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Abstract

Very deep neural networks lead to significantly better perfor-
mance on various real tasks. However, it usually causes slow
inference and is hard to be deployed on real-world devices.
How to reduce the number of layers to save memory and
to accelerate the inference is an eye-catching topic. In this
work, we introduce an intermediate objective, a continuous-
time network, before distilling deep networks into shal-
low networks. First, we distill a given deep network into
a continuous-time neural flow model, which can be dis-
cretized with an ODE solver and the inference requires pass-
ing through the network multiple times. By forcing the flow
transport trajectory to be straight lines, we find that it is eas-
ier to compress the infinite step model into a one-step neu-
ral flow model, which only requires passing through the flow
model once. Secondly, we refine the one-step flow model to-
gether with the final head layer with knowledge distillation
and finally, we can replace the given deep network with this
one-step flow network. Empirically, we demonstrate that our
method outperforms direct distillation and other baselines on
different model architectures (e.g. ResNet, ViT) on image
classification and semantic segmentation tasks. We also man-
ifest that our distilled model naturally serves as an early-exit
dynamic inference model.

Introduction
It has been widely observed that increasing model depth
leads to significantly better performance on various real
tasks, e.g., image generation (Rombach et al. 2021; Liu et al.
2021a), image classification (Dosovitskiy et al. 2020), and
NLP applications (Brown et al. 2020; Xue et al. 2020). How-
ever, very deep networks increase the cost during inference,
and some of them even require distributedly deployment to
multiple nodes. To alleviate this problem, there has been a
growing interest in developing algorithms for compressing
deep models into shallow or thin networks, using pruning or
knowledge distillation (KD) techniques.

In this work, we propose a new method to train shallow
and efficient neural networks. Compare to thin but deep net-
works, shallow networks are believed to be easier to get de-
ployed with faster inference speed on the Internet of things
(IoT) devices (Mandal et al. 2019). Thus, how to convert
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a well-trained deep network into a shallow version without
loss of accuracy, is a critical problem. Considering tiny net-
works are not easy to get trained well in practice (Graham
et al. 2021; Gong et al. 2021), knowledge distillation (KD)
is usually leveraged to greatly improve model performance.
In this work, we are especially interested in building up a
general and theory-guided algorithm to derive a shallow net-
work, which can be regarded as a kind of knowledge distilla-
tion. Inspired by recent works in straight neural flow models,
we propose to extend this method from image generation to
model compression.

Correspondingly, our training method consists of three
phases: ➀ Instead of directly distilling from a deep teacher
to a shallow student, we first learn a time-continuous model
to mimic a given teacher model. ➁ Then, using the re-
cent methods in straight and transport-cost aware flows (Liu,
Gong, and Liu 2022; Lipman et al. 2022), we apply ReFlow
operator (Liu, Gong, and Liu 2022) to reduce the transport
cost which makes the time-continuous network easy to com-
press to one step (a.k.a., fast simulation). ➂ Finally, we use
KD to refine the one-step model to yield even better per-
formance. Similar to existing works for training shallow or
weight-shared networks (Yang et al. 2021; Sun et al. 2020),
we create multi-stage training and have additional objectives
before the final-step KD. Different from previous heuristic
strategies ,e.g., weight-sharing networks (Yang et al. 2021),
layer-wise progressively distillation (Sun et al. 2020), our
method is inspired by recent studies in neural flow mod-
els. Viewing reducing the number of simulation steps as the
same as compressing the number of blocks, we convert com-
pression to reducing simulation steps for neural flow mod-
els. Notice that reducing transport cost comes to an easy-
to-compress flow model. We propose to first learn an easy-
to-compress flow model by eliminating the transport cost;
after having a flow with low transport cost, we then refine a
one-step simulation flow model with knowledge distillation.

In the following part, we first discuss the background and
related works in Section . After introducing the method in
Section , we verify the performance on multiple datasets
and tasks in Section . We evaluate our model performance
on CIFAR-10 and ImageNet, upon vision transformers and
ResNet. We then transfer the model to the semantic segmen-
tation task, to test whether ours also benefits the downstream
tasks. We also demonstrate that our flow model can serve as
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an early-exit dynamic network. We finally summarize our
results and discuss the weakness and possible future direc-
tions in Section .

Background
Straight Flows A large portion of machine learning prob-
lems can be treated as transporting one distribution to an-
other, e.g. generation, representation learning. Recently, ad-
vances have been made by representing the transport as a
continuous time process, with neural ordinary differential
equations (ODEs) (Chen et al. 2018; Papamakarios et al.
2021; Song, Meng, and Ermon 2020) or diffusion models by
stochastic differential equations (SDEs) (Song et al. 2020;
Ho, Jain, and Abbeel 2020; Tzen and Raginsky 2019; Var-
gas et al. 2021). During training, a neural model is learned to
represent the drift force of the processes. During inference,
the continuous time neural process is used with a discretiza-
tion numerical ODE/SDE solver and outputs the results.
One example is the denoising probabilistic diffusion mod-
els (DDPM) (Ho, Jain, and Abbeel 2020), which achieves
great successes by serving as a generator for images (Sa-
haria et al. 2022), videos (Ho et al. 2022; Liu et al. 2022),
molecules (Wu et al. 2022) and 3D objects (Zheng et al.
2022; Zeng et al. 2022). Recently, people (Liu, Gong, and
Liu 2022; Lipman et al. 2022; Albergo and Vanden-Eijnden
2022) form straight-line trajectories whereas diffusion paths
result in curved paths and find that straight trajectories can
push the transport close to the optimal transport paths and
empirically translate to faster training, faster generation, and
better performance. Intuitively, the straight transport curve
can reduce the transport cost, and the neural model can op-
timally transport two distributions with minimum transport
cost once learning perfectly.
Time-continuous Networks and Weight-shared Net-
works Time-continuous networks, e.g., neural ODE (Chen
et al. 2018), neural bridges (Wu et al. 2022; Wang et al.
2021b), DDPM, recently show their powers in image gener-
ation and other real-world application. These models repeat-
edly feed forward the input data dependent on time t ∈ [0, 1]
and then feed back the final output. The training objective for
a time-continuous neural network fflow can be formulated as

min
θ

∫ 1

0

E
[
∥(fflow(yt, t)− (y1 − y0)∥2

]
dt,

where yt = ty1 + (1− t)y0 t ∈ [0, 1],

(1)

where y0 is the standard input for a neural network, y1 de-
notes the output , e.g., images, texts, t ∈ [0, 1] stands for
time which goes from 0 to 1 during inference, and fflow(·, t)
denotes the neural model for the flow. Starting from t = 0,
the output will smoothly change from the original source
data x = y0 to the target data y1 when t = 1. During in-
ference, we discretize time step t (e.g., t from 0 to 1 with
step 0.1) and the time-continuous neural network can be re-
garded as a weight-shared neural network, whose number of
layers equals to the discretization steps.
Train and Compress Weight-shared Networks Weight-
shared neural networks are a widely-known topic and re-
searchers have studied how to train or compress these mod-

els for a long period. In order to compress a standard multi-
layer neural network, Weight-sharing BERT (Yang et al.
2021) and universal transformer (Dehghani et al. 2018) pro-
pose to first learn a weight-shared network. Weight-sharing
networks reuse a neural layer v, and can be formulated as
y ←− y + v(y), which can be viewed as discretizing the
ODE, dyt = v(yt)dt, with a time-independent velocity field
Neural ODE models also share weights across layers and
can be further accelerated with numerical ODE solvers, e.g.,
Runge–Kutta -45 solver, and Euler solver. However, two is-
sues remained to be large problems, ➀ weight-shared net-
work is usually hard to train (e.g., RNNs), and ➁ we do not
have a principled method for compressing the multiple-layer
weight-shared network into a one-block or few-block model.
Straight Flow is Easy to Compress When learning a neural
flow for distribution transformation (e.g., generative mod-
els), two kinds of information are required. The first is how
to pair different data instances in the source and target do-
main. The second is how to minimize the transport cost.
For supervised learning, we already know how to make the
data pair, and therefore the key issue is to train a neural net-
work that can easily be compressed into a few-step model.
Different from other neural flows, straight flows are found
to be good models for fast simulation. Researchers (Liu,
Gong, and Liu 2022; Lipman et al. 2022) notice that once
the objectives follow a linear interpolation which has low
transport cost, the learned neural flow can get accurate re-
sults with a few-step simulation. Specifically, we say that
a flow dyt = fflow(yt, t)dt is straight if we surely have
fflow(yt, t) = y1 − y0 = const. (“straight” in our paper
refers to straight with a constant speed.) Here, we define the
straightness of any smooth process by

STraj(fflow) =

∫ 1

0

{
∥(y1 − y0)− ẏt∥2

}
dt, (2)

where STraj(fflow) = 0 means exact straightness and ẏt is
the fflow output. A flow with a small STraj(fflow) has nearly
straight paths and can be simulated using numerical solvers
with a small number of discretization steps.

Compared to the other trajectories, which usually require
hundreds of steps to simulate, the straight flow achieves
comparable results on image generation with one-step sim-
ulation (Liu, Gong, and Liu 2022). Therefore, once we
train a time-continuous model or weight-shared model,
which follows the optimal transport trajectories, compress-
ing the depth of the model is theoretically easier than other
approaches. Compared to other compressing methods for
weight-sharing method, this approach is theory-guided and
thus a more principled method.

Method
Inspired by the fast simulation property of straight flows,
in the following part, we propose a novel framework to re-
duce the model depth. Our algorithm contains three train-
ing phases, ❶ First, we distill a deep neural network into
a time-continuous neural flow model. ❷ We apply ReFlow
to reduce the transport cost of the time-continuous neural
flow model multiple times. ❸ Finally, we further refine the
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Figure 1: An illustration of our method. Given a trained network in (a) in which the output of tokenizer and the input of the
head have the same resolution, we first train a time-continuous neural network in (b), and then learn from the flow network
in (c). We name this step as ReFlow. The ReFlow operation can be applied for multiple times. Finally, we set t = 0 and use
knowledge distillation to refine the model. At the final step, we jointly refine the head and tokenizer parameters together with
the flow model parameters.

one-step flow with knowledge distillation. We start our dis-
cussions with notations together with definitions, and then
introduce three stages of our method.

Problem Definition Many powerful deep learning models
involves residual blocks of form

y1 = fgiven(y0) = ϕN ◦ · · ·ϕ1(y0),

where ϕk(y) = y + ϵµk(y), ϵ is the step size. These mod-
els can be viewed as a discretization of the continuous-time
ODE model dyt = v(y, t)dt, where v(x, t) is a drift force
that depends on the continuous time t ∈ [0, 1]. Our goal is
to restructure the map y1 = fgiven(y0) from a pre-trained
model into an continuous ODE model dyt = v(y, t)dt that
(approximately) follow straight trajectories. As shown in
(Liu, Gong, and Liu 2022), having straight trajectories al-
lows us to solve the ODE with one step.

Notations Given a trained model fgiven on the dataset
D = {x} where x ∈ Rd denotes the data instance and N
is the number of data, assume fgiven(x) ∈ Rd has the same
resolution as x, we train a new model fflow in order to have

fgiven(x) = SOLVER(fflow, x), for x ∈ D, (3)
where the SOLVER refers to inference the time-continuous
flow by a numerical solver. SOLVER requires passing fflow
multiple times to get the final results. As shown in Figure
1, an example for the fgiven model is the vision transformer
without the classification head and the tokenizer. The flow
model is defined as an ordinary differentiable model (ODE)
on time t ∈ [0, 1],

dyt = fflow(yt, t)dt, (4)
which converts y0 from the fgiven input to y1, which is the
fgiven output. During inference, we use a numerical ODE
solver. For example, applying an Euler solver, we can infer-
ence the model going from y0 to y1 with,

yt+1/S ←− yt + fflow(yt, t)/S, where y0 = x, (5)
where S denotes the step size from 0 to 1. For example,
when we run the model 1000 times, S = 1000.

Algorithm 1: Compression with Straight Flows: Main Algo-
rithm

Input: A trained model fgiven, a dataset D, number of
reflow K, a neural flow model fflow whose input is x and
time t.
[Phase 1] Train Time-Continuous Flow Model: Train
fflow with objective (6), with y1 = fgiven(y0), y0 = x ∼
D.
[Phase 2] ReFlow:

For k from 1 to K
Generate yk1 with (5) using fk−1

flow and y0, train
fk
flow with objective (6) and (y0, y

k
1 ).

[Phase 3] Distillation: Set t = 0, distill the model with
ℓ(fdistill(x), y

∗) where fdistill(y0) = y0 + fK
flow(y0, 0),

y0 = x ∼ D and y∗ denotes the true label.

Train a Time-continuous Model To let the model follows
the straight trajectories, given a pre-trained model fgiven(x),
we apply the training objectives for flow proposed in (Lip-
man et al. 2022; Liu, Gong, and Liu 2022) to learn the neural
flow model fflow,

min
θ

Ex∈D,t∈[0,1]

∥∥∥∥fθ
flow(yt, t)−

(
fgiven(x)− x

)∥∥∥∥2, (6)

where x = y0, θ is the model parameters, D denotes the
dataset and time t ∈ [0, 1], yt = ty0 + (1 − t)y1 during
training and follows (5) during inference. Intuitively, the loss
tries to learn the difference between the input and output
pair. Given input x, once we mimic the value fgiven(x) − x
well, we can predict fgiven(x) accurately.

Reflow Yields Straightening and Fast Simulation After
training a neural flow model fflow, we do not have a guar-
antee that our model has a small transport cost. To force
this property, we follow (Liu, Gong, and Liu 2022) to apply
additional ReFlow operator to the model. ReFlow makes
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the translation trajectory more straight. Such straight flows
are therefore highly attractive as: a single Euler step up-
date y1 = y0 + fflow(y0, 0) calculates the exact y1 from
y0. (Liu, Gong, and Liu 2022) shows in Theorem 1 that
applying the ReFlow operator multiple times provably de-
creases STraj(fflow) towards zero. We have a guarantee that
applying ReFlow only reduces the transport cost, and we
can come to a easy-to-distill model after multiple ReFlow.

Theorem 1 ( from (Liu, Gong, and Liu 2022) ) Let
fflow be the k-th flow induced from (y0, y1). Then
mink∈{0···K} STraj(fflow) ≤ E[∥y1−y0∥2]

K .

Due to Theorem 1, the ReFlow operation can continuously
decrease the transport cost. It indicates that, in practice, we
can repeat ReFlow for many times and make the model
more and more friendly for one-step simulation. Generating
y11 from the first flow, we train the model with

min
θ

Ex∈D,t∈[0,1]

∥∥∥∥fθ
flow(yt, t)−

(
y11 − x

)∥∥∥∥2. (7)

When we recursively apply the procedure F k+1
flow =

ReFlow(Dk;F k
flow) where Dk =

{(
x, SOLVERk(x)

)}
and SOLVERk applies ODE solver to fk

flow, the paths of
the k-rectified flow are increasingly straight, and hence eas-
ier to simulate numerically, as k increases. In practice, we
can thus use the ReFlow to get one-step model.

Refine with Knowledge Distillation After obtaining the
k-th rectified flow, we further improve the inference speed
and accuracy by distilling the relation of (y0, y

k
1 ) into a

neural network fdistill to directly predict yk1 from y0 with-
out simulating the flow, where yk1 = F k

flow(x). Given that
the flow is already nearly straight (and hence well approxi-
mated by the one-step update), the distillation can be done
efficiently. In particular, if we take fdistill(y0) = y0 +
fflow(y0, 0), we come to a one-step model which can save
computation costs. The difference between distillation and
ReFlow should be highlighted: ReFlow yields a different
coupling (yk+1

0 , yk+1
1 ) with lower transport costs and more

straight flow, and makes fast simulation possible. Distilla-
tion attempts to approximate the coupling (yk0 , y

k
1 ) to make

a small model performs well. In our setup, the distillation is
applied only in the final stage for fine-tuning the model to
get a better one-step inference result.

Summary We summarize the three stages of our algo-
rithm in Algorithm 1. Given a trained model, we first train
a time-continuous model. Intuitively, we distill a standard
neural network into a time-continuous model. We distill the
input and the output pair generated from the standard given
network. After this phase, we then go to the ReFlow stage
to reduce the transport cost. We can regard this step as fine-
tuning the first step model. By applying the objective in (2)
multiple times, we can consistently reduce the transport cost.
As mentioned above, we can repeatedly apply ReFlow oper-
ation and we repeat the ReFlow step once or twice in prac-
tice. Finally, we distill the model by setting t = 0 and get
the final model. This stage is the standard KD step.

Experiments
We benchmark and conduct our method on multiple cases.
➀ Note that the flow model requires the input and the out-
put in the same resolutions, we first benchmark our results
on vision transformers on CIFAR10 (Krizhevsky and Hinton
2010) and ImageNet (Deng et al. 2009) datasets. ➁ We then
extend our method to multi-resolution model architectures,
e.g. ResNet-50 (He et al. 2016) and SWIN-Base (Liu et al.
2021b). We learn a flow model for each resolution and com-
bine 4 different flow model together to get the final one. ➂
We transfer the ImageNet models to semantic segmentation.
➃ In literature, Block pruning studies how to prune layers for
all the data instances, while dynamic inference (network) fo-
cuses on how to select different layers for process difference
input data instances. We demonstrate that our architecture
can do dynamic inference by using output confidence score
as a decision score and passing the model different times.

Image Classification
We conduct experiments on CIFAR-10 and ImageNet and
observe that our method can boost the compressed model
performance on standard model architectures.
DeiT on CIFAR-10 ❶ Setting: We compare our method
with several different baselines on CIFAR-10. We first con-
duct our method on the recent proposed DeiT (Touvron et al.
2021), a vision transformer model. ❷ Training Descriptions:
In our implementation, given a well trained DeiT, we re-
place the multiple transformer layers with one neural block,
and keep the tokenizer and the classification head param-
eters the same. In the first training stage, we train a time-
continuous neural block. In the second training stage, we
apply the ReFlow algorithms to reduce the transport cost.
In the final training stage, we set time step to one and use
knowledge distillation to refine the one-step model. Dur-
ing this step, we jointly finetune our model weights along
with the toeknizer and the head weights. In practice, we
fine-tune the checkpoint from the previous stage. ❸ Base-
lines: We set up two different kinds of baselines. ➀ First,
we compare with several different types of knowledge dis-
tillation (KD) algorithm mentioned in TinyBERT (Jiao et al.
2019) and MobileBERT (Sun et al. 2020). TinyBERT ap-
plies two different types of knowledge distillation, standard
distillation on final-layer logits, and aligning each-layer at-
tention/feature map. MobileBERT additionally first distill a
one-layer student network and then go deeper. In summary,
we set the standard (KD), feature map and attention align-
ment, growing student networks as three baselines. ➁ We
compare to algorithms which learn to drop blocks. (Wang
et al. 2019) proposes to prune blocks based on their similar-
ity. (Chen and Zhao 2018) determines redundant parameters
by investigating the features learned and pruning model pa-
rameters at a layer level. ❹ Training Settings: To have a fair
comparison, we train or finetune different methods with the
same number of epochs on CIFAR-10. For our method, the
first two stage uses 300 epochs to train, respectively. For the
final distillation refinement stage, we train the model with
400 epochs. For all the KD baselines, we train the model
for 1,000 epochs. For the block drop baselines, we fine-tune
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the pruned model for 1,000 epochs. We use the AdamW
(Loshchilov and Hutter 2018) optimizer with batch size 512
and an initial learning rate 5 × 10−4 with cosine learning
rate decay (Loshchilov and Hutter 2019). We train all these
methods on a 12-layer DeiT-Base model which is trained by
600 epochs and has 95.5% top-1 accuracy, and use a 4-layer
transformer model for our and the distillation methods.

Method FLOPs (%) ↓ Acc (%) ↑
Standard Training 34.2 94.5
Standard KD 34.2 95.2±0.01
+ Attention Transfer 34.2 95.1±0.02
+ Feature Map Transfer 34.2 95.2±0.01
+ Growing 34.2 95.2±0.01
DBP 38.5 95.1±0.01
LWP 40.2 95.0±0.01
Ours 34.2 95.4±0.01

Table 1: Performance of different methods on DeiT-Base
trained on CIFAR-10. ‘FLOPs Ratio’ reports the FLOPs ra-
tio of the compressed model and the DeiT-Base model. ‘Top-
1 Acccuracy’ reports the top-1 accuracy on the test set. The
results are averaged on 3 different trials. ‘Standard Training’
refers to train the 4-layer transformer model from scratch.

❺ Compare to Baselines: We evaluate our proposal and
compare it with existing approaches. We notice that ➀ Com-
pared to existing KD methods, our method yields better ac-
curacy when all methods use the same computation cost.
Compared to directly distill a shallow model, we first cre-
ate an intermediate objective, a weight-shared deep model.
Given the guarantee that the deep model is easy to compress
to one-step model, we make the training objective easier and
some to better results. ➁ We outperform the pruning meth-
ods. Pruning methods take benefits from jointly optimizing
the architecture and the model parameters, however, larger
search space may come to harder optimization problems.
DBP and LWP thus use heusristic auxiliary loss to optimize.
Our improvements suggest that our method creates a better
auxiliary objective than these pruning methods.
❻ Ablation Studies: We conduct multiple ablation studies
to understand different components of our method. ➀ We
compare different trajectory objectives in Table 3. It demon-
strates that our linear trajectory comes to better results than
the others. As mentioned in the caption, the other trajectories
are nonlinear and therefore cannot perform as good as ours
when reducing the time step. ➁ Different trajectories get the
same results when number of time steps is large (t = 10).
When t = 10, the FLOPs is 3 times larger than than given
12-layer model. ➂ After ReFlow, we come to better dis-
tillation results. As demonstrated in Table 3, compared to
the first-stage trained flow model, ReFlow improves the
one-step and two-step accuracy from 94.9% to 95.2%, from
95.4% to 95.5%, respectively. ➃ As demonstrated in Table
3, when applying ReFlow twice, we come to slightly better
one-step results, and slightly worse two-step results. It indi-
cates that ReFlow has a trade-off between accuracy and effi-
ciency. Although ReFlow can consistently reduce the trans-

Method 1-Step 2-Step 10-Step
Cosine 94.7±0.01 95.2±0.01 95.5±0.01
DDPM 94.9±0.01 95.3±0.01 95.5±0.01
Ours-Flow 94.9±0.02 95.4±0.01 95.5±0.01
Ours-Reflow 95.2±0.02 95.5±0.02 95.5±0.01
Ours-Reflow2 95.3±0.03 95.4±0.02 95.5±0.01
Ours 95.4±0.01 95.5±0.01 95.5±0.01

Table 2: Accuracy of our method with different trajectories,
number of time steps, and training stages. n−step denotes
the time-continuous model is discretized as a n-step model.
‘Ours’ uses yt = ty0 + (1 − t)y1 as target, while ‘Cosine’
and ‘DDPM’ apply yt = sin(t)y0 + cos(t)y1 and yt =√

1− α2
t y0 + αty1, respectively. αt are pre-defined hyper-

parameters. ‘Ours-Flow’, ‘Ours-Reflow’ and ‘Ours‘ denotes
the first, second and the final stage of our training. ‘Ours-
Flow’ reports the results of the trained flow model. ‘Ours-
Reflow’ displays the ReFlow model performance. ‘Ours’ is
the final results after refining ‘Ours-Reflow’ with knowledge
distillation. ‘Ours-Reflow2’ applies ReFlow twice.

Objective Type FLOPs (%) Top-1 Acc (%)
2−layer Transformer 10.4 93.5±0.02
4−layer ResNet 35.6 95.4±0.02
4−layer Transformer 34.2 95.4±0.01

Table 3: Accuracy of our method with different model size
and different architectures. We notice that our method works
for different architectures on CIFAR10.

port cost and make it model easy to compress, it cannot
guarantee that we can keep the training loss and accuracy
the same. ➄ We use different size of models as our base
model, and display the results in 2. 4-layer ResNet achieves
95.4%±0.02% accuracy and it shows that our method works
for different architectures.
ImageNet Experiments ❶ Setting: We further test our
method on ImageNet (Deng et al. 2009) dataset. We start
test from DeiTBase trained on ImageNet. Then, in order to
test the generalizability of our method, we apply our method
to more architectures whose input and output images are
in different resolution, e.g., ResNet-50 and SWINBase. For
these models, we distill one time-continuous model for one
resolution, and therefore we come to four different time-
continuous models, from resolution 56×56, 28×28, 14×14
to 7× 7, for ResNet-50 and SWINBase.
❷ Training Details: Similar to CIFAR-10 settings, we train
or finetune different methods with the same number of
epochs for a fair comparison. For our method, each stage
uses 200 epochs to train. For all the KD baselines, we train
the model for 600 epochs. For the block drop baselines,
we finetune the pruned model for 600 epochs. We use the
AdamW optimizer with initial learning rate 5 × 10−4 and
batch size 512 with cosine learning rate decay.
❷ Baselines: Based on the CIFAR-10 results, we select the
best pruning and distillation baselines to serve as ImageNet
baselines due to computation limitations. Similar to CIFAR-
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SWIN-Base DeiT-Base ResNet-50
Method FLOPs (G) Top-1 Accuracy (%) FLOPs (G) Top-1 Accuracy (%) FLOPs (G) Top-1 Accuracy (%)
Standard 15.1 83.1 14.2 81.8 4.12 77.0
Reduced 5.10 80.3 6.03 81.8 1.86 76.2
KD 5.10 82.1±0.0 6.03 81.0±0.1 1.86 76.6±0.1
Growing 5.10 82.2±0.1 6.03 81.4±0.1 1.86 76.8±0.3
DBP 5.98 81.2±0.2 7.85 80.6±0.3 2.54 76.8±0.2
Ours 5.10 82.6±0.2 6.03 81.6±0.1 1.86 77.0±0.1

Table 4: Performance of our method and baselines on DeiT-Base, ResNet-50 and SWINBase. ‘FLOPs’ reports the FLOPs of
the compressed model. ‘Top-1 Acccuracy’ reports the top-1 accuracy on the test set. The results are averaged on 3 different
trials. ‘Standard’ refers to the original model architectures, ‘Reduced’ means using the same model architecture as our method,
and ‘KD’ denotes that we use knowledge distillation with the final-layer logits.

10, we list the knowledge distillation and the pruning base-
lines. For KD, we compare to standard KD, the simplest one
for implementation, and Growing (Sun et al. 2020). Growing
(Sun et al. 2020) propose to create intermediate objectives
during distillation to make the optimization easier, which
shares the same motivation as our method. For pruning, we
compare to DBP (Wang et al. 2019).
❸ Computation Cost: During training, at each iteration, we
first pass through the teacher model, and then get the final-
layer output for each resolution stage. Then, we train one-
stage model for each resolution. At the first training stage,
our training time cost is passing the model for each resolu-
tion once. In the ReFlow stage, we pass the model once at
each training iteration. In the final distillation stage, we set
the t for time-continuous models to 0, and distill the one-step
model using the given pre-trained checkpoint as the teacher
model. In this training stage, our training time cost is passing
the model for each resolution once. In summary, compared
to standard knowledge distillation, we do not introduce extra
computation cost in our training.
❹ Main Results: We summarize the main experiment results
in Table 4. ➀ Our method can reduce more than 50% of the
computation cost, while have little or no drop on accuracy.
For example, we drop 0.1% accuracy on DeiT and have no
drop on ResNet-50, while reducing 57% and 55% compu-
tation cost respectively. ➁ Our methods have outperformed
all the other baselines in all the three different architectures.
Especially, for the SWIN-Base model, we achieve 82.6% ac-
curacy with one-third FLOPs cost, compared to the original
SWIN-Base model. We boost the performance by a large
margin than the best baseline (82.6% v.s. 82.0%). ➂ Our
method not only works for architectures whose input and
output have the same feature map resolutions, but can gen-
eralize to more architectures as well. We outperform other
methods on ResNet-50 and SWINBase.
❺ Ablation Studies: Ablation studies are conducted to dou-
ble verify our findings in the CIFAR-10 experiments. ➀ We
compare different trajectories in Table 5, and we notice that,
on DeiT-Base and SWIN-Base models, our objective is bet-
ter than the others when time step equals to 1. When time
step is 10, all the trajectories It indicates that our optimal
cost aware trajectory is more suitable than the others for
compressing and few-step simulation. ➁ We further list the
FLOPs and accuracy for different time steps in Table 6. It

Model 1-Step 2-Step 10-Step
SWIN-Base

Cosine 82.1±0.2 82.5±0.3 83.1±0.1
DDPM 82.3±0.2 82.5±0.1 83.1±0.1
Ours 82.6±0.2 83.0±0.2 83.1±0.1

DeiT-Base
Cosine 81.3±0.1 81.5±0.1 81.8±0.1
DDPM 81.4±0.2 81.7±0.2 81.8±0.1
Ours 81.6±0.1 81.8±0.2 81.8±0.1

Table 5: Accuracy with different trajectory and different
number of time steps on ImageNet. n−step denotes the
time-continuous model is discretized to n step during infer-
ence. We use Euler solver to do inference. In these three
different training objectives, ours is the best.

#step 1 2 3 5
Accuracy ↑ 82.6 83.0 83.1 83.1
FLOPs (G) ↓ 5.1 10.2 15.2 25.5

Table 6: Performance of SWIN-Base model on ImageNet
validation dataset. We report the accuracy and the FLOPs
with different time steps. As shown above, we can almost
recover the model performance when time step equals to 2.

demonstrates that the three-step model has similar FLOPs as
the given SWIN-Base checkpoint (see Table 4), and models
with fewer steps can reduce the computation cost. It displays
that our trajectories makes it possible to reduce the computa-
tion cost while keep the accuracy. Other training trajectories
cannot achieve such a difficult goal.
Semantic Segmentation We examine our method perfor-
mance on the semantic segmentation task. We evaluate dif-
ferent model performance on the ADE20K (Zhou et al.
2017) benchmark, which contains more than 20K scene-
centric images exhaustively annotated with 150-class pixel-
level objects and pixel-level labels. To measure the accuracy
and the efficiency and compare different methods, we re-
port single-scale evaluation mIoU scores and FPS (Frame
per second) on the test set.
❶ Training Settings: We closely follow the finetuning set-
tings proposed in SWIN transformers (Liu et al. 2021b).
Specifically, we use UperNet (Xiao et al. 2018) in mmseg-
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mentation (Contributors 2020) as our test benchmark. Dur-
ing training, we use AdamW (Loshchilov and Hutter 2018)
optimizer with a learning rate of 6× 10−5 and a weight de-
cay of 0.01. We use a cosine learning rate decay and a lin-
ear learning rate warmup of 1,500 iterations. We load the
pretrained checkpoint on ImageNet and then finetune our
models for 160K iterations on ADE20K training set. We
adopt the default data augmentation scheme in mmsegmen-
tation (Contributors 2020) and train with 512×512 crop size
for ADE20K following the default setting in mmsegmenta-
tion. Additionally, following SWIN transformers (Liu et al.
2021b), we use a stochastic depth dropout of 0.3 for the first
80% of training iterations, and increase the dropout ratio to
0.5 for the last 20% of training iterations.
❶ Main Results: As reported in Table 7, ➀ we first notice
that our trained backbone yields a better trade-off between
accuracy and efficiency. Our one-step models come to a lit-
tle drop (0.5% for SWINBase and 0.2% for DeiT) on mIoU,
but improves the efficiency a lot. ➁ Our two-step model
can match the mIoU performance while still get better per-
formances on efficiency. For example, we achieve 48.1 %
mIoU with 10.5 FPS with a two-step model for SWIN trans-
former base model. we achieve 44.2 % mIoU with 11.5 FPS
with a two-step model for DeiT base model. Comapre to
the standard results, we do not drop the mIoU while boosts
the efficiency. ➂ For the two different architectures, DeiT
and SWIN, our method can both improve the baseline per-
formance and outperform other methods. It further indicates
that our method can work for different architectures and can
generalize to architectures whose input and output are in dif-
ferent resolutions.

Model Method mIoU (%) ↑ FPS (Sec) ↓

SWINBase

Standard 48.1 8.7
One-Step 47.6 12.1
Two-Step 48.1 10.5
Standard KD 47.0 12.1
Growing 47.1 12.1
DBP 47.1 12.2

DeiTBase

Standard 44.2 10.2
One-Step 44.0 12.4
Two-Step 44.2 11.5
Standard KD 43.6 12.4
Growing 43.7 12.4
DBP 43.5 12.5

Table 7: Performance of different pre-trained checkpoints on
ADE20K test set. For mIoU, the higher the better. For FPS,
the higher the more efficient. ‘One-Step’ and ‘Two-step’ re-
port our model performance when time step is 1 and 2.

Dynamic Inference By applying different number of time
steps for different input data instances, our method can nat-
urally serve as a dynamic inference model. Inference a deep
neural network usually requires high computation costs.
Therefore, a long line of works have been devoted to ac-
celerating the inference process of deep neural networks by
choosing different inference path for different input data. For
example, dynamically filtering word tokens in NLP (Ye et al.

Method Est FLOPs (G) Accuracy (%)
RL Agent 6.5 81.8
Confidence 6.8 81.8
Ours 7.0 81.8

Table 8: Performance of dynamic DeiT-Base models. ‘RL
Agent’ and ‘confidence’ refer to making the decision on ex-
iting based on policy gradient trained agent or per-head con-
fidence score.

2021) or using dynamic resolutions in video understanding
(Wang et al. 2021c). In literature, for the naive early-exit
dynamic inference, researchers train additional reinforce-
ment learning agents or directly use confidence score. ❶ Our
Strategy: To have a dynamic network for free, our one-step
model is firstly applied to the input data instance. Once the
model confidence is larger than a threshold, the model ex-
its. Otherwise, we further inference the two-step model and
repeat the above step before we meet the computation con-
straints. In practice, we set the computation constraints as
large as the uncompressed model FLOPs. ❷ Compare to
Baselines: To have a fair comparison, we only compare to
two kinds of baselines and both of them do early-exit for an
input instance. We do not directly compare to other more
complicated and domain-specific strategies, e.g., dynamic
channels, tokens, resolution (Wang et al. 2021a). We try two
widely-used baselines, the first is to train a RL agent to select
layers. Given the previous layer features as input, it make
decisions on whether skipping the coming layer or not (Lin
et al. 2017). The other one is using multiple classification
head and make decisions based on the per-head prediction
confidence (Zhang, Chen, and Zhong 2021) while each layer
has a classification head. For our method and the confidence
baseline, we exit the model once we have a confidence score
over 0.6. For the RL agent baseline, we use hidden states
as input and feedback action (exit or not) at each layer. We
show more results with difference confidence threshold and
find out that there is no visible difference. ❸ Main Results:
As displayed in Table 8, we achieve 81.8% top-1 accuracy
while reduce half of the model FLOPs. The results is com-
parable to the confidence score based method. The RL agent
can be lightly better than ours on FLOPs, 6.5G v.s. 7.0G, but
it is more complicated to train and use.

Discussion and Conclusion
We propose a new approach to train shallow networks, start-
ing from optimizing a time-continuous model. By reducing
the transport cost by ReFlow operations, we make transport
trajectories more straight and thus easier to build an accurate
one-step neural flow model. After verifying the performance
with experiments, we find out that efficient flow models can
not only serve as a compression algorithm but can also be
viewed as an early-exit dynamic network.

Our framework has several possible feature directions.
First, our extension for the multiple resolutions requires one
model for one resolution, which cannot detect the impor-
tance of different resolution. Secondly, we manually design
the architecture for the flow model, and it will be a promis-
ing direction to search the architecture of the model.
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