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Abstract

Existing semi-supervised domain adaptation (SSDA) models
have exhibited impressive performance on the target domain
by effectively utilizing few labeled target samples per class
(e.g., 3 samples per class). To guarantee an equal number of
labeled target samples for each class, however, they require
domain experts to manually recognize a considerable amount
of the unlabeled target data. Moreover, as the target samples
are not equally informative for shaping the decision bound-
aries of the learning models, it is crucial to select the most
informative target samples for labeling, which is, however,
impossible for human selectors. As a remedy, we propose an
EFfective Target Labeling (EFTL) framework that harnesses
active learning and pseudo-labeling strategies to automati-
cally select some informative target samples to annotate. Con-
cretely, we introduce a novel sample query strategy, called
non-maximal degree node suppression (NDNS), that itera-
tively performs maximal degree node query and non-maximal
degree node removal to select representative and diverse tar-
get samples for labeling. To learn target-specific character-
istics, we propose a novel pseudo-labeling strategy that at-
tempts to label low-confidence target samples accurately via
clustering consistency (CC), and then inject information of
the model uncertainty into our query process. CC enhances
the utilization of the annotation budget and increases the
number of “labeled” target samples while requiring no ad-
ditional manual effort. Our proposed EFTL framework can
be easily coupled with existing SSDA models, showing sig-
nificant improvements on three benchmarks.

Introduction
Domain adaptation (DA) aims to ease the cross-domain
discrepancies, whereby transferring the knowledge learned
from a label-rich source domain to a label-scarce but related
target domain (Pan et al. 2010). Over the past decade, ex-
tensive research has been carried out in the unsupervised
DA where the target domain is completely unlabeled (Long
et al. 2013; Ganin and Lempitsky 2015). Despite advance-
ments in these methods, the costless annotation scenarios
yet making limited performance improvements on the target
domain arise as a dilemma. In practice, it may be feasible
to obtain a small amount of labeled target samples that can
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greatly facilitate the learning process. Hence, another branch
of DA research falls into the semi-supervised learning set-
ting and, more importantly, the semi-supervised DA (SSDA)
approaches exhibit compelling performance improvements
on the target domain when a small amount of labeled tar-
get data are provided in comparison with the unsupervised
counterparts (Saito et al. 2019).

Existing works on SSDA (Saito et al. 2019; Yang et al.
2021a; Singh 2021; Li et al. 2021b) typically assume that
the labeled target data are given, and each class has an equal
number of labeled samples (e.g., 3 samples per class). How-
ever, this assumption is non-trivial in practice since label-
ing an equal number of target samples for each class, par-
ticularly for classification tasks with a large number of cat-
egories, requires a considerable amount of manual effort for
domain experts, which is inconsistent with the idea of low
annotation cost in DA. Moreover, the quality of the labeled
target samples should also be guaranteed in order to max-
imize the utilization of the limited annotation expense. In
practice, labeling target samples may produce worse perfor-
mance (e.g., labeling outliers) or gain a very limited perfor-
mance improvement (e.g., labeling “easy samples”). Unfor-
tunately, these common but bad scenarios cannot be circum-
vented by human annotators. Therefore, it would be more
reasonable that we design a learning framework that can au-
tomatically select a pre-defined number of target samples
which, once labeled, can greatly facilitate the DA process.

Motivated by the above observations, we propose EFfec-
tive Target Labeling (EFTL), a DA framework that uses ac-
tive learning and pseudo-labeling strategies to select some
informative target samples for labeling. First, since only 1–3
samples per class are allowed for labeling in the SSDA set-
ting, we aim to select intra-class representative and inter-
class diverse target samples. To this end, we introduce a
novel active strategy, called non-maximal degree node sup-
pression (NDNS), to model sample’s representativeness and
diversity with graphs. Specifically, we first construct a di-
rected graph by defining accepted neighbors (ADN) and
acceptive neighbors (AEN) for each unlabeled target sam-
ple. Benefiting from the definitions of ADN and AEN, those
nodes with the locally maximal out-degree1 can well repre-

1The out-degree of a node indicates how many nodes are ori-
ented by that node.
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sent local clusters, and they should be selected for labeling.
Hence, we iteratively query nodes with the maximal out-
degree on the current sample graph and remove the k-th or-
der neighbors of the queried node from the graph.

