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Abstract

Video-based facial analysis is important for autonomous
agents to understand human expressions and sentiments.
However, limited labeled data is available to learn effec-
tive facial representations. This paper proposes a novel self-
supervised face-centric pretraining framework, called Pref-
Ace, which learns transferable video facial representation
without labels. The self-supervised learning is performed
with an effective landmark-guided global-local tube distil-
lation. Meanwhile, a novel instance-wise update FaceFeat
Cache is built to enforce more discriminative and diverse
representations for downstream tasks. Extensive experiments
demonstrate that the proposed framework learns universal
instance-aware facial representations with fine-grained land-
mark details from videos. The point is that it can trans-
fer across various facial analysis tasks, e.g., Facial Attribute
Recognition (FAR), Facial Expression Recognition (FER),
DeepFake Detection (DFD), and Lip Synchronization (LS).
Our framework also outperforms the state-of-the-art on var-
ious downstream tasks, even in low data regimes. Code is
available at https://github.com/siyuan-h/PrefAce.

Introduction
Facial analysis tasks offer valuable insights into human non-
verbal behavior, shedding light on social interaction (Haugh
2009), communication (Jack and Schyns 2015), and cog-
nition (Storrs, Anderson, and Fleming 2021), with impli-
cations for Human-Computer Interaction (HCI) and Affec-
tive Computing. Recent strides in deep neural network mod-
els, encompassing Facial Attribute Recognition (FAR) (Zhu
et al. 2022), Facial Expression Recognition (FER) (Li and
Deng 2022), DeepFake Detection (DFD) (Tolosana et al.
2020), and Lip Synchronization (LS) (Kadam et al. 2021),
have shown remarkable potential. However, the need for ex-
tensive annotated datasets poses challenges due to resource
and time demands, especially for specialized applications re-
quiring domain expertise for annotation like Facial Expres-
sion Recognition (FER).

*This paper was completely accomplished when Hu Siyuan in-
terned under Dr. Zhu Hongyuan’s supervision at A*STAR.

†Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Distribution overview of t-SNE visualization on
embeddings generated by PrefAce and state-of-the-art.

Self-supervised pretraining is a powerful solution to by-
pass the limitations of full supervision. Utilizing non-
annotated data for generic representation learning, it trans-
fers knowledge across tasks, enabling further training
with limited annotation. In natural scene imagery, self-
supervised approaches like self-distillation (Caron et al.
2021a), contrastive learning (Chen et al. 2020b), jigsaw puz-
zle solving (Noroozi and Favaro 2016), and masked autoen-
coders (He et al. 2022) have even outperformed supervised
methods.

In facial analysis, prevailing methods often remain spe-
cialized and fully supervised. Recently, (Bulat et al. 2022)
studied the efficacy of common self-supervised techniques
in scalable, generic representation learning from uncurated
images and videos. (Zheng et al. 2022) studied the self-
supervised facial video representation learning in the set-
ting of visual-linguistic pretraining. One step ahead, MAR-
LIN (Cai et al. 2023) introducing facial region masking and
adversarial training for face reconstruction to learn repre-
sentations from videos modalities only which alleviate the
requirement of image-caption pairs in (Zheng et al. 2022).

On the other hand, recent studies (Oquab et al. 2023)
demonstrate that performing vanilla self-supervised learning
on uncurated data will lead to inferior representations with
less transferable to other tasks. Our empirical study of recent
SOTA face pretraining method (e.g. MARLIN) also reveals
that this phenomenon that it tends to learn common face fea-
tures while ignores diverse and discriminative features (see
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Fig. 2) which are useful for downstream tasks. Therefore, it
is interesting to explore to balance learning both common
and diverse face representations in the setting of uncurated
data.

This paper propose a new method PrefAce aiming at en-
hancing learning universal and task-agnostic representations
in a self-supervised manner for downstream facial analysis
tasks. In PrefAce, we adopt the dual encoder architecture
which is popular in self-supervised learning and compatible
with most architectures (e.g. CNN and ViT). Moreover, we
introduce a new multiscale landmark guided self-distillation
to help the network focus on spatio-temporal fine-grained
discriminative features. We also introduce a novel one-time
FaceFeat Cache so that the encoder can try to produce di-
verse features by constrasting current video face instance
with instances in all other videos. Our experimental results
show that our proposed framework, PrefAce, learns highly
generic facial encoding that scale and transfers well across
diverse facial analysis tasks such as FER, DFD, FAR, and
LS and achieve favorable performance gain w.r.t. state-of-
the-art benchmarks. In summary, our main contributions are:

• We propose, PrefAce, a universal and task-agnostic self-
supervised facial representation learning framework that
learns common and diverse facial representation from
uncurated web-crawled facial videos.

• We propose multiscale landmark guided self-distillation.
The proposed strategy aims to learn fine-grained discrim-
inative facial representations.

• We propose to use novel FaceFeat cache with instance-
wise updating strategy to learn diverse and transferrable
facial representations.

• Extensive quantitative and qualitative analysis demon-
strate that PrefAce learns rich, generic, transferable, and
robust facial representation, that outperforms state of the
art across a variety of downstream tasks including FAR,
FER, DFD, LS, and under few shot settings.

Related Work
Self-supervised Learning
A large body of work on self-supervised learning focuses
on discriminating between augmentations of instance (Chen
et al. 2020a), thus learning the underlying invariance of rep-
resentations. Recent works have shown that we can learn
unsupervised features without discriminating between in-
stances. Grill et al. (Grill et al. 2020) propose a metric-
learning formulation called BYOL, where features are
trained by matching them to representations obtained with
a momentum encoder. Several other works echo this direc-
tion, showing that one can match more elaborate represen-
tations (Gidaris et al. 2020), train features matching them
to a uniform distribution (Bojanowski and Joulin 2017) or
by using whitening (Zbontar et al. 2021). Of particular in-
terest, DINO (Caron et al. 2021b) proposes self-distillation,
where probability outputs of dual encoders are matched on
different regions. Moreover, the emergence of patch-based
architectures, like ViTs, has led to a revisit of inpainting for

pretraining (Bao, Dong, and Wei 2021), potentially in fea-
ture space (Assran et al. 2023). (He et al. 2021) shows that
a masked autoencoder (MAE) learns features that provide
substantial improvements when finetuned on downstream
tasks.

However, all aforementioned works are image-level
frameworks. When it comes to video-level self-supervised
learning, most existing works are based on pixel informa-
tion reconstruction, either in frame prediction (Pan et al.
2021), reconstruction (Tian et al. 2020), or masked au-
toencoder way (Tong et al. 2022). None is based on self-
distillation. Different from all previous works, our approach
proposes self-distillation for video learning, demonstrating
that global-local distillation can well capture the spatio-
temporal pattern of fine-grained regions in facial videos,
thus further enhancing downstream task performance.

In contrastive learning framework, memory banks can be
used in both supervised and self-supervised learning with
different motivations. (Li et al. 2019) uses a memory bank
to capture context information, and (He et al. 2020) main-
tains a memory bank by enqueueing negative samples in
mini batches, thus equivalently increasing batch size. Differ-
ent from previous works, we propose a memory dictionary
called FaceFeat Cache, and utilize the memory to record fa-
cial characteristics of all videos, thus helps the network fo-
cus on the discriminative features of video instances in a
contrast manner. Through extensive quantitative and qualita-
tive analysis, it is proven that our proposed FaceFeat Cache
can facilitate the network to generate more diverse, informa-
tive embeddings for downstream tasks.

Facial Representation Learning
Till date, most of the existing facial analysis approaches
are conducted in a task-specific way with fully supervised
manner on manually annotated data to enhance perfor-
mance. Any state-of-the-art model’s performance on bench-
marked datasets is impacted by the quality and quan-
tity of annotated data used during training. Various task-
specific large-scale facial datasets have been curated over
the past decade to facilitate research in Face Verification
(MS-celeb-1M (Guo et al. 2016)), Facial Attribute Recogni-
tion(CelebA (Liu et al. 2015), CelebV-HQ (Zhu et al. 2022)),
Facial Emotion Recognition (CMU-MOSEI (Bagher Zadeh
et al. 2018)), DeepFake Detection (FF++ (Rossler et al.
2019)) and Lip Synchronization (LRS2 (Chung and Zisser-
man 2017)). However, data curation encounters several chal-
lenges such as requirements of specialized hardware (e.g. for
FER and action unit data), the discrepancy in data distribu-
tion that prevent merging of multiple datasets (Bulat et al.
2022), and most importantly time consuming and resource
expensive annotation process. To eliminate these drawbacks,
some of the existing approaches adopt data augmentation
via image or video synthesis as the surge in face genera-
tion fueled by Generative Adversarial Network (GAN) (Sko-
rokhodov, Tulyakov, and Elhoseiny 2022) and other gener-
ation techniques (Hao et al. 2021) aids realistic face gener-
ation even with control over facial attributes. These gener-
ation techniques add variation in training set quantitatively,
but in some cases it still lags in qualitative aspects due to do-
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a) t-SNE visualization of PrefAce b) t-SNE visualization of MARLIN

Figure 2: t-SNE visualization of embedding groups generated by PrefAce and MARLIN. One can observe that embeddings
generated by PrefAce are evenly distributed, with almost no overlap in between, and naturally grouped by attributes, e.g.,
gender, expression, head pose, hair color, etc. However, embeddings from MARLIN are overlapping and blurred in attributes.
The aforementioned findings indicate that PrefAce can better capture characteristics of different faces.

main specific inconsistency and more importantly high net-
work complexity.

To this end, there are very few recent works that aim to
learn image-based task specific facial encoding with limited
supervision. The most closely related existing works either
focus on exploring training dataset properties in terms of
size and quality (Bulat et al. 2022) or performing pretraining
in visual-linguistic way (Zheng et al. 2022). These works are
hard to transfer to video-related tasks since they use static
image level facial information or require the image-caption
pairs.

To tackle these problems, MARLIN perform facial rep-
resentation learning using a masked autoencoder way using
video modality only. However, we find that facial region-
guided tube masking introduced by MARLIN will be de-
graded to entire face masking due to its extreme mask ra-
tio, leading to an unsatisfactory loss of granularity. Differ-
ent from MARLIN, we propose that self-distillation is more
suitable for facial representation learning, as coarse-to-fine
and spatial-temporal features can be properly learnt with
global-local distillation as demonstrated in experiment.

Proposed Method
Our objective is to learn universal, informative and transfer-
able facial representations from abundantly available non-
annotated facial video data (Wolf, Hassner, and Maoz 2011).
Different from pretraining of natural scenes, face specific
tasks present two characteristics: a) Facial data has vari-
ous layout (nose, eyes, lips, hair, etc.) due to different facial
expressions. Beyond learning the appearance of individual
landmarks, it is important to learn about the relationships be-
tween the local landmarks and the global face. b) Facial data
not only have common attributes among demographics but
also with specific attributes (e.g. eye color, shape and tex-
ture) to differentiate between instances, thus requiring more
informative representations for downstream tasks.

To this end, we propose PrefAce, an unsupervised face-
centric pretraining framework by focusing the backbone net-
work to learn representations that not only can preserver the
local-to-global and shared-to-specific facial attributes with
an introduction of its architecture and loss functions.

Architecture
PrefAce consists of a teacher network (gθtwith parameters
θt) and a student network (gθswith parameters θs) respec-
tively, which follows recent conventional setting of self-
supervised learning works (Caron et al. 2021a) to learn com-
plementary information from two augmented views. Differ-
ent from previous work with image-level learning only, our
proposed framework focus on video-level learning.

Given a training dataset D = {Vi}Ni=1 where N is the
number of videos in the dataset and V ∈ RC×T×H0×W0

are global video clips (C, T , H0, W0 are channel, temporal
depth, height and width of the raw video, respectively). The
derived embeddings of global frame denoted as {Xglobal ∈
RT

t ×H0
h ×W0

w }.
Besides global frame, random local regions are also

cropped as a complement. Across all the frames of the input
V , we track specific facial regions v from the pre-defined
set to encode the spatio-temporal changes and model land-
mark motion, and randomly crop local tubes to further fa-
cilitate the network to learn changes of skin correlated to
landmark motion. The local frames are also embedded as
{Xlocal ∈ RT

t ×H
h ×W

w }, respectively.
Moreover, we perform face parsing which segments

facial regions into the following parts: left eye, right
eye, nose, mouth, hair, skin and background, using
(Wang et al. 2021) given its efficiencies. Among the
facial regions, we focus on the following set P =
{left-eye, right-eye, nose, mouth, hair}
over skin and background to preserve face specific local
details. The cropping strategy thus facilitate the network
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Figure 3: Overview of PrefAce. PrefAce mainly consists of two parts: (a) Multiscale Landmark Guided Self-Distillation: aids
PrefAce to perform knowledge distillation between student and teacher network under the guidance of spatio-temporal land-
mark guided tube cropping, encouraging the network to learn spatio-temporal and coarse-to-fine consistent representations. (b)
FaceFeat Cache: facilitates PrefAce to update video instance features so that the network can learn diverse representations.

consistently focus on the landmarks while tracking and
encoding correlated skin details. The final embeddings will
be {Xlandmark ∈ RT

t ×H
h ×W

w }, respectively.
Lastly, to enhance the quality of facial representation

generated for downstream tasks, the network should focus
on the meaningful parts of faces, e.g., fine-grained differ-
ences of shape, texture and motion in landmarks between
instances. Therefore, we employ a memory dictionary as
FaceFeat Cache to store representation of all video face in-
stances. The memory is initialized using representations of
videos without augmentation from the teacher network at
the beginning of the epoch, and momentum updated dur-
ing training. The network is expected to perfectly match the
representations of videos’ different versions as they corre-
spond to the same instance, while minimize the similarity
with other videos with different instances, encouraging the
network to focus on the characteristics of faces.

Loss Function
PrefAce mainly optimized the following loss function:

L = Ldistill + LID (1)

with (a) Multi-scale Landmark Guided Self-distillation Loss
Ldistill and (b) Instance Learning Loss LID.
Multi-scale Landmark Guided Self-distillation Loss The
learning objective is to train a student network gθs to match
the output of a given teacher network gθt , parameterized
by θs and θt respectively. As the inputs of the student and
teacher networks are different augmentations of the same
video, self-distillation aims to learn the spatio-temporal in-
variance despite cropping and random distortion. Given an
input video clip v ∈ R(C×T×H×W ), the video is mapped to
embeddings denoted as {X ∈ Rk×e}, where e is the embed-
ding dimension and k is the total number of tokens derived
from v, i.e. k = T

t ×
H
h ×

W
w . With 3D video embeddings,

both networks take the 2D mean as input and generate prob-
ability distributions over K dimensions denoted by Ps and

Pt The probability P is obtained by normalizing the video
mean representation of the network g with a softmax func-
tion. More precisely,

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

, (2)

with τs > 0 a temperature parameter that controls the
sharpness of the output distribution, and a similar formula
holds for Pt with temperature τt. Given a fixed teacher net-
work gθt , we learn to match these distributions by minimiz-
ing the cross-entropy loss w.r.t. the parameters of the student
network θs:

min
θs

H(Pt(x), Ps(x)), (3)

where H(a, b) = −a log b.
After aforementioned landmark guided tube crop, the

augmented set contains two global views, xg
1 and xg

2 and sev-
eral local views of smaller resolution. All crops are passed
through the student while only the global views are passed
through the teacher. As the cropping is performed in a tube
manner, our video-level self-distillation encourages spatio-
temporal “local-to-global” correspondences. We minimize
the loss:

Ldistill = min
θs

∑
x∈{xg

1 ,x
g
2}

∑
x′∈V
x′ ̸= x

H(Pt(x), Ps(x
′)). (4)

Instance Learning Loss The Instance Learning loss is in the
form of InfoNCE loss (He et al. 2020). The objective of In-
stance Learning in PrefAce is to maximize the similarity be-
tween representations of variations of the same video, while
minimize the similarity between representations of different
videos, aiming to capture the instance-consistent character-
istics of facial videos. At the beginning of each epoch, Pref-
Ace will calculate instance representation ϕ as memory ini-
tialization for all videos in the training dataset, and no aug-
mentation is performed in order to preserve representation
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Method
Appearance Action Overall

Acc.↑ AUC↑ Acc.↑ AUC↑ Acc.↑

R3D* 92.34 0.9424 94.57 0.9173 93.45
MViTv1* 92.90 0.9452 95.13 0.9233 94.01
MViTv2* 92.77 0.954 95.15 0.9239 93.96
VideoMAE (FT) 92.91 0.9529 95.37 0.9284 94.14
MARLIN (LP) 91.90 0.9373 95.25 0.9278 93.57
PrefAce (LP) 92.31 0.9427 95.55 0.9309 93.93
MARLIN (FT) 93.90 0.9561 95.48 0.9406 94.69
PrefAce (FT) 94.84 0.9590 96.35 0.9462 95.60

Table 1: Facial Attribute Recognition. Our proposed
framework, PrefAce, trained on YTF dataset and Lin-
ear Probed/Finetuned on CelebV-HQ benchmark dataset in
terms of accuracy↑ and area under the curve↑. * shows su-
pervised methods trained on the CelebV-HQ dataset.

correctness. Note that there are two global views for each
video, thus we calculate the Instance Loss for both views
and take the mean:

Lg1 = − log
exp(xg

1 · ϕ+/τ)∑K
k=1 exp(x

g
1 · ϕk/τ)

, (5)

Lg2 = − log
exp(xg

2 · ϕ+/τ)∑K
k=1 exp(x

g
2 · ϕk/τ)

, (6)

LID =
1

2
(Lg1 + Lg2). (7)

At each step, FaceFeat Cache will be updated consistently
by corresponding video mean representations, with a mo-
mentum m controlling the update speed:

∀x ∈ X,ϕk ← mϕk + (1−m) · 1
2
(gx1

+ gx2
). (8)

Experiment
Finetuning Details
Our proposed PrefAce framework learns universal and trans-
ferable facial representation from videos in a self-supervised
way. Following standard evaluation protocols, we perform
Linear Probing (LP) and Fine-Tuning (FT) on teacher net-
work for downstream adaptation in different tasks. Given
any task specific downstream dataset Ddown = {vj ,yj}Nj=1,
we deploy linear fully-connected (FC) layers with embed-
ding parameters θFC to align the latent space to downstream
task specific label space on top of the teacher network gθt .
For Linear Probing, we freeze the teacher network gθtand
only update θFC . On the other hand for Finetuning, we fine-
tune the entire teacher network i.e. (gθt◦θFC).
Implementation Details The network is trained with Py-
Torch (Paszke et al. 2019) on Nvidia A100 GPUs. First of
all, given a temporal chunk of facial videos, consecutive
frames are highly redundant. Therefore, we set the minimum
temporal stride to 2 to capture semantically meaningful
frames with significant motion across frames. Given an input
video with dimension 3×16×224×224, with the multiscale

Tasks Pretrain Method Mod. Acc.↑

Sentiment
(2-Class)

MOSEI and
IEMOCAP

CAE-LR V 71.06

YTF VideoMAE V 72.96
YTF MARLIN V 73.70
YTF PrefAce V 74.05

Sentiment
(7-Class)

– MViTv1* V 33.35
YTF VideoMAE V 33.78
YTF MARLIN V 34.63
YTF PrefAce V 35.03

Emotion

– MViTv1* V 80.45
– UMONS* LAV 80.68
– GMF* LAV 81.14

YTF VideoMAE V 80.39
YTF MARLIN V 80.60
YTF PrefAce V 81.29

Table 2: Facial Expression and Sentiment Recognition.
Downstream adaptation results on MOSEI dataset for sen-
timent (2-class), sentiment (7-class), and emotion analysis.
Our proposed method, PrefAce, outperforms visual modal-
ity based sentiment and emotion prediction methods. Please
note that SOTA for UMON and GMF utilize three modali-
ties and thus, not directly comparable. Here, YTF: YouTube
Faces dataset and LAV represents linguistic, audio, and vi-
sual modality, respectively. * denotes supervised methods.

landmark guided tube crop strategy, the augmented input set
contains 2 global video views of size 3 × 16 × 224 × 224
and 10 local video views of size 3× 16× 96× 96. The cube
embedding layer generates 8 × 14 × 14 3D tokens, each of
dimension 2× 16× 16 to preserve spatio-temporal patterns.
Afterwards, each token is mapped to the latent embedding of
dimension 768. PrefAce’s objective is to match the output of
student network (gθs ) to the output of teacher network (gθt ).
Moreover, the similarity between facial embeddings of dif-
ferent videos shall be minimized. For fair comparison, we
use ViT-Base as the backbone encoder, and the impact of
ViT-variants is depicted in ablation study.

The pretraining hyperparameters are as follows: the base
learning rate is linearly scaled with respect to the overall
batch size, lr = base learning rate × batch size/256.
For self-supervised pretraining, we use AdamW optimizer
with base learning rate 7.5e−4, momentum β1 = 0.9, β2 =
0.999 with a learning rate scheduler (cosine decay). For LP
and FT, we use AdamW optimizer with β1 = 0.9, β2 = 0.98
and base learning rate 1e−4, without weight decay.

Tasks and Evaluations
The details of different downstream facial tasks. For fair
comparison, we follow the dataset specific experimental pro-
tocols mentioned in task specific prior literatures. Besides
standard evaluations, we also perform few shot adaptation to
demonstrate the robustness and transferability of PrefAce.
Facial Attribute Recognition (FAR) predicts appearance
and action attributes such as gender, race, hair color, and
emotion of a given face video. The problem of predict-
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Pretrain Method Acc.(%)↑ AUC↑

– Steg.Features* 55.98 –
– LD-CNN* 58.69 –
– Constraied Conv.* 66.84 –
– CustomPooling CNN* 61.18 –
– MesoNet* 70.47 –
– Face X-ray* – 0.6160
– Xception* 86.86 0.8930
– P3D* – 0.6705
– R3D* – 0.8772
– I3D* – 0.9318

YTF VideoMAE 87.57 0.9082
YTF MARLIN 89.43 0.9305
YTF PrefAce 92.30 0.9371

Table 3: Deepfake Detection. We compare the Fine-Tuning
(FT) results on PrefAce for FaceForensic++ dataset. * de-
notes supervised methods.

ing facial attributes can be posed as a multi-label clas-
sification highly dependent on rich spatial encoding. For
downstream adaptation, we use 28,532 train, 3,567 val, and
3,567 test videos from CelebV-HQ dataset. Following prior
work (Zheng et al. 2022), we report average accuracy(↑),
Area Under the Curve (AUC↑) over all attributes.
Facial Expression Recognition (FER) task encodes spatio-
temporal facial muscle movement patterns to predict senti-
ment (2-class and 7-class) and emotion (6-class) of the con-
cerned subject given a facial video. We evaluate the perfor-
mance of PrefAce on CMU-MOSEI dataset which is a con-
versational corpus having 16,726 train, 1,871 val, and 4,662
test data. Following prior work (Delbrouck et al. 2020), we
use overall accuracy(↑) as the metric.
Deepfake Detection (DFD) task predicts spatio-temporal
facial forgery given a facial video from FF++(LQ) dataset.
For downstream adaptation, we use 3,600 train, 700 val, and
700 test sample videos from FF++(LQ) dataset. Following
prior literature (Cai et al. 2022), we use accuracy(↑) and
AUC(↑) as the evaluation metrics.
Lip Synchronization (LS) is another research area that re-
quires facial region specific spatio-temporal synchroniza-
tion. This downstream adaptation further elaborates the
adaptation capability of PrefAce for face generation tasks.
For adaptation, we replace the facial encoder module in
Wav2Lip (Prajwal et al. 2020) with PrefAce, and adjust
the temporal window accordingly i.e. from 5 frames to T
frames. For evaluation, we use the LRS2 dataset having
45,838 train, 1,082 val, and 1,243 test videos. Following the
prior literature (Wang et al. 2022), we use Lip-Sync Error-
Distance (LSE-D↓), Lip-Sync Error-Confidence (LSE-C↑)
and Frechet Inception Distance (FID↓) (Heusel et al. 2017)
as evaluation matrices.

Quantitative Analysis
Comparison with SOTA Facial Analysis Tasks
We compare the performance of PrefAce with different

downstream facial analysis tasks following standard task
specific evaluation protocols.
Facial Attributes In Tab. 1, we compare the Linear Prob-
ing and Finetuning adaptation performance of PrefAce with
popular transformers (i.e. MViT-v1 (Fan et al. 2021) and
MViT-v2 (Li et al. 2022)) and CNNs (i.e. R3D (Tran et al.
2018)) on CelebV-HQ dataset. From the table, it is ob-
served that PrefAce’s Finetuned version outperforms super-
vised MViT-v2 transformer architecture by 2.07% (92.77%
→ 94.84%) on appearance attributes and 1.20% (95.15%
→ 96.35%) on action attributes, and outperforms unsuper-
vised SOTA MARLIN transformer architecture by 0.94%
(93.90% → 94.84%) on appearance attributes and 0.87%
(95.48% → 96.35%) on action attributes. We credit Pref-
Ace’s performance gain to the multiscale landmark guided
self-distillation that helps the network focus on key parts
of input facial videos, and the FaceFeat Cache helps the
network to encode informative characteristics from facial
videos.
Emotion and Sentiment In Tab. 2, we compare the Lin-
ear Probing and Finetuning adaptation performance of sen-
timent and emotion analysis in terms of accuracy(↑) and
AUC(↑) on CMU-MOSEI dataset. Please note that the Pref-
Ace uses only visual modality. The results suggest that
PrefAce performs competitively with SOTA methods (Cai
et al. 2023; Koromilas and Giannakopoulos 2022; Li et al.
2022; Delbrouck et al. 2020), outperforming unsupervised
SOTA MARLIN on all 3 tasks. Specifically, PrefAce out-
performs unsupervised SOTA MARLIN by 0.35% (73.70%
→ 74.05%) on 2-class sentiment task, 0.40% (34.63% →
35.03%) on 7-class sentiment task and 0.69% (80.60% →
81.29%) on 6-class emotion task. These results also indicate
that PrefAce learns highly generic, robust, and transferable
feature representations.
DeepFake Detection In Tab. 3, we compare the perfor-
mance of video manipulation on FaceForensics++ dataset
and report results in terms of video-level accuracy(↑) and
AUC(↑). Besides performing favorably against both the su-
pervised SOTA methods (Afchar et al. 2018; Fridrich and
Kodovsky 2012; Cozzolino, Poggi, and Verdoliva 2017; Ba-
yar and Stamm 2016; Rahmouni et al. 2017; Li et al. 2020;
Chollet 2017; Qiu, Yao, and Mei 2017; Tran et al. 2018;
Carreira and Zisserman 2017), PrefAce outperforms unsu-
pervised SOTA MARLIN by 2.87% (89.43%→ 92.30%) on

Method LSE-D↓ LSE-C↑ FID↓

Speech2Vid 14.230 1.587 12.320
LipGAN 10.330 3.199 4.861
Wav2Lip 7.521 6.406 4.887
AttnWav2Lip 7.339 6.530 –
Wav2Lip + ViT 8.996 2.807 13.352
Wav2Lip + ViT + VideoMAE 7.316 5.096 4.097
Wav2Lip + ViT + MARLIN 7.127 5.528 3.452
Wav2Lip + ViT + PrefAce 7.013 5.785 3.264

Table 4: Lip Synchronization. We compare Linear Probing
(LP) and Fine-Tuning (FT) results on the LRS2 dataset.
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Data→ MOSEI FF++ CelebV-HQ
Task→ Emo. 7-Sen. 2-Sen. DeepFake Appr. Act.
Anno.% Acc.↑ Acc.↑ Acc.↑ AUC↑ AUC↑ AUC↑

100% 81.29 (80.60) 35.03 (34.63) 74.05 (73.70) 0.9371 (0.9305) 0.9427 (0.9373) 0.9309 (0.9278)
50% 81.04 (80.59) 34.22 (33.73) 73.35 (73.33) 0.9000 (0.8681) 0.9332 (0.9273) 0.9330 (0.9270)
10% 80.56 (79.89) 33.59 (33.56) 72.03 (72.26) 0.7817 (0.7459) 0.9069 (0.8996) 0.9286 (0.9201)
1% 79.16 (78.61) 30.34 (30.09) 71.97 (71.89) 0.6380 (0.6252) 0.8574 (0.8423) 0.9112 (0.9063)

Table 5: Few shot adaptation on different facial tasks. Comparison between PrefAce and SOTA MARLIN on sentiment &
emotion analysis, DeepFake detection and appearance & action classification. Results of MARLIN are shown in brackets.

accuracy and 0.66% (93.05%→ 93.71%) on AUC. PrefAce
uses only video modality to detect anomalies, and outper-
forms unsupervised SOTA method significantly even under
few-shot setting, which will be introduced shortly.
Lip Synchronization For fair comparison, we compare the
following settings: 1) Wav2Lip+ViT: Contribution of ViT ar-
chitecture where the weights of ViT is trained from scratch
on LRS2 dataset. 2) Wav2Lip+ViT+MARLIN: Contribution
of unsupervised SOTA MARLIN pretrained on YTF. 3)
Wav2Lip+ViT+PrefAce: Contribution of PrefAce pretrained
on YTF, with (Si et al. 2021; Prajwal et al. 2020; Wang et al.
2022) and different design aspects. The experimental re-
sults are depicted in Tab. 4 with LSE-D↓, LSE-C↑ and FID↓
as evaluation metrics following standard protocol (Prajwal
et al. 2020). The improvement of lip sync score (LSE-D↓:
7.127 → 7.013; FID↓: 3.452 → 3.264) indicates that Pref-
Ace learns rich and transferable spatio-temporal patterns for
landmarks.
Few-Shot Adaptation Few shot adaptation has recently
gained attention due to its importance in low data regimes.
Following standard evaluation protocols, we also investigate
the adaptation capability of PrefAce. We use limited train
set labels while keeping the test set fixed via Linear Probing
(MOSEI, CelebV-HQ) and Finetuning (FF+) strategy. From
Tab. 5, it is observed that PrefAce outperforms SOTA MAR-
LIN across different tasks which further demonstrates that
PrefAce learns generic, transferable, and adaptive informa-
tion.

Ablation Studies

We have performed extensive ablation studies to show the
effectiveness of each component.
Different modules We progressively integrate each module
into the framework and observe the effectiveness on down-
stream performance on CMU-MOSEI and FF++ while keep-
ing other components fixed. From Tab. 6, we can see that
both the multiscale landmark guided self-distillation and the
FaceFeat Cache are helpful in improving the model perfor-
mance, demonstrating that the overall design of PrefAce is
effective.
Encoder architectures To investigate the impact of the
backbone encoder architectures, we compare ViT-S, ViT-B
(See Tab. 6). It is observed that enlarging model size yields
performance gain. For fair comparison, ViT-B encoder is
employed.

Datasets→ MOSEI FF++
Emo.
Acc.
(%↑)

7-Sent.
Acc.
(%↑)

2-Sent.
Acc.
(%↑)

Acc.
(%↑)

AUC.
(↑)

Modules↓
Vanilla 80.25 33.82 73.00 88.39 0.9076
+ Landmark Distill 80.61 34.70 73.48 89.82 0.9144
+ FaceFeat Cache 80.67 34.64 73.32 88.67 0.9100
+ Both (PrefAce) 81.29 35.03 74.05 92.30 0.9371
Network Arch.↓
ViT-S 80.69 34.28 72.90 89.53 0.8912
ViT-B 81.29 35.03 74.05 92.30 0.9371

Table 6: Contribution of different modules and network ar-
chitectures towards overall PrefAce framework.

Qualitative Aspects
In order to understand the effectiveness of the learned fea-
tures, we further conducted following qualitative analysis.
Representation Distribution To demonstrate that PrefAce
can learn more robust and informative representations, we
visualize the generated embedding space of PrefAce and
MARLIN, on the test set of the YTF dataset using t-SNE.
In Fig. 2, each t-SNE point is represented by the first frame
of its corresponding video. It can be observed that embed-
dings generated by PrefAce are more evenly distributed,
with almost no overlap between different videos. It’s impor-
tant to highlight that the majority of the few overlaps occur
among videos of the same individual, which is reasonable.
Moreover, embeddings generated by PrefAce are naturally
grouped by attributes, e.g., gender, expression, head pose,
hair color, etc. The aforementioned findings indicates that
the embeddings generated by PrefAce focus more on char-
acteristics of different faces, thus are more informative.

Conclusion
We propose a new self-supervised facial pretraining frame-
work, PrefAce, that can generate universal, robust, and infor-
mative representations for downstream facial analysis tasks
through multi-scale landmark guided self-distillation. To
tackle the problem that previous works ignoring the diverse
and discriminative features, we propose FaceFeat Cache, en-
couraging the network to explore characteristics of different
faces, thus further enhancing downstream task performance.
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P. H.; Buchatskaya, E.; Doersch, C.; Pires, B. A.; Guo, Z. D.;
Azar, M. G.; Piot, B.; Kavukcuoglu, K.; Munos, R.; and
Valko, M. 2020. Bootstrap your own latent: A new approach
to self-supervised learning. In NeurIPS.
Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016. MS-
Celeb-1M: A Dataset and Benchmark for Large-Scale Face
Recognition. In Leibe, B.; Matas, J.; Sebe, N.; and Welling,
M., eds., ECCV, Lecture Notes in Computer Science, 87–
102. Cham: Springer International Publishing. ISBN 978-3-
319-46487-9.
Hao, Z.; Mallya, A.; Belongie, S.; and Liu, M.-Y. 2021.
GANcraft: Unsupervised 3D Neural Rendering of Minecraft
Worlds. arXiv:2104.07659 [cs]. ArXiv: 2104.07659.
Haugh, M. 2009. Face and Interaction. Face, Communica-
tion and Social Interaction, 1–30.
He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; and Girshick,
R. 2021. Masked autoencoders are scalable vision learners.
arXiv preprint arXiv:2111.06377.
He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; and Girshick, R.
2022. Masked Autoencoders Are Scalable Vision Learners.
In CVPR, 16000–16009.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In CVPR.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. In
NeurIPS, volume 30. Curran Associates, Inc.
Jack, R. E.; and Schyns, P. G. 2015. The Human Face as a
Dynamic Tool for Social Communication. Current Biology,
25(14): R621–R634.
Kadam, A.; Rane, S.; Mishra, A. K.; Sahu, S. K.; Singh, S.;
and Pathak, S. K. 2021. A Survey of Audio Synthesis and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12545



Lip-syncing for Synthetic Video Generation. EAI Endorsed
Transactions on Creative Technologies, 8(28): e2–e2.
Koromilas, P.; and Giannakopoulos, T. 2022. Unsupervised
Multimodal Language Representations using Convolutional
Autoencoders. ArXiv:2110.03007 [cs].
Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; and
Guo, B. 2020. Face X-Ray for More General Face Forgery
Detection. In CVPR, 5001–5010.
Li, S.; Chen, D.; Liu, B.; Yu, N.; and Zhao, R. 2019.
Memory-based neighbourhood embedding for visual recog-
nition. In ICCV, 6102–6111.
Li, S.; and Deng, W. 2022. Deep Facial Expression Recogni-
tion: A Survey. IEEE Transactions on Affective Computing,
13(3): 1195–1215. Conference Name: IEEE Transactions
on Affective Computing.
Li, Y.; Wu, C.-Y.; Fan, H.; Mangalam, K.; Xiong, B.; Malik,
J.; and Feichtenhofer, C. 2022. MViTv2: Improved Multi-
scale Vision Transformers for Classification and Detection.
In CVPR, 4804–4814.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep Learn-
ing Face Attributes in the Wild. In ICCV, 3730–3738.
Noroozi, M.; and Favaro, P. 2016. Unsupervised Learning
of Visual Representations by Solving Jigsaw Puzzles. In
Leibe, B.; Matas, J.; Sebe, N.; and Welling, M., eds., ECCV,
Lecture Notes in Computer Science, 69–84. Cham: Springer
International Publishing. ISBN 978-3-319-46466-4.
Oquab, M.; Darcet, T.; Moutakanni, T.; Vo, H.; Szafraniec,
M.; Khalidov, V.; Fernandez, P.; Haziza, D.; Massa, F.; El-
Nouby, A.; Assran, M.; Ballas, N.; Galuba, W.; Howes,
R.; Huang, P.-Y.; Li, S.-W.; Misra, I.; Rabbat, M.; Sharma,
V.; Synnaeve, G.; Xu, H.; Jegou, H.; Mairal, J.; La-
batut, P.; Joulin, A.; and Bojanowski, P. 2023. DI-
NOv2: Learning Robust Visual Features without Supervi-
sion. arXiv:2304.07193.
Pan, T.; Song, Y.; Yang, T.; Jiang, W.; and Liu, W. 2021.
Videomoco: Contrastive video representation learning with
temporally adversarial examples. 11205–11214.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS, vol-
ume 32. Curran Associates, Inc.
Prajwal, K. R.; Mukhopadhyay, R.; Namboodiri, V. P.; and
Jawahar, C. 2020. A Lip Sync Expert Is All You Need for
Speech to Lip Generation In the Wild. In Proceedings of
the 28th ACM International Conference on Multimedia, MM
’20, 484–492. New York, NY, USA: Association for Com-
puting Machinery. ISBN 978-1-4503-7988-5.
Qiu, Z.; Yao, T.; and Mei, T. 2017. Learning Spatio-
Temporal Representation With Pseudo-3D Residual Net-
works. In ICCV, 5533–5541.
Rahmouni, N.; Nozick, V.; Yamagishi, J.; and Echizen, I.
2017. Distinguishing computer graphics from natural im-
ages using convolution neural networks. In 2017 IEEE

Workshop on Information Forensics and Security (WIFS), 1–
6. ISSN: 2157-4774.
Rossler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies,
J.; and Niessner, M. 2019. FaceForensics++: Learning to
Detect Manipulated Facial Images. In ICCV, 1–11.
Si, S.; Wang, J.; Qu, X.; Cheng, N.; