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Abstract

Gradient inversion attacks can leak data privacy when clients
share weight updates with the server in federated learning (FL).
Existing studies mainly use L2 or cosine distance as the loss
function for gradient matching in the attack. Our empirical in-
vestigation shows that the vulnerability ranking varies with the
loss function used. Gradient norm, which is commonly used as
a vulnerability proxy for gradient inversion attack, cannot ex-
plain this as it remains constant regardless of the loss function
for gradient matching. In this paper, we propose a loss-aware
vulnerability proxy (LAVP) for the first time. LAVP refers to
either the maximum or minimum eigenvalue of the Hessian
with respect to gradient matching loss at ground truth. This
suggestion is based on our theoretical findings regarding the
local optimization of the gradient inversion in proximity to the
ground truth, which corresponds to the worst case attack sce-
nario. We demonstrate the effectiveness of LAVP on various
architectures and datasets, showing its consistent superiority
over the gradient norm in capturing sample vulnerabilities.
The performance of each proxy is measured in terms of Spear-
man’s rank correlation with respect to several similarity scores.
This work will contribute to enhancing FL security against
any potential loss functions beyond L2 or cosine distance in
the future.

Introduction
Federated learning (FL) is a collaborative machine learning
paradigm in which local clients act as trainers and a cen-
tral server acts as a global aggregator (Konečnỳ et al. 2016;
McMahan et al. 2017). Each learning round in FL begins
with the server distributing global model weights to partici-
pating clients. Then, the clients compute weight updates for
the shared global model based on their own data and send
these updates back to the server. At the end of the round,
the server aggregates all the weight updates received from
participating clients for the update of global model.

An important aspect of FL is that participants cannot access
the raw data of others, thus their communication is limited
to exchanging weight updates. These weight updates were
previously believed to reveal minimal information about the
original data. However, recent studies (Zhu, Liu, and Han
2019; Zhu and Blaschko 2020; Geiping et al. 2020; Yin et al.
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2021; Jeon et al. 2021; Kariyappa et al. 2023; Zhu, Yao, and
Blaschko 2023) have challenged this belief regarding data
privacy in FL. They have demonstrated the possibility of
an honest-but-curious server launching a gradient inversion
attack, thereby stealthily recovering clients’ data using weight
gradients shared from clients.

In these attack algorithms, a randomly initialized input
variable is optimized to match the current weight gradient
computed with itself with the gradient shared from a client.
As a loss function for gradient matching, the literature pri-
marily employs either L2 distance (Zhu, Liu, and Han 2019;
Yin et al. 2021) or cosine distance (Geiping et al. 2020; Jeon
et al. 2021; Zhu, Yao, and Blaschko 2023) as in Figure 1a.

However, the reconstruction behavior of gradient inversion
attack depends on the loss function for gradient matching.
In Figure 1b, the L2 distance achieves a more accurate re-
construction for Image C (blue) than for Image B (green),
while the cosine distance displays the opposite pattern. The
choice of loss function for gradient matching has a significant
impact on the vulnerability ranking.

The gradient norm, commonly used as a vulnerability
proxy in existing literature (Geiping et al. 2020; Yin et al.
2021), remains constant regardless of the loss function for
gradient matching. Thus, it cannot account for the loss func-
tion dependence of vulnerability rankings among samples as
described in 1c. To address this issue, there is a need for a
proxy that can provide a comprehensive explanation for the
dependence of vulnerability rankings on the loss function.

In this paper, we introduce a novel loss-aware vulnerability
proxy (LAVP) for the first time. In specific, LAVP refers to
either the maximum or minimum eigenvalue of the Hessian of
gradient matching loss at the ground truth. LAVP is founded
on two theorems we have developed concerning gradient
matching optimization. We prove that the gradient matching
loss drops more significantly when bi-Lipschitz constants of
the gradient function are smaller. For simplicity, we focus on
the local optimization near the ground truth, representing the
worst-case attack scenario. In this case, bi-Lipschitz constants
near ground truth correspond to the maximum and minimum
eigenvalues of the Hessian at the ground truth, which is how
LAVP is derived.

We empirically show the efficacy of LAVP by presenting
stronger correlation than the gradient norm, with the qual-
ity of reconstructed images from gradient inversion attacks.
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(a) An overview of gradient
inversion attack

(b) MSE ranks of reconstructed images from gradient
inversion attacks with L2 and cosine distances

(c) Predicted MSE ranks with gradient norm and
LAVP (ours) for L2 and cosine distances

Figure 1: Motivation of our work. (a) A contemporary gradient inversion attack utilizes either L2 or cosine distance for gradient
matching. (b) Distinct loss functions reveal different vulnerability rankings among images in Mean Squared Error (MSE). (c) We
introduce a loss-aware vulnerability proxy (LAVP), capable of elucidating such loss-specific behaviors. LAVP for L2 and cosine
distances predict MSE ranking D > B > C > A and D > C > B > A, respectively. Each predicted ranking coincides with the
correct MSE ranking in (b). In contrast, gradient norm, which remains constant regardless of the chosen loss functions cannot
explain this.

For both L2 and cosine distances, the vulnerability ranking
among samples predicted by LAVP coincides better with
the correct one than that predicted by the gradient norm as
in Figure 1c. The superiority of LAVP over the gradient
norm is consistently verified by experiments on diverse ar-
chitectures and datasets ranging from low-resolution images
in CIFAR-10, CIFAR-100, ImageNette, and ImageWoof, to
high-resolution images in ImageNet.

The contribution of our work can be summarized as fol-
lows:

• We propose using either the maximum or minimum eigen-
value of the Hessian at the ground truth as a loss-aware
vulnerability proxy (LAVP) for the first time.

• We establish several theoretical results regarding the opti-
mization of gradient inversion attacks in close proximity
to the ground truth for the derivation of LAVP.

• We demonstrate the efficacy of LAVP in capturing vulner-
ability against gradient inversion attacks by comparing it
to the gradient norm by thorough experiments.

• We propose the geometric mean between LAVP for L2
and cosine distances as the loss-agnostic proxy that caters
to both L2 and cosine distances at once.

Preliminaries: Gradient Inversion Attack
Attack Scenario
In a FL scenario, we assume that the server sends the global
model fw : Rb×d → Rb×c to participating clients, where
w, b, d, and c denotes model weights, batch size, image
size, and the number of classes, respectively. Subsequently, a
client computes the weight gradient g∗ = ∂L(fw(x∗),y∗)

∂w with
respect to the private data batch (x∗, y∗) ∈ Rb×d × Rb (x∗

and y∗ being image and label batches) using the objective
function L : Rb×c × Rb → R. Then, the computed gradient
is sent back to the server. In this setup, the server, acting as

an honest-but-curious adversary, could attempt to reconstruct
an image batch x ∈ Rb×d resembling the ground truth batch
x∗, using the available information g∗ and fw. For brevity,
we assume b = 1 throughout the paper.

