, if any. What is more, the larger
the number of digons, the more the graph becomes close to
being undirected if the difference in weight is small, which
explains why simpler (and arguably easier to train) methods
designed for undirected graphs achieve an increasingly better
performance as the percentage of digons δ increases.

Four/Five-Class Edge Prediction Task (4/5CEP)
The 4CEP task is to predict whether (u, v) ∈ E+, (u, v) ∈
E−, (v, u) ∈ E+, and (v, u) ∈ E− (with E+ and E− being
the positive- and negative-weight edges), while the 5CEP
task also considers the class where (u, v) /∈ E ∧ (v, u) /∈
E. Due to their nature, for both tasks we focus on every
dataset featuring both positive and negative weights, i.e., on
all the real-world datasets except for Telegram. We run the
experiments with 5-fold cross-validation with an 80%/20%
split for training and testing, preserving graph connectivity.

Due to the nature of the tasks, we compare QuaterGCN
against the only methods that can handle the sign of the edge
weights, i.e.: i) the signed graph neural networks SGCN (Derr,
Ma, and Tang 2018), SiGAT (Huang et al. 2019), SNEA (Li
et al. 2020), SDGNN (Huang et al. 2021), and SSSNET (He
et al. 2022b); and ii) the spectral GCNs that are well-defined
for negative edge weights, i.e., SigMaNet (Fiorini et al. 2023)
and MSGNN (He et al. 2022a).

Table 5 and 6 show that, when compared to the other ap-
proaches, QuaterGCN achieves superior performance in 8 out
of 10 cases, while being the second-best model in the other
2. In comparison with the second-best model, QuaterGCN
achieves an average performance improvement of 1.14%,
with a maximum of 3.61% and a minimum of 0.13%.

While not as large as for the NC task, the better perform-
ance that QuaterGCN achieves on the 4CEP and 5CEP tasks
confirms the superior performance of the model we proposed.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12012

Three-Class Edge prediction
Di150 DBSM

Telegram Bit Alpha* Bitcoin OTC* δ = 0.2 δ = 0.5 δ = 0.7 αuv = 0.05 αuv = 0.08 αuv = 0.1
ChebNet 63.65±4.65 82.82±0.82 83.01±1.09 40.58±0.07 48.81±0.53 52.10±0.88 33.34±0.01 33.36±0.07 33.33±0.02
GCN 53.86±1.60 82.61±0.67 82.49±0.99 40.60±0.07 49.00±0.08 53.51±0.10 33.33±0.02 33.32±0.03 33.34±0.01
QGNN 52.33±1.50 80.93±0.63 79.97±0.80 40.60±0.07 49.00±0.08 52.51±0.09 33.38±0.09 33.43±0.26 33.37±0.04

APPNP 50.82±6.31 82.14±0.89 81.77±0.63 40.55±0.08 48.98±0.09 52.50±0.10 37.67±4.04 37.84±5.70 37.52±5.33
SAGE 69.28±7.24 55.82±1.60 85.19±0.64 40.62±0.14 49.00±0.08 52.52±0.09 39.50±3.74 38.51±3.55 42.69±3.87
GIN 58.41±1.26 77.93±0.86 76.35±0.77 40.56±0.08 48.98±0.10 52.47±0.10 34.65±2.62 33.34±0.01 33.52±0.37
GAT 67.34±2.50 84.93±1.20 85.02±0.74 40.64±1.79 48.44±1.63 52.51±0.09 33.70±0.79 33.35±0.07 33.91±1.63

DGCN 75.01±3.60 85.01±0.95 85.03±0.64 40.57±0.06 48.82±0.50 52.51±0.08 34.12±2.17 34.78±2.11 35.24±2.36
DiGraph 74.27±1.02 83.66±0.72 84.14±0.82 41.38±0.92 48.90±0.11 52.40±0.09 41.30±1.41 42.57±1.62 53.57±1.73
DiGCL 66.03±0.84 77.68±0.74 76.35±0.77 29.70±0.04 25.50±0.04 23.74±0.04 38.30±0.15 38.17±0.07 37.58±0.12
MagNet 82.28±0.84 85.72±0.67 85.66±0.78 45.47±1.70 48.78±0.35 52.19±0.43 43.62±1.11 46.76±1.13 47.76±1.12
SigMaNet 80.13±0.87 85.52±0.61 84.61±0.79 45.50±1.41 47.02±0.91 51.81±0.80 43.65±0.36 47.26±0.17 48.60±0.17

QuaterGCN 81.17±0.74 86.17±0.57 86.06±0.60 47.14±0.21 49.01±0.16 52.07±0.22 44.10±0.58 47.26±0.56 48.68±0.26

Table 4: Accuracy (%) on the three-class edge prediction task.

Four-Class Edge prediction
Bitcoin Alpha Bitcoin OTC WikiRfa Slashdot Epinions

SGCN 48.05±0.29 52.52±0.71 68.37±0.51 64.01±0.24 67.99±0.56
SiGAT 50.12±1.80 50.86±1.45 57.68±0.63 54.82±0.32 60.21±0.26
SDGNN 48.05±0.29 54.77±0.67 62.35±1.09 62.82±4.16 69.48±0.13
SNEA 47.61±1.26 49.25±0.86 59.30±1.32 57.66±0.24 60.35±0.45
SSSNET 49.53±1.13 52.75±1.71 65.84±0.77 64.53±1.98 69.89±2.26

SigMaNet 59.59±1.68 60.79±0.82 74.09±0.14 78.54±0.17 79.12±0.22
MSGNN 58.91±1.17 63.12±0.86 75.07±0.41 79.46±0.25 80.96±0.32

QuaterGCN 61.74±0.94 65.36±0.84 75.19±0.47 79.21±0.13 81.10±0.18

Table 5: Accuracy (%) on the four-class edge prediction tasks.

Five-Class Edge prediction
Bitcoin Alpha Bitcoin OTC WikiRfa Slashdot Epinions

SGCN 78.43±0.36 77.54±0.56 67.74±0.29 64.74±0.16 74.07±0.32
SiGAT 76.68±0.47 74.37±1.18 58.49±1.51 48.01±0.95 57.58±1.34
SDGNN 77.75±0.82 77.28±0.58 62.83±1.90 60.53±4.88 73.27±0.09
SNEA 79.25±0.38 77.36±0.27 62.61±0.44 62.21±0.16 70.70±0.31
SSSNET 77.89±0.41 75.06±0.55 63.74±2.58 67.15±0.44 73.40±1.16

SigMaNet 81.68±0.37 80.92±0.36 74.22±0.12 78.31±0.06 82.85±0.08
MSGNN 81.95±0.47 82.02±0.13 76.63±0.24 78.45±0.35 83.54±0.23

QuaterGCN 82.56±0.46 82.13±0.21 76.33±0.16 78.55±0.35 84.03±0.09

Table 6: Accuracy (%) on the five-class edge prediction tasks.

Conclusions
We have proposed the Quaternionic Laplacian Lϙ, a
quaternion-valued graph Laplacian which generalizes dif-
ferent previously-proposed Laplacian matrices while allow-
ing for the seamless representation of graphs and digraphs
of any weight and sign featuring any number of digons
without suffering from losses of topological information. We
have then proposed QuaterGCN, a spectral GCN with qua-
ternionic network weights that employs a quaternion-valued
convolution operator built on top of Lϙ. Our extensive ex-
perimental campaign has highlighted the advantages of em-
ploying our quaternion-valued graph Laplacian matrix to
leverage the full topology of input graphs featuring digons.

Future works include extending the Quaternionic Laplacian
to multi-relational graphs with multiple directional edges and
to temporal (time-extended) graphs.

Acknowledgements
This work was partially funded by the PRIN 2020 pro-
ject ULTRA OPTYMAL - Urban Logistics and sustainable
TRAnsportation: OPtimization under uncertainty and MA-
chine Learning (grant number 20207C8T9M) and the PRIN-
PNRR 2022 project HEXAGON: Highly-specialized EXact
Algorithms for Grid Operations at the National level (grant
number P20227CYT3), both funded by the Italian University
and Research Ministry.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12013

References
Bovet, A.; and Grindrod, P. 2020. The activity of the
far right on Telegram. ResearchGate preprint, DOI:
10.13140/RG.2.2.16700.05764: 1–19.
Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; and
Vandergheynst, P. 2017. Geometric deep learning: going
beyond euclidean data. IEEE Signal Processing Magazine,
34(4): 18–42.
Carlone, L.; Tron, R.; Daniilidis, K.; and Dellaert, F. 2015.
Initialization techniques for 3D SLAM: A survey on rotation
estimation and its use in pose graph optimization. In 2015
IEEE international conference on robotics and automation
(ICRA), 4597–4604. IEEE.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information processing
systems, 29.
Derr, T.; Ma, Y.; and Tang, J. 2018. Signed graph convolu-
tional networks. In 2018 IEEE International Conference on
Data Mining (ICDM), 929–934. IEEE.
Dixit, P.; and Silakari, S. 2021. Deep learning algorithms for
cybersecurity applications: A technological and status review.
Computer Science Review, 39: 100317.
Fanuel, M.; Alaíz, C. M.; and Suykens, J. A. K. 2017. Mag-
netic eigenmaps for community detection in directed net-
works. Physical Review E, 95(2).
Fiorini, S.; Coniglio, S.; Ciavotta, M.; and Messina, E. 2023.
Sigmanet: One laplacian to rule them all. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
7568–7576.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30: 1–11.
Hamilton, W. R. 1866. Elements of quaternions. Longmans,
Green, & Company.
Hammond, D. K.; Vandergheynst, P.; and Gribonval, R. 2011.
Wavelets on graphs via spectral graph theory. Applied and
Computational Harmonic Analysis, 30(2): 129–150.
He, Y.; Perlmutter, M.; Reinert, G.; and Cucuringu, M. 2022a.
Msgnn: A spectral graph neural network based on a novel
magnetic signed laplacian. In Learning on Graphs Confer-
ence, 40–1. PMLR.
He, Y.; Reinert, G.; Wang, S.; and Cucuringu, M. 2022b.
SSSNET: Semi-Supervised Signed Network Clustering. In
Proceedings of the 2022 SIAM International Conference on
Data Mining (SDM), 244–252. SIAM.
He, Y.; Zhang, X.; Huang, J.; Rozemberczki, B.; Cu-
curingu, M.; and Reinert, G. 2022c. PyTorch Geometric
Signed Directed: A Software Package on Graph Neural
Networks for Signed and Directed Graphs. arXiv preprint
arXiv:2202.10793.
Huang, J.; Shen, H.; Hou, L.; and Cheng, X. 2019. Signed
graph attention networks. In International Conference on
Artificial Neural Networks, 566–577. Springer.

Huang, J.; Shen, H.; Hou, L.; and Cheng, X. 2021. SDGNN:
Learning Node Representation for Signed Directed Networks.
35: 196–203.
Jia, Y.-B. 2008. Quaternions and rotations. Com S, 477(577):
15.
Khan, W. A.; Chung, S. H.; Awan, M. U.; and Wen, X. 2020.
Machine learning facilitated business intelligence (Part I)
Neural networks learning algorithms and applications. Indus-
trial Management & Data Systems, 120(1): 164–195.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classific-
ation with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017 - Con-
ference Track Proceedings.
Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
dict then propagate: Graph neural networks meet person-
alized pagerank. In Proceedings of the 7th International
Conference on Learning Representations, 1–15.
Ko, T. 2022. A Graph Convolution for Signed Directed
Graphs. arXiv preprint arXiv:2208.11511.
Kumar, S.; Spezzano, F.; Subrahmanian, V. S.; and Faloutsos,
C. 2016. Edge Weight Prediction in Weighted Signed Net-
works. In 2016 IEEE 16th International Conference on Data
Mining (ICDM), 221–230.
Le, T.; Tran, H.; and Le, B. 2023. Knowledge graph embed-
ding with the special orthogonal group in quaternion space
for link prediction. Knowledge-Based Systems, 110400.
Leskovec, J.; Huttenlocher, D.; and Kleinberg, J. 2010.
Signed networks in social media. In Proceedings of the
SIGCHI conference on human factors in computing systems,
1361–1370.
Li, Y.; Tian, Y.; Zhang, J.; and Chang, Y. 2020. Learn-
ing signed network embedding via graph attention. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, 4772–4779.
Li, Y.; Zemel, R.; Brockschmidt, M.; and Tarlow, D. 2016.
Gated Graph Sequence Neural Networks. In Proceedings of
ICLR’16.
Lieb, E. H.; and Loss, M. 1993. Fluxes, Laplacians, and
Kasteleyn’s theorem. In Statistical Mechanics, 457–483.
Springer.
Nguyen, T. D.; Phung, D.; et al. 2021. Quaternion graph
neural networks. In Asian conference on machine learning,
236–251. PMLR.
Parcollet, T.; Morchid, M.; and Linarès, G. 2020. A survey
of quaternion neural networks. Artificial Intelligence Review,
53: 2957–2982.
Parcollet, T.; Ravanelli, M.; Morchid, M.; Linarès, G.; Tra-
belsi, C.; Mori, R. D.; and Bengio, Y. 2019. Quaternion
Recurrent Neural Networks. In International Conference on
Learning Representations.
Qi, L.; and Luo, Z. 2021. A Note on Quaternion Skew-
Symmetric Matrices. arXiv preprint arXiv:2110.09282.
Tong, Z.; Liang, Y.; Ding, H.; Dai, Y.; Li, X.; and Wang,
C. 2021. Directed graph contrastive learning. Advances in
Neural Information Processing Systems, 34: 19580–19593.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12014

Tong, Z.; Liang, Y.; Sun, C.; Li, X.; Rosenblum, D. S.; and
Lim, A. 2020a. Digraph inception convolutional networks.
Advances in Neural Information Processing Systems, 2020-
December(NeurIPS): 1–12.
Tong, Z.; Liang, Y.; Sun, C.; Rosenblum, D. S.; and
Lim, A. 2020b. Directed Graph Convolutional Network.
arXiv:2004.13970.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
International Conference on Learning Representations.
Wang, C.; Li, L.; Zhang, H.; and Li, D. 2022. Quaternion-
based knowledge graph neural network for social recom-
mendation. Knowledge-Based Systems, 257: 109940.
West, R.; Paskov, H. S.; Leskovec, J.; and Potts, C. 2014.
Exploiting social network structure for person-to-person sen-
timent analysis. Transactions of the Association for Compu-
tational Linguistics, 2: 297–310.
Wu, L.; Wang, D.; Feng, S.; Zhou, X.; Zhang, Y.; and Yu, G.
2022. Graph Collaborative Filtering for Recommendation in
Complex and Quaternion Spaces. In Proc. of Web Informa-
tion Systems Engineering (WISE 2022): 23rd International
Conference, 579–594. Springer.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Ye, Z.; Kumar, Y. J.; Sing, G. O.; Song, F.; and Wang, J.
2022. A Comprehensive Survey of Graph Neural Networks
for Knowledge Graphs. IEEE Access, 10: 75729–75741.
Zhang, J.; Hui, B.; Harn, P.-W.; Sun, M.-T.; and Ku, W.-
S. 2021a. sMGC: A Complex-Valued Graph Convolu-
tional Network via Magnetic Laplacian for Directed Graphs.
arXiv:2110.07570.
Zhang, X.; He, Y.; Brugnone, N.; Perlmutter, M.; and Hirn,
M. 2021b. Magnet: A neural network for directed graphs. Ad-
vances in neural information processing systems, 34: 27003–
27015.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12015

