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Abstract

Graph Neural Networks (GNNs) demonstrate their signif-
icance by effectively modeling complex interrelationships
within graph-structured data. To enhance the credibility and
robustness of GNNs, it becomes exceptionally crucial to bol-
ster their ability to capture causal relationships. However,
despite recent advancements that have indeed strengthened
GNNs from a causal learning perspective, conducting an
in-depth analysis specifically targeting the causal modeling
prowess of GNNs remains an unresolved issue. In order to
comprehensively analyze various GNN models from a causal
learning perspective, we constructed an artificially synthe-
sized dataset with known and controllable causal relation-
ships between data and labels. The rationality of the gener-
ated data is further ensured through theoretical foundations.
Drawing insights from analyses conducted using our dataset,
we introduce a lightweight and highly adaptable GNN mod-
ule designed to strengthen GNNs’ causal learning capabil-
ities across a diverse range of tasks. Through a series of
experiments conducted on both synthetic datasets and other
real-world datasets, we empirically validate the effectiveness
of the proposed module. The codes are available at https:
//github.com/yaoyao-yaoyao-cell/CRCG.

Introduction
Graph representation learning is a fundamental challenge
across diverse domains. It involves mapping intricate graphs
into compact vector representations while retaining vital
structural and semantic insights. By incorporating neural
networks, GNNs (Bilot et al. 2023) have emerged as po-
tent tools for addressing such a challenge. However, GNNs
typically model statistical, not causal, relationships between
data and labels. This can compromise reliability, especially
with intricate graph data. Recognizing this, there’s a grow-
ing emphasis on enhancing GNNs’ causal modeling capa-
bilities. Enabling GNNs to grasp causal links between data
and labels can bolster robustness and credibility, leading to
superior outcomes in various real-world scenarios.

*These authors contributed equally.
†Corresponding author.
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Currently, there are several emerging approaches aimed
at enhancing the causal modeling capability of GNNs while
maintaining an end-to-end framework. These methods aim
to eliminate the influence of confounder within graph data,
as confounder can create a false association between the
cause and effect due to its correlation with both (Pearl 2002).
Specifically, some approaches (Wu et al. 2022; Fan et al.
2022a) involve partitioning the training data into causal
components and confounders, followed by separate process-
ing to enable the model to disregard the confounders. Al-
ternatively, other methods (Chen et al. 2022; Gao et al.
2023) aim to directly identify causal data or eliminate con-
founders to achieve the modeling of causal relationships.
Furthermore, there exists a multitude of techniques that cen-
ter their focus on studying the modeling capability of GNNs
for specific causal relationships in practical application sce-
narios (Cao et al. 2023; Gao, Luo, and Wang 2022; Wang
et al. 2022b). These GNN causal enhancement methods have
all demonstrated favorable outcomes, effectively enhancing
the robustness and credibility of GNN models. Furthermore,
these approaches don’t alter the network backbone; rather,
they introduce new modules or adjust training processes
to enhance causality. While relevant models have achieved
some progress in enhancing the modeling of causal relation-
ships within the GNNs, there is still a lack of in-depth re-
search in this area.

To address such an issue, we aim at conducting a compre-
hensive and detailed analysis. The analysis starts by study-
ing the dataset and observing how confounders in the data
might impact GNN training. However, due to the complex-
ity of graph data, manually identifying such confounders and
their specific effects is challenging. Thus, we constructed a
synthetic dataset called Causal Relationship Configurable
Graph (CRCG) dataset, which can generate complex graph
data with explicitly identifiable and controllable causal rela-
tionships. We have also theoretically demonstrated the ratio-
nality of the data generation process for the CRCG dataset.

Utilizing the CRCG dataset, we conducted a series of ex-
periments to compare the performance differences between
GNN with causal enhancement and conventional GNN un-
der different scenarios. Figure 1 presents the results. It is
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(a) The performance of DIR (Wu et al. 2022), a GNN with causal
enhancement method, and Empirical Risk Minimization (ERM),
as conventional GNN, on datasets devoid of confounders. ERM
and DIR employ identical backbone architectures with consistent
network sizes.
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(b) The performance improvement achieved by DIR on the GNN
model when confronted with varying degrees of correlation be-
tween confounders and causal factors. The degree of correlation
denotes the increment in the probability of the corresponding
confounder appearing when specific causal factors are present, as
compared to the probability of other random noise occurrences.
Therefore, the larger degree of correlation is, the stronger the in-
terference of the confounder.

Figure 1: Experimental results with CRCG.

evident that in the presence of confounders within graph
data, the GNN with causal enhancement method does ex-
hibit a certain degree of effectiveness. However, in scenar-
ios without confounder, conventional GNN performs on par
or even outperforms GNN with causal enhancement. Addi-
tionally, we observed that as the correlation degree between
the confounder and causal factor changes, the advantage of
GNN with causal enhancement diminishes. Further experi-
mental results in Table 2 and 3 also suggest the same phe-
nomenon on more baselines. The experimental findings re-
veal that GNNs with causal enhancement did not succeed
in completely eliminating confounder across all scenarios.
Moreover, in scenarios without confounder, they could even
have a counterproductive effect.

To explain this experimental phenomenon, we conducted
a more in-depth analysis, both theoretically and empirically,
leading to a conclusion. It states that current GNN causal
enhancement methods essentially manipulate the GNNs by
applying operations based on certain priors to mitigate the
impact of confounding factors on the model’s outputs. And

such operation needs to conduct with a prior of the graph
data. Furthermore, such interventions can be affected by
changes in the dataset, particularly the probabilistic corre-
lation between confounders and causal elements. Building
upon the aforementioned findings, we propose that since
the primary objective is to minimize the influence of con-
founders on the model’s outputs, it is sufficient to apply op-
erations directly to the model’s output representations. This
approach reduces the need for introducing additional neural
networks, thereby simplifying the model. Furthermore, we
can make the model more flexible and adjustable to accom-
modate various datasets.

Based on this line of thought, we introduce a lightweight
module called the Representation-based Causality Augmen-
tation Module (R-CAM) to optimize the GNNs’ ability in
modeling causal relationships. R-CAM operates in a plug-
and-play manner and can be seamlessly applied to various
GNN models. R-CAM compels GNN models to acquire
more causal knowledge by accentuating features causally
linked to labels and disregarding features devoid of causal
relationships with the labels. The introduced prior knowl-
edge in R-CAM can be easily tailored to suit different
datasets. Our multiple experiments on both artificially syn-
thesized datasets and real-world datasets have demonstrated
the efficacy of R-CAM.

Our contributions are as follows:

• We construct a novel synthetic graph dataset, CRCG,
with inherent causal relationships and controllability.
CRCG significantly surpasses existing datasets of similar
nature. Additionally, the rationality of the data generation
process for CRCG has been theoretically demonstrated.

• We conducted an array of analyses on various GNN mod-
els using the CRCG dataset and arrived at corresponding
conclusions. Both theoretical and experimental evidence
substantiates our findings.

• Building upon our findings, we devise a novel plug-
and-play module named R-CAM. R-CAM is applicable
across various GNN models and enhances their capacity
for causal relationship modeling. Through experiments
conducted on both artificially synthesized and real-world
datasets, we validate the efficacy of R-CAM.

Related Works
Graph Neural Networks
GNNs have garnered significant attention in recent years
due to their remarkable capability in learning from graph-
structured data. Early GNNs laid the foundation for node-
level and graph-level representation learning (Kipf and
Welling 2017; Velickovic et al. 2018; Xu et al. 2019). Since
then, a multitude of GNN variants have emerged (Wang et al.
2022a; Fu, Zhao, and Bian 2022; Zhang et al. 2022), each
addressing specific challenges. In addition, there’s an in-
creasing interest in enhancing GNNs’ ability to model causal
relationships (Wu et al. 2022), as GNNs with causal en-
hancement aim to incorporate causal inference into graph
learning, leading to more reliable predictions.
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Dataset Subgraph Adjustable Concatenation Node Feature Adjustable Total
Types Subgraph Shapes Methods Generation Methods Feature Generation Combinations

Synthetic Graph 5 Partially 1 1 Not 25(Ying et al. 2019) Adjustable Adjustable
Spurious-Motif 6 Partially 1 1 Not 36(Wu et al. 2022) Adjustable Adjustable

CRCG 25 Fully 4 25 Fully 3750Adjustable Adjustable

Table 1: Comparative analysis of our dataset with other similar datasets. The term “Total Combination” refers to the maximum
possible number of combinations attainable when all available graphical elements are employed and juxtaposed in pairs. Please
refer to Appendix B for further details.

Causal Learning
Causal learning aims at inferring and understanding causal
relationships between events. Current causal learning can be
divided into two main directions: causal inference and causal
discovery (Zhou, White, and Schwing 2018; Athey and Wa-
ger 2018; Cheng, Fan, and Liao 2019). The optimization
of neural network robustness and reliability through causal
learning methods has emerged as a focal point of research
interest among scholars (Li et al. 2022; Jin et al. 2022). Re-
cently, causal learning methods have also been widely used
in graph neural networks . Such methods (Wu et al. 2022;
Chen et al. 2022; Gao et al. 2023) discovered potential laws
in graph representation learning by studying causality in
graph learning, and improved the completion effect of cor-
responding downstream tasks. We aim to develop a sound
analytical approach to thoroughly analyze these methods.

Evaluation on the Causal Modeling Capability
of GNNs

Preliminaries
Causal Model In the realm of causality (Pearl et al. 2000),
researchers analyze causal relationships within a system by
employing causal models. A causal model is a framework
used to represent the causal relationships between different
variables or factors in a system. A causal model M can be
represented as a graph, where variables are connected by di-
rected edges to indicate the direction of influence. For a vari-
able X , its ancestor S in a causal model is a variable that di-
rectly or indirectly influences X . On the other hand, descen-
dant D is a variable that is directly or indirectly influenced
by X . In our analysis, we assume the existence of a causal
model M that can be used to model our task. However, the
specific structure of this model is currently unknown to us.

CRCG Dataset
Firstly, we present the details of our proposed CRCG
dataset. To thoroughly analyze the ability of GNNs in mod-
eling causal relationships from multiple perspectives, the
CRCG dataset is created as a synthetically generated dataset
that allows for the construction of various causal relation-
ships as needed. Table 1 gives a comparison of CRCG with
other synthetic graph datasets with controllable causal rela-
tionships. The CRCG dataset is designed to create graphs

with intricate structures and node features. It involves uti-
lizing various controllable subgraphs to construct the entire
graph through distinct connection methods. Node features
are also generated using diverse patterns. A detailed descrip-
tion of the dataset can be found in Appendix B.

CRCG dataset offers a more diverse and intricate set of
graph data to enable rigorous testing of GNNs in more com-
plex scenarios. Not only does the CRCG dataset provide a
wider range of graph data construction patterns, but it also
allows for the adjustment of these patterns through parame-
ters, significantly enriching the foundational dataset for ana-
lyzing graph learning algorithms. Furthermore, despite gen-
erating a large number of complex graph data, the entire data
generation process of CRCG is pre-known and understood,
facilitating causal analysis of neural networks trained on this
dataset.

Data Generation. We now proceed with an analysis to un-
derstand how to effectively generate data based on CRCG.
The graph data G can be decomposed into three compo-
nents: the causal factors X that have a causal relationship
with the labels, the confounder C that are probabilistically
related to the labels but lack a causal relationship, and the
purely independent noise components U . Modeling X and
U is relatively straightforward within our dataset since we
can determine the labels based on X and add randomly gen-
erated noise data as U . However, establishing C as a variable
that complicates and challenges the modeling of causal re-
lationships requires more rigorous theoretical guidance. We
employ the following theorem to guide the construction pro-
cess of C.

Theorem 1 Assuming that the generation process of the
graph data G follows a Markov process, then the set of con-
founders C in G must be descendants of the set of causal
factors X in G or their ancestors.

The proof can be found in Appendix A.1. Due to the fact
that our dataset is constructed based on a series of decisions
and computations, the data generation process conforms to a
Markov process. Hence, we adhere to Theorem 1 to generate
the confounder C. Specifically, given the manipulability of
the data generation process for CRCG, our objective is to
ensure that certain aspects of confounders are determined
by specific causal factors, as opposed to random data.
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Evaluations
Drawing on the CRCG dataset and relevant theories, we
have the capacity to conduct both theoretical and empiri-
cal analyses concerning the causal modeling capabilities of
diverse GNN models. In the domain of causality research,
the causal impact of variable X on variable Y can be effec-
tively expressed through the causal effect P (Y |X̂) (Pearl
et al. 2000), with X̂ representing the intervention operation
on variable X . However, intervention operations necessi-
tate data manipulation, value assignment, and observation
of corresponding responses, which is challenging to achieve
within the training context of GNNs. In order to analyze the
causality of knowledge acquired by GNN models, we pro-
pose a novel concept “causally estimability,” and employ it
as a criterion for assessing the causal learning capabilities of
GNN models.
Definition 1 (Causally Estimability) Assuming there exists
a GNN fθ∗(·) that models the causal effect P (Y |Ĝ), then
the causal effect P (Y |Ĝ) is said to be “causally estimable”
if the following equation holds:

θ∗ = argmin
θ

( n∑
i=1

H
(
fθ(Gi), Yi

))
, (1)

where Gi is a graph sampled from the value space G of G. Yi
denotes the corresponding ground-truth label. n is the num-
ber of sampled graph data with a sufficiently large value.
H denotes the cross-entropy loss. f(·) denotes a GNN that
models probabilistic relation between G and Y . θ and θ∗

denotes the network parameters of f(·).
Definition 1 provides a precise framework for modeling
causal effects within the realm of graph representation learn-
ing. The underlying concept of this definition is notably in-
tuitive. Drawing inspiration from (Pearl 2011), we can view
a causal relationship as a theorem that can be formalized as
a function. Consequently, base on Universal Approximation
Theorem (Cybenko 1989), if causal effects can be accurately
manifested within the data, they can be effectively approx-
imated through training—a quality we term as causally es-
timability.