Optimization based Gradient Inversion Attacks
Gradient inversion attacks aim to reconstruct input batch by
minimizing the distance between the current gradients and
the target gradients as follows:

argmin
x,y

Lgrad(gw(x, y), g
∗) + αpriorRprior(x), (1)

where gw(x, y) =
∂L(fw(x),y)

∂w represents the weight gradient
as a function of the input batch and Lgrad : Rn × Rn → R
(n is the dimension of model weights w) serves as the loss
function for gradient matching. Also, Rprior : Rb×d → R
denotes the regularization loss for image prior and αprior

represents its coefficient. Especially, gradient matching loss
function Lgrad is chosen to cosine distance (Lgrad(g, g

∗) =

1− <g,g∗>
||g||||g∗|| ) (Geiping et al. 2020; Jeon et al. 2021; Huang

et al. 2021; Yin et al. 2021; Zhu, Yao, and Blaschko 2023) or
L2 distance (Lgrad(g, g

∗) = ||g − g∗||22) (Zhu, Liu, and Han
2019; Zhao, Mopuri, and Bilen 2020; Yin et al. 2021).

Enhanced Assumptions for Stronger Attacks
Beyond the baseline attack, which solely relies on gradient
matching, recent gradient inversion attack methods introduce
several augmented assumptions for stronger attack.

Firstly, it is assumed that the server knows private labels
associated with clients’ data. Recent works solve the opti-
mization problem presented in Equation (1) in a sequential
manner. This involves initially estimating the labels y di-
rectly through g∗ and fw (Ma et al. 2022; Wainakh et al.
2021; Zhao, Mopuri, and Bilen 2020; Yin et al. 2021), fol-
lowed by exclusive optimization of x using Equation (1),



drawing upon the earlier approximated y = y∗approx. This
disentangles label estimation from the optimization problem
in Equation (1) (Dang et al. 2021; Ye et al. 2022; Li et al.
2022). Consequently, recent studies have predominantly fo-
cused on image reconstruction under the premise of private
label knowledge (Geiping et al. 2020; Jeon et al. 2021). We
also embrace this assumption in our work.

Secondly, local batch statistics {µ∗
l , σ

∗
l
2}Nl=1 are computed

with clients’ data batch and then shared with the server along-
side weight updates, where µ∗

l , σ∗
l
2, and N signify batch

mean, batch variance, and the count of batch normalization
(BN) layers, respectively. Utilizing local batch statistics in-
deed contributes to the reconstruction of high-resolution im-
ages (with batch size up to 40) of superior quality (Yin et al.
2021; Hatamizadeh et al. 2022). However, the sharing of
batch statistics is not a mandatory requirement for clients,
thus we reject this assumption.

Related Work: Proxies for the Vulnerability
against Gradient Inversion Attack

Gradient Norm. In recent studies (Yin et al. 2021; Geiping
et al. 2020), the gradient norm is frequently employed as
a heuristic proxy for vulnerability assessment against gra-
dient inversion attacks. This approach is grounded in the
intuition that a gradient norm close to zero implies negligible
information, hence leading to reconstruction failure. In (Yin
et al. 2021), the proposed metric for batch reconstruction,
termed Image Identifiability Precision (IIP) is demonstrated
on images with higher gradient norms that are perceived as
more susceptible examples to gradient inversion attacks. Fur-
thermore, (Geiping et al. 2020) introduces a label flipping
attack, which pertains to permuting classifier weights rather
than label inversion. To address concerns that a fully trained
classifier might yield lower-norm gradients, a threat model is
established wherein a malicious server swaps the classifier
channel for the correct label with that for any incorrect label.
However, the gradient norm lacks theoretical or empirical
foundation as a vulnerability proxy.
Jacobian Norm. The utilization of the Jacobian norm as
a proxy to quantify the extent of input information within
gradients was explored in previous work (Mo et al. 2021).
Employing usable information theory, the sensitivity, denoted
as E∆x[||gw(x∗ +∆x)− g∗||], is interpreted as an indicator
of input information contained within gradients. The sensi-
tivity is reformulated into the Jacobian norm in (Mo et al.
2021), making it the most closely aligned with LAVP (ours)
for the L2 distance metric (the maximum eigenvalue of the
Jacobian) among preceding proxies. Note that the maximum
eigenvalue of the Jacobian corresponds to the spectral norm
of the Jacobian. However, the interpretation of the Jacobian
norm fundamentally differs from our perspective. In (Mo et al.
2021), higher sensitivity of the gradient around the ground
truth suggests that the gradient is more likely to be unique
within the vicinity of the ground truth, thus making it more
susceptible to revealing input information. In contrast, from
our optimization viewpoint, a greater gradient sensitivity in-
dicates convergence instability, making optimization of the
gradient matching loss more challenging. Indeed, our ex-

perimental results align with this intuition. In addition, the
objective of (Mo et al. 2021) is to identify layers in which the
gradient component significantly encodes input information.
We focus on a sample-wise approach rather than a layer-wise
approach (i.e., identifying vulnerable examples, not layers).
This explains why (Mo et al. 2021) is not regarded as a com-
petitor to our proposed method.

Method
In this section, we present a novel loss-aware vulnerabil-
ity proxy called LAVP to effectively elucidate loss-specific
reconstruction behaviors of gradient inversion attacks. We
claim that the susceptibility to the gradient inversion attack
is inversely proportional to the bi-Lipschitz constants of the
gradient function gw, denoted as L and M . This claim is
backed by our proofs of two theorems regarding L and M
respectively. We establish a correspondence of L and M near
ground truth to the maximum and minimum eigenvalues of
the Hessian with respect to the gradient matching loss Lgrad

at ground truth x∗. In the end, we outline the methodology
for computing both maximum and minimum eigenvalues of
Hessian, for both L2 and cosine distances.

Theoretical Results on the Optimization of Gradient
Matching
If a function f : Rn → Rm is Lipschitz continuous with
constant L, then the following holds: ||f(x) − f(y)|| ≤
L||x− y|| ∀x, y ∈ Rn. We employ the concept of Lipschitz
continuity to prove the following theorem in the context of
gradient matching problem. Note that we use gw(x) instead
of gw(x, y) throughout this section by the aforementioned
assumption that label information is available.
Theorem 1. (The first theorem on gradient matching opti-
mization). Suppose gw(x) is Lipschitz continuous with re-
spect to x with constant L and Lgrad(x) = ||gw(x)− g∗||22
is the gradient matching loss. Then, when gradient descent
∆x is applied with step size µ = 1

2L2 > 0 and L > ϵ for
some ϵ > 0, the following holds:

Lgrad(x+ µ∆x) ≤ Lgrad(x)−
1

4L2
||∂Lgrad(x)

∂x
||22, (2)

where L > ϵ satisfies ||µ∆x|| < δ such that gw(x+µ∆x) =
gw(x) + µ∇xgw(x)

T∆x holds approximately.

Proof. See Appendix A1.

Inequality (2) implies that gradient matching loss strictly
decreases as the gradient descent steps unless the gradient
term ∂Lgrad(x)

∂x is zero (i.e. gradient matching loss already
converges). Then, a gradient descent with a small L can
accelerate the convergence of gradient matching optimization.
Instead, there is the premise that L > ϵ for ϵ > 0, which is
required for Taylor’s first approximation on gw(x). Therefore,
in a particular range of L (i.e., L > ϵ), we hypothesize that a
global model with smaller L experiences a sharper loss drop
in gradient matching optimization.

In Theorem , optimal loss drop is achieved when µ = 1
2L2 .

In the proof of Theorem , µ should be the minimizer of



the last term on the right hand for optimal loss drop, while
there would be no such restriction if the term was on the left
hand. Therefore, if there is a Lipschitz constant for opposite
direction denoted by M > 0 such that ||gw(x1)−gw(x2)|| ≥
M ||x1 − x2||∀x1, x2), the following theorem can be derived.
Theorem 2. (The second theorem on gradient matching
optimization). Suppose ||gw(x1) − gw(x2)|| ≥ M ||x1 −
x2||∀x1, x2 for M > 0 holds and Lgrad(x) = ||gw(x) −
g∗||22 is the gradient matching loss. Then, when gradient
descent ∆x is applied with step size µ < δ1 for some δ1 > 0,
the following holds:

Lgrad(x+ µ∆x) ≥ Lgrad(x)−
1

4M2
||∂Lgrad(x)

∂x
||22, (3)

where µ < δ1 satisfies ||µ∆x|| < δ such that gw(x +
µ∆x) = gw(x) + µ∇xgw(x)

T∆x holds approximately.

Proof. See Appendix A2.

The proof of Theorem is similar to that of Theorem except
that the term including µ to be minimized is on the left side,
thus there is no restriction like µ = 1

2L2 in Theorem , thus
more favorable. Inequality (3) implies that the upper bound of
gradient matching loss drop is 1

4M2 ||∂Lgrad(x)
∂x ||22, unless the

gradient term ∂Lgrad(x)
∂x is zero. Then, a gradient descent with

a large M can hinder the convergence of gradient matching
optimization. Therefore, we hypothesize that a global model
with smaller M has a potential to experience a sharper loss
drop in gradient matching optimization.

Finding L and M near Ground Truth: Maximum
and Minimum Eigenvalues of Hessian
Theorems and are about one-step loss drop, so summarizing
the whole process of optimization with them is difficult. To
mitigate such complexity, we consider the loss drop near
ground truth as it is the most important to decide whether
ground truth can be reached through optimization or not. For
a neighborhood point of of ground truth x∗, x∗ +∆x (||∆x||
is very small), gradient matching loss can be approximated
by Taylor’s second-order approximation like the following:

Lgrad(x
∗ +∆x) =Lgrad(x

∗) +∇x=x∗Lgrad(x)
T∆x+

1

2
∆xTH(x∗)∆x,

where H(x∗) is the Hessian of gradient matching loss with
respect to input variables at x∗. Note that both Lgrad(x

∗)
and ∇x=x∗Lgrad(x) are zero when Lgrad is either L2 or
cosine distance. Then, Lgrad(x

∗ + ∆x) can be interpreted
as the distance in gradient space while ||∆x||2 corresponds
to distance in input space. Combining two preceding ob-
servations, the ratio of gradient distance to input distance
is Lgrad(x

∗ +∆x)/||∆x||2 = 1
2

∆x
||∆x||

T
H(x∗) ∆x

||∆x|| . Then,
the upper and lower bounds of this ratio correspond to maxi-
mum and minimum eigenvalues of Hessian, respectively. In
proximity to ground turth, we can replace L and M with
maximum and minimum eigenvalues of Hessian at ground
truth, which is our proposed proxy, LAVP.

Hessian of Gradient Matching Loss

To compute LAVP, Hessian should be identified first. In The-
orems 4 and 5, we derive the Hessian for L2 and cosine
distances in a closed form respectively.

Theorem 3. (Hessian at ground truth for L2 distance). Sup-
pose Lgrad is L2 distance, then the Hessian at ground truth
is like the following:

HL2(x
∗) = J(x∗)TJ(x∗), (4)

where J(x∗) = ∇x=x∗gw(x) is the Jacobian of gradient
function gw(x) with respect to input at ground truth x∗.

Proof. See Appendix A3.

When Lgrad is L2 distance, HL2(x
∗) = J(x∗)TJ(∗)

holds by Theorem , thus positive semi-definite. since in-
put dimension is smaller than weight dimension in general,
HL2(x

∗) is not trivial low rank and its minimum eigenvalue
has a potential to be positive.

For cosine distance, Hessian at ground truth can be solved
in closed form by the following theorem.

Theorem 4. (Hessian at ground truth for cosine distance).
Suppose Lgrad is cosine distance, then the Hessian at ground
truth is like the following:

Hcos(x
∗) =

1

||g∗||2
J(x∗)T (I − g∗

||g∗||
g∗T

||g∗||
)J(x∗), (5)

where I is the identity matrix.

Proof. See Appendix A4.

The minimum eigenvalue of Hcos(x
∗) is nonnegative as it

is positive semi-definite by Cauchy-Schwartz inequality.

Implementation of LAVP

To find the maximum eigenvalue of Hessian, power iteration
is used. Power iteration computes matrix-vector product and
normalization alternatively until the vector converges to the
eigenvector with the maximum eigenvalue. When this algo-
rithm is applied to the Hessian, Jacobian-vector product is
inevitable, while Autograd package in PyTorch supports only
vector-Jacobian product. Therefore, Jacobian-vector product
is solved with the finite difference method with very small
step size. Once the maximum eigenvalue αmax is obtained
for the Hessian H(x∗), then power iteration is applied to
αmaxI − H(x∗) (I is the identity matrix) for identifying
the minimum eigenvalue αmin, as αmax − αmin would be
the maximum eigenvalue of αmaxI −H(x∗) (I is the iden-
tity matrix). It is noteworthy that multiple Hessian-vector
products, rather than the entire Hessian, are sufficient for
computing LAVP, thus more efficient.



σS grad norm max (LAVP for L2) min (LAVP for L2) ang max (LAVP for CS) ang min (LAVP for CS)
C-10+L2 0.35 / -0.27 / -0.35 / -0.13 0.51 / -0.46 / -0.51 / -0.15 0.41 / -0.40 / -0.41 / -0.20 -0.06 / -0.01 / 0.06 / -0.06 -0.04 / -0.07 / 0.04 / -0.06
C-100+L2 0.41 / -0.31 / -0.41 / -0.19 0.46 / -0.57 / -0.46 / 0.10 0.41 / -0.45 / -0.41 / -0.01 -0.05 / -0.18 / 0.05 / 0.22 -0.05 / -0.20 / 0.05 / 0.19

IN+L2 0.03 / 0.03 / -0.03 / 0.19 0.33 / -0.26 / -0.33 / 0.49 0.34 / -0.25 / -0.35 / 0.46 0.14 / -0.20 / -0.14 / 0.42 0.25 / -0.34 / -0.25 / 0.42
IW+L2 0.35 / -0.01 / -0.35 / 0.00 0.66 / -0.58 / -0.66 / 0.46 0.68 / -0.52 / -0.68 / 0.29 0.38 / -0.41 / -0.38 / 0.46 0.46 / -0.52 / -0.46 / 0.49

C-10+CS -0.28 / 0.25 / 0.28 / -0.18 -0.03 / -0.02 / 0.03 / 0.00 0.04 / -0.08 / -0.04 / 0.02 0.26 / -0.31 / -0.26 / 0.36 0.64 / -0.74 / -0.64 / 0.62
C-100+CS 0.10 / -0.07 / -0.10 / 0.02 0.37 / -0.35 / -0.37 / 0.26 0.32 / -0.34 / -0.32 / 0.24 0.67 / -0.8 / -0.67 / 0.68 0.69 / -0.81 / -0.69 / 0.65

IN+CS -0.13 / 0.11 / 0.14 / -0.18 0.16 / -0.16 / -0.16 / 0.12 0.27 / -0.28 / -0.25 / 0.17 0.57 / -0.65 / -0.57 / 0.64 0.75 / -0.80 / -0.75 / 0.73
IW+CS 0.00 / 0.01 / 0.00 / -0.04 0.37 / -0.37 / -0.37 / 0.21 0.33 / -0.34 / -0.33 / 0.18 0.72 / -0.73 / -0.72 / 0.61 0.75 / -0.83 / -0.75 / 0.61

Table 1: Spearman’s correlation (σS) of proxy candidates with image similarity scores (MSE(↓) / SSIM(↑) / PSNR(↑)
/ LPIPS(↓)) on low-resolution images. ’C-10’, ’C-100’, ’IN’, and ’IW’ denote CIFAR-10, CIFAR-100, ImageNette, and
ImageWoof respectively. ’L2’ and ’CS’ denote L2 and cosine distances respectively. ’grad norm’, ’max’, ’min’, ’ang max’, and
’ang min’ denote the gradient norm, the maximum eigenvalue of Hessian for L2, the minimum eigenvalue of Hessian for L2, the
maximum eigenvalue of Hessian for CS, and the minimum eigenvalue of Hessian for CS.

(a) grad norm vs MSE (L2, σS = 0.35) (b) max vs MSE (L2, σS = 0.51) (c) min vs MSE (L2, σS = 0.41)

(d) grad norm vs MSE (CS, σS = −0.28) (e) ang max vs MSE (CS, σS = 0.26) (f) ang min vs MSE (CS, σS = 0.64))

Figure 2: Comparison of the gradient norm, maximum and minimum eigenvalues of Hessian in terms of the correlation
with MSE of reconstructed samples over several architectures on CIFAR10 test samples.

Experimental Results

In this section, we begin with a concise overview of our
experimental setup. Then, we elucidate the advantages of
LAVP over the gradient norm (baseline), in explaining the
vulnerability to the gradient inversion attack with either L2
or cosine distance by providing correlation tables and plots.
For a black-box scenario where the attacker’s loss function
is unknown to clients, we also introduce the loss-agnostic
LAVP fusion, the proxy that can handle several candidate loss
functions at once. An example of LAVP fusion includes the
geometric mean between LAVPs for L2 and cosine distances.
We provide the correlation table for this example with a
comparative evaluation against the gradient norm.

Experimental Setup
Datasets. We conducted an evaluation by randomly se-
lecting 100 validation images from CIFAR-10 (Krizhevsky
2009), CIFAR-100 (Krizhevsky 2009), ImageNette (Howard),
ImageWoof (Howard), and ImageNet (Deng et al. 2009).
Notably, ImageNette and ImageWoof are subsets of Ima-
geNet (Deng et al. 2009), each consisting of ten easily classi-
fied classes, but with different classes from one another.
Architectures and Attack Hyperparameters. We evaluated
several deep learning models on low-resolution images, in-
cluding LeNet (LeCun et al. 1998), AlexNet (Krizhevsky,
Sutskever, and Hinton 2017), VGG9 (Simonyan and Zisser-
man 2014), and ResNet8 (He et al. 2016). We trained these
models on a training set for 300 epochs, using the SGD opti-
mizer with an initial learning rate of 0.1 and a learning rate



σS grad norm max (LAVP for L2) min (LAVP for L2) ang max (LAVP for CS) ang min (LAVP for CS)
ImageNet+L2 0.66 / -0.66 / -0.66 / -0.28 0.69 / -0.72 / -0.69 / -0.09 0.74 / -0.74 / -0.72 / -0.07 -0.05 / 0.09 / 0.05 / 0.03 -0.07 / 0.12 / 0.07 / 0.10
ImageNet+CS -0.06 / -0.04 / 0.00 / -0.05 0.02 / -0.07 / -0.11 / 0.04 -0.03 / -0.05 / -0.06 / 0.00 0.27 / -0.37 / -0.21 / 0.32 0.26 / -0.22 / -0.24 / 0.32

Table 2: Spearman’s correlation of proxy candidates with image similarity scores (MSE(↓) / SSIM(↑) / PSNR(↑) / LPIPS(↓))
on ImageNet.

(a) grad norm vs MSE (L2, σS = 0.66) (b) max vs MSE (L2, σS = 0.69) (c) min vs MSE (L2, σS = 0.74)

(d) grad norm vs MSE (CS, σS = −0.06) (e) ang max vs MSE (CS, σS = 0.27) (f) ang min vs MSE (CS, σS = 0.26))

Figure 3: Comparison of the gradient norm, maximum and minimum eigenvalues of Hessian in terms of the correlation
with MSE of reconstructed samples over ResNet18 and ShuffleNet models on ImageNet validation samples.