In addition, based on the fact that the “hard” samples
are more informative as they contribute more to shaping
the decision boundaries of the learning model (Xie et al.
2022b), we consider selecting target samples that are close
to the decision boundaries for labeling. To this end, we aim
to inject model uncertainty into our query process. Prior
to sample selection, we observe that the target data tend
to form some clear patterns in the feature space. Due to
the domain discrepancy, however, these patterns are dif-
ficult to be recognized by the source-dominated learning
model, resulting in clear but high-model uncertainty clus-
ters. For more effective sample selection, we aim to detect
the easy patterns for pseudo-labeling. Toward this goal, we
propose a novel pseudo-labeling strategy called clustering
consistency (CC). Unlike model-confidence-based pseudo-
labeling, CC applies different clustering views to discover
the intrinsic patterns of the target data and to decrease the
noise of pseudo-labels. Empirical results demonstrate that
the proposed pseudo-labeling strategy is capable of reducing
noise and labeling low-confidence samples. CC increases
the number of “labeled” target samples without additional
manual effort.

As the proposed EFTL is a labeling framework, it can be
easily coupled with existing SSDA approaches. Our main
contributions are summarized as follows: 1) We present
NDNS, a novel active strategy to select representative and
diverse target samples for labeling. 2) We introduce a novel
pseudo-labeling strategy that focuses on low-confidence
samples and low-noise labels to increase the number of “la-
beled” target samples. 3) Our proposed approaches can be
easily coupled with existing SSDA methods, showing signif-
icant performance improvements on three benchmarks. For
example, EFTL enhances minimax entropy (MME) (Saito
et al. 2019) with a 4% margin on the DomainNet benchmark,
without introducing extra unsupervised techniques.

Related Work
Domain Adaptation
Unsupervised domain adaptation (UDA) has been well stud-
ied over the past decade. The UDA approaches generally
focus on adversarial training (Ganin and Lempitsky 2015;
Long et al. 2018; Zhang et al. 2019; Saito et al. 2018), sta-
tistical metrics minimizing (Long et al. 2015, 2017; Sun,
Feng, and Saenko 2016; Chen et al. 2020) or intrinsic struc-
ture learning (Kang et al. 2019; Tang, Chen, and Jia 2020;
Wu, Inkpen, and El-Roby 2020). Although the difference
between SSDA and UDA is nuanced, Saito et al. (2019)
claimed that the UDA methods do not perform well in the
SSDA settings, where few labelled target samples per class
are provided. Recently, SSDA has attracted enormous atten-
tion (Saito et al. 2019; Kim and Kim 2020; Jiang et al. 2020;
Singh 2021; Li et al. 2021b; Yang et al. 2021a; Singh et al.
2021). For example, the minimax entropy (MME) approach
is proposed to learn domain-invariant prototypes (Saito et al.

2019). With demonstration of the importance of the intra-
domain discrepancy of SSDA, three strategies are proposed
to alleviate this problem (Kim and Kim 2020). More re-
cently, Yang et al. (2021a) explicitly split the SSDA task into
two sub-tasks, i.e., semi-supervised learning (SSL) and un-
supervised domain adaptation (UDA), and proposed to use
the corresponding models (SSL and UDA) to teach each
other. Some self-supervised training strategies, e.g., con-
trastive learning (Singh 2021) or pseudo labelling (Li et al.
2021a,b; Yan et al. 2022) have been incorporated into train-
ing. Observing an early misalignment phenomenon between
the source and target data, Yu and Lin (2023) proposed to
align the source data with the target data. Despite advance-
ments in the aforementioned methods, they still require an
equal number of the target samples to be given, which is a
non-trivial requirement in practice.

Active Domain Adaptation
Active DA (ADA) aims to select target samples that, once la-
beled, will significantly facilitate domain adaptation (Prabhu
et al. 2021). Over the past decade, many methods have been
proposed for ADA (Rai et al. 2010; Saha et al. 2011; Long
et al. 2013; Su et al. 2020; Singh et al. 2021; Prabhu et al.
2021; Xie et al. 2022a). Rai et al. (2010) proposed the so
called DS-AODA that leverages a domain separator to se-
lect target domain-oriented instances. Recent works gener-
ally follow the criteria of diversity and uncertainty to se-
lect target samples. Su et al. (2020) utilized the targetness
predicted by a domain discriminator and entropy to mea-
sure the diversity and uncertainty, respectively. Prabhu et al.
(2021) grouped the target instances into some diverse clus-
ters, where the entropy-based uncertainty is used to weigh
samples. Singh et al. (2021) proposed STar, an approach for
active SSDA, which uses the class-wise adaptation pace to
measure the classifier adaptation uncertainty and groups the
target data into more clusters by K-means for diverse selec-
tion. Moreover, Fu et al. (2021) harnessed committee con-
sistency, committee margin, and targetness to unify a query
function. Xie et al. (2022b) recently proposed a pure margin-
based loss function and query function to select hard in-
stances. However, Huang et al. (2023) discussed that most
of the existing ADA methods have the potential limitation
to generalize to other DA settings, e.g., SSDA scenarios.
Indeed, our experiments confirm that some state-of-the-art
ADA approaches, e.g., TQS (Fu et al. 2021) and SDM (Xie
et al. 2022b), enhance existing SSDA models by a very lim-
ited margin and sometimes the performance may even dete-
riorate (e.g., in the 1-shot SSDA setting).

Method
Preliminary
A classifier f : X 7→ RK receives a source domain dataset
DS = {(xs

i , y
s
i )}

ns
i=1 with ns labeled samples and a target

domain dataset DTu
= {(xt

i, ·)}
nt
i=1 with nt completely un-

labeled samples, where X denotes the input space and K
is the dimension of the output space. It is assumed that the
source and target data are sampled from two different dis-
tributions P and Q, respectively, while they share the same
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Algorithm 1: Overview of our proposed learning framework

Input: Unlabeled target data DTu , labeled data DL ← DS ,
pretrained source model fs, budget B, query rounds r,
learning rate η, query interval I

Output: Parameters of the target learning model ft
1: Split B evenly into r sub-budgets B =

∑r
i=1 Bi

2: # pseudo-labeling strategy
3: Obtain pseudo-labeled samples D̂Tl

= {(xt
i, ŷ

t
i)}

npl

i=1

using CC algorithm; update: DL ← DL∪ D̂Tl
, DTu

←
DTu\D̂Tl

4: Initialize a target learning model ft using the parameters
of fs, and a round counter i← 1

5: for epoch← 0 to max epoch do
6: # active strategy
7: if (epoch mod I) == 0 and B > 0 then
8: Select Bi target samples from DTu

and label them
using Algorithm 2: DTl

= {(xt
i, y

t
i)}

Bi
i=1

9: Update: DL ← DL ∪DTl
, DTu

← DTu
\DTl

10: Update: B ← B − Bi, i← i+ 1
11: end if
12: # using existing SSDA approach
13: Compute loss L(θft , DTu

, DL) using Eq. (5) or (6)
14: Update θft ← θft − η∇θft

L(θft , DTu
, DL)

15: end for
16: return θft

semantic label space Y = {1, . . . ,K}. We decompose the
classifier f into the composite of a feature embedding func-
tion F : X 7→ Rm and a feature classifier C : Rm 7→ RK .
That is, f(x) = C(F (x)), where F and C are parameterized
by θF and θC , respectively.

Our goal is to select few unlabeled samples from DTu

and label them to improve the model performance. The pro-
cess of sample retrieval has a very limited annotation budget
B = nc ·K, where nc denotes the number of labeled samples
for each class, e.g., nc = 3 corresponds to 3-shot SSDA.
The conventional SSDA approaches require nc samples to
be labeled per class (Saito et al. 2019; Li et al. 2021b), such
that an expert needs to manually recognize a considerable
amount of the unlabeled target data. To alleviate such bur-
den, we propose an active learning DA framework which can
automatically select B samples for labeling. In the paradigm
of active learning, there usually involve r rounds of sam-
ple selection, such that each round may select about B/r
target samples. The aim is to dynamically capture the in-
formative target data as the training process proceeds. Prior
to target sample selection, we first pretrain a source model
fs(x) = Cs(Fs(x)) on DS and then use it to initialize a tar-
get learning model ft(x) = Ct(Ft(x)). We summarize the
proposed framework in Algorithm 1.

Active Strategy
To formulate our active strategy, non-maximal degree node
suppression (NDNS), we follow the two widely used cri-
teria in active learning methods to query target samples:
intra-class representativeness and inter-class diversity. We

Figure 1: Left panel: An example of how we create the di-
rected edges to construct a directed graph. In this case, rADN

A
is the distance between node A and its M1-th nearest neigh-
bor (node D); rAEN

B is the distance between node B and its
M2-th nearest neighbor and the same for rAEN

C . Thus, node
A may be accepted by those nodes inside the biggest dashed
circle as their neighbors. Both nodes B and C satisfy this
condition, but there is only a directed edge between node B
and node A since node A is one of the AEN of node B. Right
panel: An iteration of non-maximal degree node suppressio
(NDNS). It first queries a node with maximal out-degree on
the current graph, and then removes the k-order neighbor
nodes of the queried node from the current graph (k = 2).

first construct a directed graph using the target data and then
iteratively retrieve the “significant” nodes with the locally
maximal out-degree.

Directed graph construction. Let F = [f1, f2, . . . , fnt
] de-

note the feature embeddings of all unlabeled target data in
DTu , where fi = Ft(x

t
i), i = 1, . . . , nt. Inspired by Yang

et al. (2021b), we define two types of neighbors for each
sample xt

i ∈ DTu ,

Accepted Neighbors (ADN) : NiADN,

Acceptive Neighbors (AEN) : NiAEN,
(1)

where Ni∗ = Topk({ f⊤i fj
∥fi∥·∥fj∥ , j = 1, . . . , nt, j ̸= i}),

∗ ∈ {ADN,AEN}, and the Topk(·) function returns a set
of samples that have the K largest cosine similarity scores
to xt

i. We set K = M1 for the accepted neighbors (ADN)
and K = M2 for the acceptive neighbors (AEN), and
M2 ≪ M1, then we have NiAEN ⊂ NiADN. As shown by
the left panel of Fig. 1, the principles underlying ADN and
AEN are that sample i may be accepted by its ADN as their
neighbors, and sample i only accepts its AEN as its neigh-
bors; and that a large (small) value of M1 (M2) is suggested
to create more edges with other nodes (decrease the number
of noisy neighbors). Based on ADN and AEN, we define the
adjacency matrix A of the directed graph as

Aij =

{
1, j ∈ NiADN and i ∈ NjAEN,

0, otherwise,
(2)

where i, j = 1, . . . , nt, and Aij = 1 indicates there is a di-
rected edge that orients from node i to node j. By summing
the i-th row of A, we obtain the out-degree d−i =

∑nt

k=1 Aik

of node i, where d−i is node i’s appearance frequency in the
AEN of other nodes. For some node, AEN are its most affil-
iative neighbors since M2 ≪ M1. If some node has a high
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Algorithm 2: Non-maximal degree node suppression

Require: Current unlabeled target data DTu
, the current

learning model ft, annotation budget Bi in this round
Output: Bi labeled target samples

1: Initialize Q = ∅ for storing the queried samples
2: Construct a directed graph using Eq. (2)
3: Compute Q(xt

i) for xt
i ∈ DTu using Eq. (4)

4: while |Q| < Bi do
5: # node query
6: Query a sample: xt

i 7→ arg maxi∈{1,...,nt} Q(xt
i)

7: Append xt
i to Q

8: # node suppression
9: Mask Q(xt

j) = −∞ for all xt
j in the k-order neigh-

bors of the queried sample xt
i.

10: end while
11: return Q

out-degree, intuitively, it would be a “center point” for a lo-
cal cluster. Hence, querying and labeling those nodes with
the locally maximal out-degree can gain more information,
which naturally motivates the design of NDNS.

Non-maximal degree node suppression. In fact, NDNS
shares a similar idea with the non-maximum suppression
(NMS) (Neubeck and Van Gool 2006). To avoid querying
redundant nodes, as shown in the right panel of Fig. 1, we
should remove those nodes which are close to the queried
nodes (removal nodes in Fig. 1). As a result, the NDNS
iteratively performs two steps—node query and node re-
moval—to select informative and diverse samples to label,
till reaching the prespecified budget in a round. Node query:
we select node i with the maximal out-degree on the current
graph (i.e., arg maxi d−i =

∑nt

k=1 Aik). Node removal: we
remove node i and its k-order neighbor nodes from the cur-
rent graph (k is fixed to be 2 for all experiments). For the
succinctness of implementation, we directly set the j-th row
and the j-th column of adjacency matrix A to be zero for
each node j to be removed, which leads to each objective
node being isolated on the current graph. For the subsequent
query rounds, the 1-order neighbors of the selected target
samples in the previous query rounds are marked to be iso-
late nodes, which further guarantees the diversity of queried
samples.

Low-Confidence Target Labeling
As the “hard” samples are important for shaping the deci-

sion boundaries of ft, we intend to select target samples that
are close to the decision boundaries to annotate.

Model uncertainty injection. We first define the probabilis-
tic margin mi of the sample xt

i yielded by ft:

mi = p1∗(x
t
i)− p2∗(x

t
i), (3)

where pk(·) = σk(Ct(Ft(·))) denotes the prediction proba-
bility of the k-th class, σ(·) is the softmax function, and 1∗
and 2∗ represent the indices of the first and second largest
elements of a vector, respectively. Hence, a lower margin

Figure 2: t-SNE visualization of the target features extracted
by the source model Fs. Some target samples belonging to
classes 4, 25, and 30 form clear patterns, but all of them
have very low model confidence, resulting in clear but hard-
to-recognize (by the source classifier Cs) patterns.

implies an ambiguous prediction. Because labeling ambigu-
ous target samples can greatly reshape the decision bound-
aries of the source-dominated model, it is natural to combine
NDNS with model uncertainty to select more effective target
samples. Thus, we modify the query criteria of NDNS as

Q(xt
i) = αd̂−i + (1−mi), (4)

where d̂−i = d−i /maxj (d
−
j ) indicates the max-normalized

out-degree and α is a trade-off factor. Hence, the node query
step of NDNS is i 7→ arg maxi Q(xt

i), and the rest of the
procedures of NDNS remain the same. We summarize the
active strategy in Algorithm 2.

Clustering consistency (CC) pseudo-labeling. We observe
in Fig. 2 that there are some clear clusters with very low
model confidence, in which some data are easy to be se-
lected by NDNS for labeling because they are representa-
tive, diverse, and low-confidence. If these easy structures of
the target data are captured, we can use a pseudo-labeling
(PL) strategy for labeling so that the labeling budget B is
not wasted. Hence, we utilize clustering algorithms to dis-
cover these patterns and leverage the consistency of different
clustering views to filter out the noisy labels. Specifically,
we implement the clustering algorithms in the embedding
space Rm, i.e., each sample is represented by fi = Fs(x

t
i).

We apply the clustering algorithm to obtain the class prob-
ability distribution for each sample. Let P 1 = {p1ik} and
P 2 = {p2ik} denote the probabilistic matrices obtained by
the Gaussian mixture model clustering and K-means clus-
tering, respectively, where i = 1, . . . , nt, k = 1, . . . ,K ,∑K

k=1 p
∗
ik = 1, p∗ik denotes the probability of the i-th sam-

ples belonging to the k-th class, and ∗ ∈ {1, 2}. For each
class k, if xt

i ∈ Topk({p1ik, i = 1, . . . , nt}) and xt
i ∈

Topk({p2ik, i = 1, . . . , nt}), then sample xt
i is labeled as

class k, where Topk({p∗ik, i = 1, . . . , nt}) returns K sam-
ples with the largest prediction probability to class k. To
avoid introducing additional hyperparameters, we fix K to
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(a) CC (b) CBPL

Figure 3: Visualization of PL samples obtained by the CC
and CBPL algorithms (transfer task W→ A on the Office-
31 dataset), using ResNet-34 as the backbone. The y-axis de-
notes the number of pseudo-labeled samples for each class,
and the x-axis represents the hardness of each class, i.e.,
class 30 and class 11 have the lowest and highest average
model confidence, respectively. The depth of the color rep-
resents the accuracy of PL samples of each class.

be M2 for all experiments. Let D̂Tl
= {xt

i, ŷ
t
i}

npl

i=1 denote
the pseudo-labeled data. Then, D̂Tl

will be appended to the
labeled dataset DL and deleted from the unlabeled dataset
DTu (see step 3 in Algorithm 1).

Fig. 3 shows the number of pseudo-labeled samples for
each class, accuracy of pseudo-labels, and hardness of each
class. The source model is trained on the source domain We-
bcam (W), and it will be employed to extract target features,
i.e., fi = Fs(x

t
i), to carry out the clustering consistency

pseudo-labeling. The target domain Amazon (A) contains
2,817 samples and a total of 31 categories in our experi-
ments. We return M2 = 6 samples for each class for pseudo-
labeling. Then, the CC strategy is applied to adaptively filter
out inconsistent samples, which leads to 0–6 samples being
labeled for each class. We also make a comparison with the
widely used confidence-based pseudo-labeling (CBPL) like
in Fixmatch (Sohn et al. 2020) (we set threshold=0.9).

As shown in Fig. 3 (b), CBPL exhibits a skewed distri-
bution of pseudo-labels, i.e., the easy classes are always at
an advantage. Due to the domain discrepancy, CBPL can-
not mitigate it but may further aggravate the class imbalance
problem. In contrast, CC not only circumvents this issue to
some extent, but also shows highly accurate pseudo-labels,
as shown in Fig. 3 (a).

Coupled with Existing SSDA Methods
After obtaining the labeled target data, we can immediately
use current SSDA approaches to perform domain adaptation.
Here, we consider two widely used baselines.

Minimax Entropy (MME). MME (Saito et al. 2019) is a
pioneering work for the SSDA task, and its training objective
is defined as follows:

θ̂Ct = arg min
θCt

LCE − λLENT,

θ̂Ft
= arg min

θFt

LCE + λLENT,
(5)

where LCE is the cross-entropy loss computed on the la-
beled data, LENT is the entropy loss computed on unlabeled

ADA Method SSDA Method
W→A D→A

1-shot 3-shot 1-shot 3-shot

SS
D

A
O

nl
y

% S+T 69.2 73.2 68.2 73.3
% MME 73.1 76.3 73.6 77.6
% DECOTA 76.0 76.8 74.2 78.3
% FixMME 75.3 78.7 76.8 78.5

A
D

A
O

nl
y TQS % 65.9 74.9 67.4 74.9

SDM-A % 66.7 75.4 67.8 75.1
EFTL (ours) % 72.8 77.3 69.9 76.0

A
D

A
+

SS
D

A TQS MME 70.3 75.9 69.4 73.2
SDM-A MME 70.1 76.8 69.2 73.9

EFTL (ours) MME 78.6 81.0 78.2 82.3

A
D

A
+

SS
D

A TQS FixMME 71.3 74.7 72.0 76.9
SDM-A FixMME 71.2 77.0 71.8 77.1

EFTL (ours) FixMME 79.9 83.3 78.1 81.1

Table 1: Compare SSDA with active domain adaptation
(ADA) methods on Office-31 benchmark using ResNet-34
as the backbone, where the loss of ADA Only approaches
only allowed for computing on the labeled source and target
data, the labeled target data used in SSDA Only methods are
given by MME, and ADA+SSDA indicates the labeled target
data of SSDA methods are selected by ADA methods.

target data, and λ is a trade-off hyperparameter fixed to be
0.1 (Saito et al. 2019).

FixMatch + MME (FixMME). Fixmatch (Sohn et al. 2020)
is a strong baseline for semi-supervised learning, which is
also widely used in SSDA (Li et al. 2021a; Yan et al. 2022;
Li et al. 2021b). We combine FixMatch with MME as a
strong baseline:

(θ̂Ct
, θ̂Ft

) = arg min
(θCt ,θFt )

LMME + LPL, (6)

where LMME is the MME loss defined in Eq. (5), and LPL

is the pseudo-labeling loss defined as:

LPL = −Ex∼DTu
I{pŷ(x) > τ}log(pŷ(x̃)), (7)

where pk(·) = σk(Ct(Ft(·))) is defined in Eq. (3), ŷ =
arg maxy∈Y py(x), x̃ is a strongly augmented version of x,
τ is a probability threshold, and I(·) is the 0-1 loss. The ob-
jective of LPL is clear: encourage the model to make consis-
tent prediction on samples with a high probability.

Experiments
Experimental settings. We conduct thorough evalua-
tions on three image-based benchmark datasets: Office-31
(Saenko et al. 2010), Office-Home (Venkateswara et al.
2017), and DomainNet (Peng et al. 2019). Since the num-
bers of the AEN and ADN in the directed graph construc-
tion depend on the scale of the dataset, we choose M1 =
⌊nt/(3×K)⌋ and M2 = ⌊M1/5⌋ to adaptively construct the
directed graph across all datasets. The trade-off hyperparam-
eter α in Eq. (4) is fixed as 0.1. For baseline FixMME, the
threshold τ in Eq. (7) is set to be 0.85 for all datasets except
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Setting Method R → C R → P R → A P → R P→ C P → A A → P A → C A → R C → R C → A C → P Avg.

1-
sh

ot
S+T (baseline) 52.1 78.6 66.2 74.4 48.3 57.2 69.8 50.9 73.8 70.0 56.3 68.1 63.8
ENT 53.6 81.9 70.4 79.9 51.9 63.0 75.0 52.9 76.7 73.2 63.2 73.6 67.9
CDAC 61.9 83.1 72.7 80.0 59.3 64.6 75.9 61.2 78.5 75.3 64.5 75.1 71.0
DECOTA 56.0 79.4 71.3 76.9 48.8 60.0 68.5 42.1 72.6 70.7 60.3 70.4 64.8
MME + SLA 64.1 83.8 72.9 80.0 59.9 66.7 76.3 62.1 78.6 75.1 67.5 77.1 72.0
MCL 67.0 85.5 73.8 81.3 61.1 68.0 79.5 64.4 81.2 78.4 68.5 79.3 74.0
MME 61.9 82.8 71.2 79.2 57.4 64.7 75.5 59.6 77.8 74.8 65.7 74.5 70.4
+ EFTL (ours) 66.3 85.9 73.8 80.7 60.6 66.7 80.1 63.1 80.1 75.7 63.5 79.0 73.0 (+2.6)
FixMME 64.7 83.6 72.0 80.3 59.0 65.5 76.0 64.0 78.7 75.5 65.3 75.2 71.7
+ EFTL (ours) 66.6 87.2 74.3 82.6 63.3 68.7 80.5 65.7 80.8 77.5 65.6 79.6 74.4 (+2.7)

3-
sh

ot

S+T (baseline) 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
ENT 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
CDAC 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
DECOTA 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64.0 80.5 79.0 68.0 83.2 75.7
MME + SLA 68.4 87.4 74.7 81.9 67.4 69.7 81.1 65.9 80.5 79.4 69.2 81.9 75.6
MCL 70.1 88.1 75.3 83.0 68.0 69.9 83.9 67.5 82.4 81.6 71.4 84.3 77.1
MME 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
+ EFTL (ours) 70.8 88.5 76.4 83.3 67.1 71.5 83.3 68.2 82.9 78.6 68.8 82.5 76.8 (+3.7)
FixMME 69.0 88.0 72.3 81.3 66.6 69.1 81.5 65.8 81.0 78.9 67.2 81.4 75.2
+ EFTL (ours) 72.8 89.3 77.5 85.4 70.9 72.6 84.8 70.3 83.8 81.5 70.6 84.6 78.7 (+3.5)

Table 2: Classification accuracy (%) on the Office-Home benchmark, using ResNet-34 as the backbone.

Method R→C R→P P→C C→S S→P R→S P→R Avg.
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
ENT 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
CDAC 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
DECOTA 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
MME + SLA 71.8 73.3 68.2 70.1 70.4 72.7 59.3 63.4 64.9 67.3 61.8 63.9 77.2 79.6 68.8 70.0
MCL 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5
MME 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
+ EFTL (ours) 74.1 77.4 70.1 72.8 74.0 77.0 65.0 68.1 67.3 69.5 64.7 67.6 78.0 80.5 70.5 (+4.1) 73.3 (+4.4)
FixMME 74.5 78.1 72.6 74.1 74.3 77.2 65.3 68.2 70.3 72.3 67.5 68.3 80.4 82.5 72.1 74.4
+ EFTL (ours) 79.6 81.2 74.9 77.1 78.2 81.8 69.3 72.8 71.8 74.4 69.9 71.5 83.1 84.4 75.3 (+3.2) 77.6 (+3.2)

Table 3: Classification accuracy (%) on the DomainNet benchmark, using ResNet-34 as the backbone.

NDNS CC A→C C→P
1-shot 3-shot 1-shot 3-shot

Fi
xM

M
E 64.0 65.8 75.2 81.4

! 64.0 69.9 78.7 84.6
! ! 65.7 70.3 79.6 84.6

M
M

E 59.6 63.6 74.5 79.3
! 62.9 67.9 78.6 82.1
! ! 63.1 68.2 79.0 82.5

Table 4: Ablation study on the Office-Home benchmark.

0.8 for DomainNet. Following Li et al. (2021b), we exploit a
label smoothing technique with parameter 0.1 to avoid over-
confident predictions when using a cross-entropy loss. We
run our experiments three times with different random seeds
independently. For more details, please refer to our code:
https://github.com/BetterTMrR/EFTL-Pytorch-main.

Results and Analysis

This section aims to answer the following two questions: (1)
Can other labeling frameworks, i.e., active domain adapta-
tion (ADA), be effectively combined with SSDA? (2) How
effective is the proposed EFTL?
Compare existing ADA methods with SSDA models. We
choose two recent published baselines for the ADA task:
TQS (Fu et al. 2021) and SDM-A (Xie et al. 2022a) and four
baselines for the SSDA task: S+T, MME, DECOTA, and
FixMME. The results are reported in Table 1, from which
we can draw the following conclusions. First, both TQS
and SDM-A are originally designed for the ADA task and
cannot be coupled well with SSDA models as expected. In
the ADA+SSDA setting, they show worse performance than
SSDA only setting (e.g., MME > MME+TQS). In contrast,
our proposed EFTL significantly enhances the performance
of SSDA methods. In addition, EFTL can still outperform
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Figure 4: t-SNE visualization of the target features (1-shot transfer task W → A on Office-31 benchmark and MME is em-
ployed), where each colored point indicates a target sample, different classes are displayed in different colors, and the red
points represent that they are misclassified by the corresponding model. (a): The target features from the source model, where
the numbers inside the circle indicate the class indices. (b): The target features from the target model at the second query round,
where the notation 8 denotes the queried samples in the 1-2 query rounds (the number indicates its label). (c): The target fea-
tures from the model after adaptation.

(a) Sensitivity to α (b) Sensitivity to M1

Figure 5: Sensitivity analysis of hyperparameters on the 1-
shot transfer task R → A on the Office-Home benchmark.
The results are obtained by varying the corresponding hy-
perparameter while fixing others.

ADA baselines in the ADA only setting.
Effectiveness of the proposed EFTL. We choose state-
of-the-art baselines for comparisons: S+T (model trained
on the labeled source and target data only), ENT (Grand-
valet and Bengio 2004), MME (Saito et al. 2019), CDAC
(Li et al. 2021a), DECOTA (Yang et al. 2021a), MCL
(Yan et al. 2022), MME+SLA (Yu and Lin 2023), and
FixMME. The results are reported in Tables 2 and 3. We
can observe that EFTL significantly improves the perfor-
mances of MME and FixMME. In the DomainNet bench-
mark, EFTL improves MME with a margin over 4% and
FixMME with a margin over 3%. Notably, although the
strong SSDA baselines achieve impressive performance on
the target domain by using tedious unsupervised train-
ing techniques (e.g., FixMatch loss, inter and intra-domain
losses in MCL), FixMME+EFTL can still outperform them
on the most transfer tasks, demonstrating the importance of
the quality of labeled data.
Ablation study. The results of ablation study are displayed
in Table 4. When the active strategy NDNS is not applied,
the labeled and unlabeled target data split is given by Saito

et al. (2019). We observe that the active strategy NDNS
significantly enhances the model performance, and the CC
pseudo-labeling strategy can further improve the results.
Sensitivity analysis. Because the hyperparameter M2

changes with M1, we only show the sensitivity of M1 and α
in Eq. (4). According to the formula defined in the Experi-
mental settings section, we obtain M1 = 11 for the transfer
task R → A in Table 2. We vary M1 from 9 to 17 to ob-
serve the performance variations. The results of sensitivity
to hyperparameters are displayed in Fig. 5, where we visual-
ize the different learning processes of MME by varying the
corresponding hyperparameters. Except for the extreme case
(e.g., α = 1.0 and M1 = 17), we find that the model perfor-
mance is not sensitive to M1 or α. Moreover, under such a
wide range of hyperparameters, they always outperform the
baseline (i.e., without using an active strategy).
Feature visualization of query process. We visualize the
query process of NDNS in Fig. 4. In Fig. 4 (a), some easy
classes (e.g., classes 2, 3, 7, and 11) form clear clusters in
the feature space of the source model. During the query
process, as shown in Fig. 4 (b), NDNS mainly focuses on
the high-noise region where the decision boundaries are not
clear, enhancing the utilization of the labeled data. After be-
ing trained on the queried samples, our model yields clear
decision boundaries, as shown in Fig. 4 (c).

Conclusion
In this work, we propose an effective target labeling frame-
work that harnesses active learning and pseudo-labeling
strategies to enhance the performance of the target learn-
ing model. To that end, we propose an active approach,
NDNS, which aims to query the intra-class representative,
inter-class diverse, and low-confidence target samples for la-
beling. Furthermore, we introduce a novel pseudo-labeling
strategy that focuses on low-confidence samples and low-
noise labels to increase the number of “labeled” target sam-
ples. Extensive experiments on three benchmarks demon-
strate the effectiveness of our proposed approach.
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