Next, we proceed to analyze the relationship between Y
and G. Within the CRCG dataset, all labels can be deter-
mined based on the information within the graph data G.
And, in real-world scenarios, graph data labels are typically
annotated based on the content of the data. Therefore, we
can actually consider that G truncates the influence of all its
ancestors on Y. To facilitate subsequent analysis and reduce
unnecessary interference, we propose the following assump-
tions.
Assumption 1 For any ancestor S of G, the conditional in-
dependence S ⊥⊥ Y |G holds.
With Definition 1 and Assumption 1, we can analyze the
model’s ability to model causal relationships under the ab-
sence of confounders C. Theoretically, we propose the fol-
lowing theorem.
Theorem 2 If there are no confounders in G, and Assump-
tion 1 holds, it can be asserted that the causal effect P (Y |Ĝ)
is causally estimable.

Method noise=0 noise=1 noise=2
ERM 48.33±0.70 35.16±1.42 24.91±1.21
ASAP 48.94±0.63 33.52±1.34 26.35±0.88
∆ +0.61 -1.64 +1.44
DIR 46.80 ±0.92 36.37±1.18 27.53±1.02
∆ -1.53 +1.21 +2.62
CIGA 43.18±1.24 26.42±1.38 24.47±1.29
∆ -5.15 -8.74 -0.44
RCGRL 52.72±1.60 30.50±0.52 26.44±1.26
∆ +4.39 -4.66 +1.53
DISC 45.60±0.79 38.35±1.31 26.80±0.98
∆ -2.73 +3.19 +1.89

Table 2: Performance of different baselines on the dataset
without confounder. ∆ indicate relative performance com-
pared to ERM: “+” for improvement, “-” for inferiority.

The proof can be found in Appendix A.2. Theorem 2 sug-
gests that if the model’s expressive capacity is sufficiently
strong to model specific causal relationships, and there are
no confounders present in the data, then the said causal rela-
tionships are causally estimable. However, in practical sce-
narios, even in the absence of confounders, the complexity
of the dataset can still introduce interference. We will con-
duct experimental analysis on a dataset without confounders
to compare the performance of conventional GNNs with
GNNs with causal enhancement modules.

We adopt ERM and ASAP (Ranjan, Sanyal, and Talukdar
2020) as foundational benchmarks for conventional GNNs.
Additionally, for GNNs with causal enhancement, we pick
DIR (Wu et al. 2022), CIGA (Chen et al. 2022), DISC (Fan
et al. 2022b) and RCGRL (Gao et al. 2023) as our baseline
methods. These methods adopt the same GNN backbone as
ERM. The details of the methods can be found in Appendix
C.1. We first test the baselines under the scenario with no
confounders. We utilize our proposed CRCG to generate the
corresponding data. The details of the experiment settings
and dataset can be found in Appendix C.2 and C.3.

Results in Table 2 show that, like in the introduction,
methods other than DIR face similar situations. Both GNNs
with causal enhancement and regular GNNs perform simi-
larly, lacking a clear edge. Sometimes, GNNs with causal
enhancement even perform worse. Given Theorem 2, GNNs
can model causal relationships in confounder-free graph
data, but current GNNs fall short due to limited capabil-
ities. In other words, the model’s success depends on the
GNN’s ability to capture data’s probabilistic relationships.
This explains why GNNs with causal enhancement don’t
excel on this dataset. However, questions remain: why do
GNNs with causal enhancement sometimes lag behind reg-
ular GNNs? And why don’t they consistently outperform
when dealing with datasets containing confounders? To ad-
dress these questions, further analysis and experiments are
required.

Therefore, we first conducted a theoretical analysis of the
model’s ability to capture causal relationships on datasets
containing confounders. The following theorem encapsu-
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lates our conclusions.
Theorem 3 If Assumption 1 is satisfied and a confounder
C exists within graph G, then P (Y |Ĝ) is not causally es-
timable. However, such estimation becomes attainable if an
intervention do(C) = C̃ is feasible for all C̃ ∈ C, where C
denotes the value space encompassing all potential values
of C.
The proof can be found in Appendix A.3. Intervention do(·)
denotes an operation that deliberately alters or modifies a
factor in a system to observe its impact on other variables.
Theorem 3 presents a framework for mitigating confounders
in the learning process of GNNs. Another perspective on in-
tervention, as posited by (Pearl et al. 2000), involves treating
the force responsible for the intervention as a variable. We
extend this notion to denote any operation that may impact
the training procedure of GNN as variables, thus broadening
the utility of Theorem 3 for diverse methodological investi-
gations. Specifically, we present the following corollary.
Corollary 1 Under the conditions specified in Theorem 3,
if there exists an operation T such that f(G) ⊥⊥ C | T and
I
(
(f(G);X | T

)
= I

(
f(G);X

)
, then the causal estimabil-

ity of P (Y |Ĝ) is guaranteed given such T .
Proof can be found in Appendix A.4. Corollary 1 states
any operation can substitute Theorem 3’s intervention, given
Corollary 1’s conditions met. This broader characterization
can be used to effectively describe the existing GNNs with
causal enhancement, as they essentially rely on adopting cer-
tain operations to mitigate confounders. However, as the op-
eration must satisfy f(G) ⊥⊥ C | T and I

(
(f(G);X | T

)
=

I
(
f(G);X

)
, shifts in dataset distribution can lower its effi-

cacy. This explains earlier GNNs with causal enhancement’s
reduced performance on generated datasets.

Next, we conducted three distinct types of experiments to
empirically analyze the impact of confounders. Firstly, from
a probabilistic perspective, we adjusted the magnitude of the
confounder. Based on Theorem 1, within the training set, we
establish causal relationships between the confounders and
the causal factors with varying probabilities P . In the test-
ing set, we remove such relationships to assess whether the
GNN model is influenced by the confounders. The details
of the experiment settings and dataset can be found in Ap-
pendix C.2 and C.3.

The experimental results are demonstrated in Table 3.
From the results, we can observe that as P varies, the ad-
vantage of causal GNN over a conventional GNN gradually
shifts. This indicates that, in practice, GNNs with causal en-
hancement might not effectively eliminate confounders in all
scenarios; instead, they can yield favorable outcomes only in
certain cases.

For further analysis, we conduct two additional experi-
ments. One with changing size of confounders, the other
with changing complexity relation between confounder and
causal factors. The details of the experiment settings and
dataset can be found in Appendix C.2 and C.3. The exper-
imental results are demonstrated in Table 4 and 5. We can
observe from the results that, although the performance im-
provement offered by various causal-enhanced GNN algo-

rithms, as compared to conventional GNNs, does experience
certain adjustments with variations in the size of the con-
founder and the intricacy of its connection with the causal
factor, these adjustments are not as significant as the ones
seen in Table 3. This suggests that the probabilistic relation-
ship between the confounder and the causal factor is the pri-
mary factor influencing the effectiveness of causal-enhanced
GNN algorithms.

Methodology
Drawing from theoretical analysis and experimental out-
comes, we propose to emphasize the model’s causal model
capability by directly applying influence to the model’s out-
puts. Additionally, such influence should be applied through
a probabilistic perspective. Specifically, in light of Corollary
2, the actions we apply should aim to maximize the inde-
pendence between C and f(G). Subsequently, we must in-
troduce certain priors to guide our operations. Building upon
Theorem 1, we can derive the following corollary:

Corollary 2 Under the conditions specified in Theorem 1,
the following inequality holds:

I(C;Y ) ≤ I(X;Y ) (2)

where C denotes the set of confounders within G, Y is the
ground-truth label, and X denotes the set of causal factors
within G.

The proof can be found in Appendix A.5. Therefore, We can
draw the conclusion that features with lower mutual infor-
mation with the ground-truth labels tend to possess a higher
propensity of being confounders. Conversely, features that
possess higher mutual information with ground-truth labels
are inclined to exhibit a diminished likelihood of being con-
founders. However, formal computation of the aforemen-
tioned mutual information is challenging, we need an al-
ternative solution. As the mutual information between two
variables indicates the extent to which observing one vari-
able reduces the uncertainty about the other variable. There-
fore, we treat the features that appear consistently in graph
samples of the same category as causal factors. Furthermore,
we treat the features that appear in graph samples of differ-
ent categories as confounders. Next, we proceed to illustrate
how we leverage this conclusion to conduct causal optimiza-
tion of the model.

Specifically, for the graph training dataset {Gi}ni=1, we
can acquire the node representations with GNN gϕ(·). For-
mally, we have:

Zi = gϕ(Gi), (3)

where Zi denotes the set of output node representations of
graph Gi, Zi,j denotes the node representation of node j
within Gi. We employ the function rψ(·) to perform pooling
on node representations, followed by generating predictions
and computing the cross-entropy-based loss. The loss func-
tion can be formulated as follows:

LCE =
n∑
i=1

H
(
rψ(Zi), Yi

)
, (4)
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Method P=5% P=20% P=40% P=60% P=80% P=100%
ERM 34.21±1.56 28.86±1.17 25.94±1.63 24.43±1.40 23.15±1.10 22.62±1.79
ASAP 31.54±1.67 26.05±1.40 23.62±1.23 23.24±1.08 22.71±1.48 22.35±1.04
∆ -2.67 -2.81 -2.32 -1.19 -0.44 -0.27
DIR 38.54±0.99 32.62±1.29 27.15±1.38 26.86±0.87 24.68±0.94 20.71±1.17
∆ +4.33 +3.76 +1.21 +2.43 +1.53 -1.91
CIGA 45.16±1.29 40.48±1.08 26.06±0.86 24.74±1.04 23.05±1.28 19.76±0.95
∆ +10.95 +11.62 +0.12 +0.31 -0.10 -2.86
RCGRL 34.94±0.96 31.96±1.17 24.83±0.69 23.72±0.75 23.51±0.62 21.26±0.53
∆ +0.73 +3.10 -1.11 -0.71 +0.36 -1.36
DISC 41.25±0.83 40.00±0.98 37.00±0.92 35.15±1.35 33.50±1.08 23.60±0.64
∆ +7.04 +11.14 +11.06 +10.72 +10.35 +0.98

Table 3: Performance of different baselines under different magnitudes of confounder. The magnitude is adjusted according to
probability P , which is the probability of a particular confounder occurring under the occurrence of specific causal factors. ∆
indicate relative performance compared to ERM: “+” for improvement, “-” for inferiority.

Method Size=1 Size=3 Size=8 Size=15 Size=20 Size=30
ERM 35.40±0.98 32.70±1.12 30.30±0.69 28.80±0.73 27.70±0.57 27.30±1.19
ASAP 26.10±0.73 25.40±1.49 25.00±1.26 24.80±1.17 24.70±1.08 24.20±0.59
∆ -9.30 -7.30 -5.30 -4.00 -3.00 -3.10
DIR 35.80±0.86 33.70±1.13 30.50±0.96 29.40±0.73 28.30±0.82 25.50±0.79
∆ +0.40 +1.00 +0.20 +0.60 +0.60 -1.80
CIGA 28.25±1.31 26.40±0.76 24.90±0.94 24.30±1.24 24.20±0.71 23.00±0.84
∆ -7.15 -4.60 -5.40 -4.50 -3.50 -4.30
RCGRL 32.20±0.93 28.10±0.65 27.90±1.17 27.80±0.71 25.50±1.06 24.50±1.20
∆ -3.40 -4.60 -2.40 -1.00 -2.20 -2.80
DISC 41.70±0.85 40.10±1.06 39.10±0.62 38.40±1.24 37.10±1.18 36.30±0.95
∆ +6.30 +7.40 +8.80 +9.60 +9.40 +9.00

Table 4: Performance of different baselines under different magnitudes of confounder, which is adjusted according to size.
Size indicates the extent to which the volume of confounder data exceeds that of the causal factor data. ∆ indicate relative
performance compared to ERM: “+” for improvement, “-” for inferiority.

Where H(·) calculates the cross entropy loss. Subse-
quently, we partition the node representations {Zi}ni=1
based on their respective class labels and the correctness of
classification results. For ease of comprehension, we use c
to denote the class, c ∈ {1, 2, ...,m}, m is the number of
classes. For samples with ground-truth labeled class c, we
select all those graph samples that are correctly classified as
class c and construct a matrix S+

c with their corresponding
node representations. S+

c ∈ Rv×h, v denotes the number
of node representations that used to build S+

c , h denote the
length of representation vectors. Likewise, we identify all
incorrectly classified samples and assemble their node rep-
resentations into a matrix S−

c . Then, we calculate matrix SMc
with the following equation:

SMc =
(
S+
c · (S−

c )
T
)
⊙
(
u(S+

c ) · (u(S−
c ))

T
)
, (5)

where ⊙ denotes the Hadamard Product. u(·) can be formu-
lated as follows:

u(S) =
[

1
|s1| ... 1

|sn|

]T
, (6)

where S is a matrix, and s denotes the row vectors. Equa-
tion 5 allows for the computation of the cosine similarity
between all the representation vectors in S+

c and S−
c , where

SMc represents the resulting similarity matrix.
Then, we select the elements within SMc that are larger

than a hyperparameter τ , and mark them as “anchor node
representations”. We traverse through all the similarity ma-
trices corresponding to different categories to label all the
anchor node representations. The anchor node representa-
tions represent the features that consistently appear in graph
samples of the same category. As discussed before, we con-
sider these features to be more reliable and less susceptible
to confounders compared to other features. For each graph
sample Gi, we denote the set of its anchor node representa-
tions as Xi. Subsequently, we compute the feature emphasis
loss La based on Xi.

La = −
n∑
i=1

s
(

pool(Ẋi), pool(Zi)
)
, (7)

where s(·) is the function that calculates the cosine similar-
ity between variables. pool(·) denotes the function that con-
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Method Very low Low Medium High Very high Extremely high
ERM 33.10±0.78 32.90±1.11 31.60±0.89 31.20±0.76 29.50±1.13 27.80±0.97
ASAP 40.50±1.22 38.10±0.87 37.70±0.59 36.40±0.71 36.00±1.04 34.20±0.96
∆ +7.40 +5.20 +6.10 +5.20 +6.50 +6.40
DIR 36.00±1.12 35.70±0.93 34.50±0.74 34.30±1.16 33.10±0.83 33.00±1.18
∆ +2.90 +2.80 +2.90 +3.10 +3.60 +5.20
CIGA 32.50±0.94 31.10±1.07 29.90±1.18 29.80±0.86 25.50±1.23 25.10±0.92
∆ -0.60 -1.80 -1.70 -1.40 -4.00 -2.70
RCGRL 30.10±1.14 29.00±0.98 27.40±1.28 27.20±1.36 25.80±0.76 25.30±1.07
∆ -2.00 -3.90 -4.20 -4.00 -3.70 -2.50
DISC 43.65±0.96 41.00±1.03 39.55±1.42 39.10±0.75 38.95±0.83 37.25±1.25
∆ +10.55 +8.10 +7.95 +7.90 +9.45 +9.45

Table 5: Performance of different baselines under different magnitudes of confounder. The magnitude is adjusted according to
the complexity of the relationship between the confounder and the causal factor. The complexity level is labeled in the first row
of the table. ∆ indicate relative performance compared to ERM: “+” for improvement, “-” for inferiority.

Method Graph-SST5 Graph-Twitter Spurious-Motif CRCG (P=20%) CRCG (P=40%) CRCG (P=80%)
ERM 42.30±0.87 61.20±1.05 33.20±0.95 28.80±0.75 25.94±1.63 24.43±1.40
ERM + R-CAM 43.40±0.68 63.70±1.21 35.60±1.05 31.60±0.93 25.95±1.20 24.93±0.23
ASAP 44.50±1.34 61.50±0.97 34.90±1.25 26.05±1.26 23.62±1.23 22.71±1.48
ASAP + R-CAM 46.00±0.97 64.10±0.52 34.20±1.37 30.80±1.32 28.25±0.80 23.10±0.40
DIR 44.20±1.26 62.80±0.97 43.60±0.73 23.60±0.84 27.15±0.86 24.68±0.94
DIR + R-CAM 46.00±1.60 62.40±0.52 47.30±1.47 31.30±1.47 30.10±2.55 27.68±0.48
CIGA 44.20±1.03 58.90±0.77 34.40±0.79 27.40±0.98 26.06±0.86 23.05±1.28
CIGA + R-CAM 45.40±0.82 60.70±1.31 36.00±1.03 27.00±0.89 36.03±1.13 25.93±0.28
RCGRL 44.50±1.46 60.10±0.74 45.70±0.98 33.30±0.93 24.83±0.69 23.51±0.62
RCGRL + R-CAM 46.50±1.08 63.40±0.96 48.50±0.75 34.40±1.39 28.75±0.65 24.55±0.20
DISC 34.40±1.28 62.50±1.54 42.85±1.23 40.10±1.36 37.00±0.92 33.50±1.08
DISC + R-CAM 38.15±1.21 61.70±0.89 47.52±0.97 41.05±1.05 39.18±1.18 34.40±3.10

Table 6: Performance in different datasets, including classification accuracy in Graph-SST5(ID) and Graph-Twitter, and Unbi-
ased and Biased Spurious-Motif,and our dataset CRCG. The records with improvements compared to the original methods are
highlighted in bold.

duct pooling operation. Ẋi denotes that Xi is detached from
back propagation. Therefore, La encourages other node rep-
resentations to become more similar to the anchor node rep-
resentations, thereby emphasizing the correct and persistent
features across the graph samples.

Next, we design the model to ignore information that may
be affected by confounders. For all samples classified as
class c, we extract the node representations of those cor-
rectly classified graph samples and assemble them into a
matrix I+c . Like S+

c , I+c ∈ Rl×h, l denotes the number of
node representations that are used to construct I+c , h denote
the length of representation vectors. Then, we construct ma-
trix I−c from the node representations of those misclassified
samples. We calculate matrix IMc with the following equa-
tion:

IMc =
(
I+c · (I−c )T

)
⊙
(
u(I+c ) · (u(I−c ))T

)
. (8)

Then, we select the elements within IMc that are larger than
τ , and mark them as “deceptive node representations”. Like
the above, We traverse through all the similarity matrices

corresponding to different categories to label all the decep-
tive node representations. The deceptive node representa-
tions contained in IMc represent the representations that ap-
pear in graph samples classified by the model as the cate-
gory c. Additionally, these representations also appear in the
node representations of samples misclassified as class c, sug-
gesting that they may be influenced by confounders that are
probabilistically correlated with the labels under some sce-
narios. Therefore, we aim for the model to disregard these
representations. For each graph sample Gi, we denote the
set of its anchor node representations as Ci. Subsequently,
we compute the feature ignoring loss Li based on Ci.

Li =
n∑
i=1

s
(

pool(Ċi), pool(Zi)
)
, (9)

Li encourages other node representations to become less
similar to the deceptive node representations, thereby dis-
regarding these representations.
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(a) ERM (b) DIR

Figure 2: Performance of ERM and DIR across datasets with
varying hyperparameters τ , where the semi-transparent part
indicates the standard deviation.

Experiment Friedman P value Significant
Statistic Differences

No confounder 24.54 1.71 × 10−4 exist
With confounder 23.17 3.13 × 10−4 exist
Comparison 45.00 9.22 × 10−7 exist

Table 7: The averaged Friedman test results, encompass ex-
periments both with and without confounders, and compar-
ative experiments with state-of-the-art methods.

We sum up Li and La as the causal enhance loss:

Lc = Li + La. (10)

Lc can be incorporated into the training of any GNN model
to enhance its causality. The overall training loss is a sum-
mation of our proposed loss Lc and the original model loss.
Furthermore, we can adjust the hyperparameter τ to control
the extent of the module’s influence, thus adapting to dif-
ferent datasets. Our proposed R-CAM is only adopted for
training and removed for testing.

Experiments
Effect Analysis
Settings We evaluated our method on various datasets in-
cluding: 1) Graph-SST5 (Yuan et al. 2023), 2) Graph-Twitter
(Yuan et al. 2023), and 3) Spurious-Motif (Wu et al. 2022)
under different bias, 4) our proposed CRCG. Further details
are in Appendix D.3. We integrated the R-CAM method into
different baselines to conduct before-and-after comparative
experiments. Further details are in Appendix D.1 and D.2.

Results Results are summarized in Table 6. After integrat-
ing R-CAM, the majority of algorithms showed varying de-
grees of accuracy improvement across datasets. This vali-
dates the effectiveness of R-CAM in emphasizing causal in-
formation within the data.

Statistically Significance Analysis
To demonstrate the statistical significance of our experi-
ments, we conducted the Friedman test on model perfor-
mance experiments. The results are demonstrated in Table
7. We can observe that according to the results, the sta-
tistically significant differences generally exist with a sig-
nificance level of 0.01. Furthermore, based on the results

Methods Graph-SST5 Graph-Twitter CRCG

ERM 101.22 22.54 25.00
ERM+R-CAM 103.32 23.98 27.20
DIR 194.95 93.83 91.32
DIR+R-CAM 204.23 95.77 94.49
CIGA 25.60 4.44 4.85
CIGA+R-CAM 26.39 4.61 4.98

Table 8: CPU time overhead for different methods, measured
in seconds.

obtained from averaging the outcomes of five experimen-
tal runs, it is clear that our method outperforms the base-
line methods to a significant extent. To illustrate, when com-
pared to its own baseline, ERM, DIR shows an average ac-
curacy improvement of 5.1%. However, with the addition
of R-CAM, the accuracy improvement increases to 15.1%.
This underscores the statistical significance of R-CAM’s ef-
fectiveness.

Computation Cost
To analyze the computational cost of R-CAM, we measure
the CPU time dedicated to computation. As indicated in the
experimental results presented in Table 8, the integration of
R-CAM into ERM results in an average increase of 5.75%
in CPU time overhead. Similarly, DIR and CIGA exhibit av-
erage increases of 3.8% and 3.1% in CPU time overhead, re-
spectively. From these findings, we infer that the CPU time
overhead associated with our proposed method is relatively
modest.

Evaluation on Module Structure
We further evaluated R-CAM by adjusting the similarity
threshold τ for the ERM and DIR (Wu et al. 2022) algo-
rithms on the CRCG, Spurious-Motif, and Graph-Twitter
datasets. Figure 2 shows that the highest accuracy varies
across datasets with different thresholds. This demonstrates
that by adjusting the hyperparameter τ , our model can adapt
to various datasets.

Conclusion
This paper introduces an innovative synthetic dataset,
CRCG, designed specifically for evaluating the causal mod-
eling capabilities of GNNs. Subsequent to the dataset intro-
duction, we conduct thorough theoretical and experimental
analyses, culminating in the introduction of a lightweight
GNN causal enhancement module known as R-CAM. The
efficacy of R-CAM is validated through a series of compre-
hensive experiments.
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