σS grad norm
√

max * ang min (LAVP fusion)
C-10+L2 0.35 / -0.27 / -0.35 / -0.13 0.48 / -0.49 / -0.48 / -0.09

C-100+L2 0.41 / -0.31 / -0.41 / -0.19 0.50 / -0.49 / -0.50 / -0.09
IN+L2 0.03 / 0.03 / -0.03 / 0.19 0.48 / -0.41 / -0.48 / 0.59
IW+L2 0.35 / -0.01 / -0.35 / 0.00 0.71 / -0.71 / -0.71 / 0.51

C-10+CS -0.21 / 0.25 / -0.21 / 0.15 -0.28 / 0.25 / 0.28 / -0.18
C-100+CS 0.10 / -0.07 / -0.10 / 0.02 0.50 / -0.45 / -0.50 / 0.36

IN+CS -0.13 / 0.11 / 0.14 / -0.18 0.44 / -0.43 / -0.44 / 0.34
IW+CS 0.00 / 0.01 / 0.00 / -0.04 0.57 / -0.59 / -0.57 / 0.38

Table 3: Spearman’s correlation of loss-agnostic LAVP
and gradient norm with image similarity scores (MSE(↓)
/ SSIM(↑) / PSNR(↑) / LPIPS(↓)). An instance of LAVP fu-
sion is the geometric mean between the maximum eigenvalue
of Hessian for L2 distance and the minimum eigenvalue of
Hessian for cosine distance.

decay of 0.1 at the 150th and 225th epochs. We also trained
ResNet18 (He et al. 2016) and ShuffleNet (Ma et al. 2018)
models on high-resolution images from ImageNet. To assess
the vulnerability to attacks, we directly performed gradient
inversion attacks on 100 validation images randomly selected
from each dataset. We used attack algorithms from previous
works (Geiping et al. 2020; Yin et al. 2021; Zhu, Liu, and Han
2019) and considered two major gradient matching losses: L2
and cosine distances. Also, we incorporated the total varia-
tion loss for regularization. We use Adam optimizer (Kingma

and Ba 2015) for gradient inversion. For each sample, we run
attack algorithm three times using different random seeds.
The final outcome was recorded the one that reconstructs the
best among these runs.
Image Similarity Scores. Image similarity scores measure
the quality of reconstructed images compared to the original
images. We consider Mean Squared Error (MSE), Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al.
2018), Structural Similarity Index (SSIM) (Wang et al. 2004)
and Peak Signal-to-Noise Ratio (PSNR) for quantifying re-
construction quality. MSE computes the mean pixel-wise
difference between original sample and its reconstruction in
image space. LPIPS computes the distance from ground truth
within the feature space of the ImageNet-pretrained VGG
network. SSIM measures the similarity between two images
by comparing their structural information, luminance, and
contrast. PSNR measures the quality of reconstructed images
using signal-to-noise (SNR) ratio.
Proxy for the Vulnerability. We consider the gradient norm
and LAVP as the candidates for the proxy. In tables, the gradi-
ent norm is denoted as ‘grad norm’, maximum and minimum
eigenvalues for L2 distance hessian are denoted as ‘max’ and
‘min’, and maximum and minimum eigenvalues for cosine
distance loss are denoted as ‘ang max’ and ‘ang min’. Here,
‘ang’ is the abbreviation for ‘angular’.



Evaluation Metric. For a random variable of reconstructed
images X , we compute the correlation between two map-
ping of X , A(X) and B(X) where A is a similarity score,
and B is a proxy for the vulnerability. Pearson’s correlation
coefficient (σP ) is often used to compute linear correlation,
while monotonocity is more important than linearity in our
case. Thus, we use Spearman’s correlation coefficient (σS) to
compute monotonic relationship between A(X) and B(X).
Note that Spearman’s correlation coefficient is Pearson’s cor-
relation between Rank(A(X)) and Rank(B(X)), where
Rank(·) is the operator for ranking numbers in increasing
order. The correlation is said to be strong when the absolute
value of σS is close to one. Specifically, intra correlation
within the same architecture is more important as vulnerable
examples might depend on the model. Note that σS is com-
puted for each architecture and their average is reported as
the final evaluation metric.

Results for the Correlation between the Proxy and
Vulnerability
Table 1 and Table 2 present correlation results of proxy can-
didates on several combinations of dataset and loss function
type for low resolution images and high resolution images.
Note that the sign of the correlation depends on the image
similarity score due to the fact that both MSE and LPIPS de-
crease as image quality improves, whereas the reverse is true
for SSIM and PSNR. When gradient inversion is based on the
L2 (cosine) distance, the maximum and minimum eigenval-
ues of Hessian with the L2 (cosine) distance show stronger
correlation with reconstruction quality in all image similarity
scores than the gradient norm in Table 1, as expected from
our hypothesis. The absolute values of σS are mostly larger
than 0.5 for LAVP with the corresponding attack loss func-
tion. In the case of cosine distance, LAVP achieves even the
optimal value around 0.8.

In Figure 2, values of proxy candidates for each recon-
structed sample are plotted in log scale along with its image
quality in MSE for CIFAR-10. The gradient norm shows
mixed trend in terms of correlation sign as it shows a
slightly upward-sloping distribution with σS = 0.35 in Fig-
ure 2a but a slightly downward-sloping distribution with
σS = −0.28 in 2d. In contrast, LAVP consistently shows
upward-sloping distributions with at most σS = 0.64 which
corresponds to stronger correlation than the gradient norm in
Figures 2b, 2c, 2e, and 2f.

In Figure 3, candidate proxy values for each reconstructed
sample are plotted in log scale along with its image qual-
ity in MSE on different loss functions and architectures for
ImageNet. In Figure 3a, the gradient norm shows the mod-
erate upward-sloping distribution with σS = 0.66, but this
phenomenon rather negates the previous hypothesis that ex-
amples with higher gradient norm are more vulnerable. There-
fore, we believe that this moderate correlation in the case of
L2 distance might be due to the gradient scale, which affects
both the gradient norm and Jacobian. In Figure 3d, the gra-
dient norm shows almost no correlation with σS = −0.06
for cosine distance. For the case of cosine, there is no gra-
dient scale issue since a normalizing factor 1

||g∗||2 exists in

Equation 5. In Figures 3b, 3c, 3e, and 3f, LAVP consistently
shows upward-sloping distributions with at most σS = 0.74.

LAVP Fusion for Black-box Scenario

In a black-box scenario where clients lack knowledge of the
attacker’s loss function, LAVP should be computed for each
potential candidate loss function. To mitigate this complexity,
we suggest a loss-agnostic version as a fusion of LAVPs for
L2 and cosine distances. In Table 3, we present a specific
instance of this fusion as the geometric mean between the
maximum eigenvalue of the Hessian for L2 loss and the min-
imum eigenvalue for cosine similarity loss. For both L2 and
cosine distances, the loss-agnostic LAVP shows stronger σS

than the gradient norm with the vulnerability in most cases.
The efficacy of loss-agnostic LAVP can be attributed to the
observed minimal correlation between LAVPs for different
loss functions. In Table 2, LAVP tailored for L2 distance
exhibits the correlation of at most |σS | = 0.06 with the qual-
ity of reconstructed from cosine distance in MSE. On the
other hand, LAVP tailored for cosine distance exhibits the
correlation of at most |σS | = 0.07 with the quality of recon-
structed images from L2 distance in MSE. This mutual lack
of correlation underlines the absence of any interfering effect
between the LAVPs designed for L2 and cosine distances.
The concept of LAVP fusion can be extended to any future
loss function for gradient matching beyond L2 and cosine.

Conclusion

This paper introduces a novel concept: a loss-aware vulnera-
bility proxy, called LAVP, designed to gauge the loss-specific
quality of reconstructed input from gradient inversion attacks.
Unlike the gradient norm, a common heuristic in prior stud-
ies, LAVP—represented by either the maximum or minimum
eigenvalue of Hessian with respect to gradient matching at
ground truth—can explain different reconstruction patterns
corresponding to different loss functions for gradient match-
ing in the attack.

This innovation is based on our theoretical results con-
cerning gradient matching optimization. In our theorems, we
claim that low bi-Lipschitz constants of the gradient function
with respect to the input signify susceptibility to gradient
inversion attacks. We also establish a connection between
bi-Lipschitz constants of the gradient function and the max-
imum and minimum eigenvalues of the Hessian near the
ground-truth, which is how LAVP is derived.

In our experiments, we show the efficacy of our approach
across diverse architectures and datasets, even encompassing
high-resolution images like ImageNet. The results indicate
that LAVP offers a stronger correlation with vulnerability
compared to the gradient norm. We also introduce a loss-
agnostic fusion of LAVPs for L2 and cosine distances as the
proxy that caters to both L2 and cosine at once. This study
not only highlights the significance of Hessian eigenvalues as
proxies for vulnerability in gradient inversion attacks but also
provides deeper insights into the mechanics of these attacks,
paving the way for future research in this domain.
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Appendix

We include additional information in the Appendix.
We provide mathematical proofs for several theorems in

the main paper.
We provide the pseudocode for computing maximum

eigenvalues of hessian, which is omitted in the main paper
due to page limits.

We present limitations and future work section, which is
omitted in the main paper due to space constraints.

We present qualitative comparison between gradient norm
and LAVP (ours) on datasets including CIFAR100 (Figure
4), ImageNette (Figure 5), and ImageWoof (Figure 6).

We present how strong LAVP correlates to final loss in
local optimization scenario to understand the effectiveness of
LAVP in capturing optimization behavior.

Mathematical Proofs
A1. Proof of Theorem 1
Theorem. (The first gradient inversion loss theorem). Sup-
pose gw(x) is Lipschitz continuous with respect to x with
constant L and Lgrad(x) = ||gw(x) − g∗||22 is the gradient
matching loss. Then, when gradient descent ∆x is applied
with step size µ = 1

2L2 > 0 and L > ϵ for some ϵ > 0, the
following holds:

Lgrad(x+∆x) ≤ Lgrad(x)−
1

4L2
||
∂Lx

grad

∂x
||22,

where L > ϵ satisfies ||µ∆x|| < δ such that gw(x+µ∆x) =
gw(x) + µ∇xgw(x)∆x holds approximately.

Proof. First, we will compute the vector for gradient descent,
∆x = −µ

∂Lgrad

∂x by chain rule as follows:

∆x = −µ
∂Lgrad

∂x

= −µ
∂||∇wL(f(x), y)− g∗||22

∂x
= −2µ∇x∇wL(f(x), y)(∇wL(f(x), y)− g∗).

Then, Lgrad(x+∆x) can be separated into three terms by
summation like the following:

Lgrad(x+∆x) = ||∇wL(f(x+∆x), y)− g∗||22
= ||∇wL(f(x+∆x), y)−∇wL(f(x), y)+

∇wL(f(x), y)− g∗||22
= ||u||22 + 2uT v + ||v||22

, where u = ∇wL(f(x + ∆x), y) − ∇wL(f(x), y) and
v = ∇wL(f(x), y)− g∗.

For the first term, ||u||22 = ||∇wL(f(x + ∆x), y) −
∇wL(f(x), y)||22 ≤ L2||∆x||2 = L2µ2||∂Lgrad

∂x ||22 due to
the L-Lipschitz continuity condition of ∇wL(f(x), y) with
respect to an input.



For the second term,

2uT v = 2(∇wL(f(x+∆x), y)−∇wL(f(x), y))T

(∇wL(f(x), y)− g∗)

≈ 2∆xT∇x∇wL(f(x), y)(∇wL(f(x), y)− g∗)

(∵ Taylor’s first-order approximation with µ < δ)

= −µ(
∂Lgrad

∂x
)T (

∂Lgrad

∂x
)

= −µ||∂Lgrad

∂x
||22

(∵ Recall that how ∆x is computed in the first step).

For the third term, ||v||22 = ||∇wL(f(x), y) − g∗||22 =
Lgrad(x).

Then, summing up the three terms considered above will
lead to the following inequality:

Lgrad(x+∆x) ≤ Lgrad(x) + (L2µ2 − µ)||∂Lgrad

∂x
||22

= Lgrad(x)−
1

4L2
||∂Lgrad

∂x
||22

(∵ min. at µ =
1

2L2
).

For both µ = 1
2L2 and µ < δ to be met, 1

2L2 < δ should
be satisfied and this is why the premise that L > ϵ = 1√

2δ
is

required for the theorem. We empirically found that L̃, the
estimated value for L, mostly turned out to be not small, thus
meeting the premise in practice. We will derive the theorem
for small L to explain outliers in future work.

A2. Proof of Theorem 2
Theorem. (The second gradient inversion loss theorem).
Suppose ||gw(x1) − gw(x2)|| ≥ M ||x1 − x2||∀x1, x2 for
M > 0 and Lgrad(x) = ||gw(x) − g∗||22 is the gradient
matching loss. Then, when gradient descent ∆x is applied
with step size µ < δ1 for some δ1 > 0, the following holds:

Lgrad(x+∆x) ≥ Lgrad(x)−
1

4M2
||
∂Lx

grad

∂x
||22,

µ < δ1 satisfies ||µ∆x|| < δ such that gw(x + µ∆x) =
gw(x) + µ∇xgw(x)∆x holds approximately.

Proof. Similar to the proof of previous theorem, we can use
the following equation again:

Lgrad(x+∆x) = ||∇wL(f(x+∆x), y)− g∗||22
= ||∇wL(f(x+∆x), y)−∇wL(f(x), y)+

∇wL(f(x), y)− g∗||22
= ||u||22 + 2uT v + ||v||22

, where u = ∇wL(f(x + ∆x), y) − ∇wL(f(x), y) and
v = ∇wL(f(x), y)− g∗.

For the first term, ||u||22 = ||∇wL(f(x + ∆x), y) −
∇wL(f(x), y)||22 ≥ M2||∆x||2 = M2µ2||∂Lgrad

∂x ||22 due to
the given condition.

For the second term,

2uT v = 2(∇wL(f(x+∆x), y)−∇wL(f(x), y))T

(∇wL(f(x), y)− g∗)

≈ 2∆xT∇x∇wL(f(x), y)(∇wL(f(x), y)− g∗)

(∵ Taylor’s first-order approximation with µ < δ)

= −µ(
∂Lgrad

∂x
)T (

∂Lgrad

∂x
)

= −µ||∂Lgrad

∂x
||22

(∵ Recall that how ∆x is computed in the first step).

For the third term, ||v||22 = ||∇wL(f(x), y) − g∗||22 =
Lgrad(x).

Then, summing up the three terms considered above will
lead to the following inequality:

Lgrad(x+∆x) ≥ Lgrad(x) + (M2µ2 − µ)||∂Lgrad

∂x
||22

≥ Lgrad(x)−
1

4M2
||∂Lgrad

∂x
||22

(∵ min. at µ =
1

2M2
).

Unlike the case for Theorem 1, the inequality above holds
for any µ, thus no restriction on µ.

A3. Proof of Theorem 3
Theorem. (Hessian at ground truth for L2 distance). Suppose
Lgrad is L2 distance, then the hessian at ground truth is like
the following:

HL2(x
∗) = J(x∗)TJ(x∗),

where J(x∗) is the Jacobian of gradient with respect to input
variable (i.e., J(x∗) = ∇x=x∗gw(x)).

Proof. Note that Lgrad(x) = 1
2 ||∇wL(f(x), y) −

g∗||22. Then, ∂Lgrad(x)
∂x = J(x)T (∇wL(f(x), y) −

g∗). Then, the hessian would be ∂
∂x

∂Lgrad(x)
∂x =

∂J(x)T

∂x (∇wL(f(x), y) − g∗) + J(x)TJ(x) (by Product
Rule). Note that ∇wL(f(x∗), y) = g∗. Thus, replac-
ing x with x∗ cancels the former term, thus HL2(x

∗) =
∂
∂x

∂Lgrad(x)
∂x |x=x∗ = J(x∗)TJ(x∗) holds.



A4. Proof of Theorem 4
Theorem. (Hessian at ground truth for cosine distance). Sup-
pose Lgrad is cosine distance, then the hessian at ground
truth is like the following:

Hcos(x
∗) =

1

||g∗||22
J(x∗)T (I − g∗

||g∗||2
g∗T

||g∗||2
)J(x∗),

I is the identity matrix.

Proof. Note that Lgrad(x) = 1− g∗

||g∗||22

T ∇wL(f(x),y)
||∇wL(f(x),y)||2 .

Let v denote ∇wL(f(x),y)
||∇wL(f(x),y)||2 and h denote ∇wL(f(x), y).

Then, ∂Lgrad(x)
∂x = ∂h

∂x
∂v
∂h

∂h
∂v (by Chain Rule) =

−J(x)T 1
||h|| (I −

1
||h||2hh

T ) g∗

||g∗||2 .

Then, hessian ∂
∂x

∂Lgrad(x)
∂x = ∂

∂x (−J(x)T 1
||h||2 )(I −

1
||h||22

hhT ) g∗

||g∗||2 − J(x)T 1
||h||2

∂
∂x (I −

1
||h||22

hhT ) g∗

||g∗||2 .
By replacing x with x∗, the former term is canceled out

because (I− 1
||h||22

hhT ) g∗

||g∗||2 = (I− 1
||g∗||22

g∗g∗T ) g∗

||g∗||2 =

0.
Then, the latter term is only left, thus hessian

would be −J(x)T 1
||h||2

∂
∂x (I − 1

||h||22
hhT ) g∗

||g∗||2 =

2J(x)T 1
||h||22

∂
∂x (I − 1

||h||22
hhT )J(x) h

||h||2
T g∗

||g∗||2 . Us-
ing the substitution x = x∗ (then, h = g∗), hessian
would be like the following: 2J(x∗)T 1

||g∗||22
∂
∂x (I −

1
||g∗||22

g∗g∗T )J(x∗) g∗

||g∗||2
T g∗

||g∗||2 = 2J(x∗)T 1
||g∗||22

∂
∂x (I −

1
||g∗||22

g∗g∗T )J(x∗), thus the theorem holds.

A5. The correlation between L and M (key
variables in section 4.1) to the maximum and the
minimum eigenvalues of the Hessian.
By Taylor’s second-order approximation, Lgrad(x

∗+∆x) =
Lgrad(x

∗)+∆xT∇x=x∗Lgrad(x)+
1
2∆xTH (x∗)∆x. For

Lgrad being either L2 or cosine distance, Lgrad(x
∗) = 0 and

∇x=x∗Lgrad(x) = 0 hold (see the proofs in A3. and A4.).
Then, we can rewrite Lgrad(x

∗ +∆x) = 1
2∆xTH (x∗)∆x

and the following holds.

||∇wL(f(x∗ +∆x), y)−∇wL(f(x∗), y)||2
||∆x||2

=

√
Lgrad(x∗ +∆x)

||∆x||2

=

√
Lgrad(x∗ +∆x)− Lgrad(x∗)

||∆x||2
(∵ Lgrad(x

∗) = 0)

=

√
1
2∆xTH (x∗)∆x

||∆x||2
, and

√
λmin√

2
≤

√
1
2∆xTH(x∗)∆x

||∆x||2
≤

√
λmax√

2
, where λmin and

λmax are minimum and maximum eigenvalues of H(x∗).

Therefore,
√
λmax√

2
and

√
λmin√

2
provides the lower and upper

bounds of bi-Lipschitz constants L and M in Theorem 1 and
2 respectively. Note that

√
λmax√

2
and

√
λmin√

2
are exactly L and

M respectively for the special case when x2 = x∗, which is
of our interest.

Algorithms
In Algorithm 1, we describe how the maximum eigenvalue
of Hessian is computed using the pseudocode.

Limitations and Future Work
Our work is focused on pure gradient matching loss for funda-
mental analysis, without batch statistics matching loss. How-
ever, state-of-the-art method currently uses batch statistics
matching, thus a theoretical approach on optimizing batch
statistics matching is required to craft more advanced proxy
for the vulnerability under state-of-the-art gradient inversion
attacks.

Plots on Other Datasets
We included plot results for the qualitative comparison be-
tween gradient norm and our proposed measures for datasets
CIFAR100 (in Figure 4), ImageNette (in Figure 5), and Im-
ageWoof (in Figure 6).

Understanding LAVP
In this section, we investigate whether LAVP works as ex-
pected from our theory. To simulate the local optimization
scenario, the initialized image in the attack is sampled from
xi = x∗ + 0.1sign(N ), where N is the normal distribution
and sign is the sign function. This initialization scheme al-
ways ensures initial reconstruction error as MSE with 0.1,
thus simulating local optimization. In Table 4, we present
the final gradient matching loss average with its standard
deviation in this setup. For each sample, we run the attack
algorithm five times and SGD optimizer is used for optimiza-
tion. Note that LAVP-L2 is aligned with Lfinal

grad (L2) and
LAVP-cos is aligned with Lfinal

grad (cos) while gradient norm
does not correlate with final loss for any kind of loss function.

Values / Image index Image 1 Image 2 Image 3
Lfinal
grad (L2) 307.75 ± 15.45 0.001 ± 0.00 526.42 ± 50.32

Lfinal
grad (cos) 0.053 ± 0.02 0.032 ± 0.00 0.014 ± 0.00

LAVP-L2(max) 4.70E05 1.81 2.19E06
LAVP-L2(min) 1.64 3.70E-06 3.71

LAVP-cos(ang max) 4.53 0.99 0.08
LAVP-cos(ang min) 1.20E-03 4.00E-04 8.00E-05

gradient norm 24.64 0.07 42.02

Table 4: Final gradient matching losses (Lfinal
grad (L2 dis-

tance), Lfinal
grad (cosine distance)), LAVPs for L2, LAVPs

for cosine, and gradient norm for three different images. )
/ LPIPS(↓)). For each value, the smallest value among three
images is marked as bold and the largest value among them
is marked as underlined.



(a) grad norm vs MSE (L2, σS = 0.41) (b) max vs MSE (L2, σS = 0.46) (c) min vs MSE (L2, σS = 0.41)

(d) grad norm vs MSE (CS, σS = 0.1) (e) ang max vs MSE (CS, σS = 0.67) (f) ang min vs MSE (CS, σS = 0.69))

Figure 4: Comparison of gradient norm, maximum and minimum eigenvalues of Hessian in terms of the correlation with
MSE of reconstructed samples over several architectures on CIFAR100 test samples.

(a) grad norm vs MSE (L2, σS = 0.03) (b) max vs MSE (L2, σS = 0.33) (c) min vs MSE (L2, σS = 0.34)

(d) grad norm vs MSE (CS, σS = −0.13) (e) ang max vs MSE (CS, σS = 0.57) (f) ang min vs MSE (CS, σS = 0.75))

Figure 5: Comparison of gradient norm, maximum and minimum eigenvalues of Hessian in terms of the correlation with
MSE of reconstructed samples over several architectures on ImageNette test samples.



(a) grad norm vs MSE (L2, σS = 0.35) (b) max vs MSE (L2, σS = 0.66) (c) min vs MSE (L2, σS = 0.68)

(d) grad norm vs MSE (CS, σS = 0.00) (e) ang max vs MSE (CS, σS = 0.72) (f) ang min vs MSE (CS, σS = 0.75))

Figure 6: Comparison of gradient norm, maximum and minimum eigenvalues of Hessian in terms of the correlation with
MSE of reconstructed samples over several architectures on ImageWoof test samples.



Algorithm 1: Pseudocode for computing maximum eigen-
value of Hessian, PyTorch-like
1 def max_eigenvalue(x, label, model, g_gt):
2 # x: ground-truth image
3 # label : x’s class
4 # model : FL model
5 # g_gt : model gradient from ground truth
6
7 m_e = 0 # max eigenvalue candidate
8
9 for _ in range(N): # N is large enough

10 v = torch.randn_like(x) # initialize vector
11 v = v/torch.norm(v) # normalize vector
12
13 #initialie gradients to zero
14 x_tmp = x.copy()
15 x_tmp.grad *= 0.0
16 model.zero_grad()
17
18 loss1 = loss_fn(model(x_tmp - e*v), label) #

compute loss at neighborhood of x, e is
small

19
20 gradient1 = torch.autograd.grad(loss1, model.

parameters(), create_graph=True) #compute
gradient

21
22 g1 = torch.cat([gradient1.view(-1, 1).detach()

for g in gradient1], dim=0).squeeze() #
flatten gradient into 1-D

23
24 model.zero_grad()
25
26 loss2 = loss_fn(model(x_tmp + e*v), label) #

compute loss at neighborhood of x at the
opposite side, e is small

27
28 gradient2 = torch.autograd.grad(loss2, model.

parameters(), create_graph=True) #compute
gradient

29
30 g2 = torch.cat([gradient2.view(-1, 1).detach()

for g in gradient2], dim=0).squeeze() #
flatten gradient into 1-D

31
32
33 g_diff = (g2 - g)/(2*e) # compute difference,

which is approximately a Jacobian vector
product

34
35 g_diff = g_diff.detach()
36
37 # For cosine similiarity loss, compute

intermeidate terms with g_gt
38
39 if loss_type == ’cosine’:
40 g_diff = g_diff - (g_diff*g_gt).sum(0)*g_gt
41
42 model.zero_grad()
43 loss = loss_fn(model(x_tmp), label) # compute

loss at gt
44 gradient = torch.autograd.grad(loss, model.

parameters(), create_graph=True) #
compute gradient

45 g = gorch.cat([gradient.view(-1, 1).detach()
for g in gradient], dim=0).squeeze()

46 #flatten gradient into 1-D
47 ig = torch.autograd.grad(outputs=g, inputs=x,

grad_outputs=g_diff) #Hessian vector
product

48
49 nrm = (ig[0]*v).sum() #maximum eigenvalue

candidate
50
51 m_e = max(m_e, nrm) #update maximum eigenvalue
52
53 v = ig[0]
54 return m_e
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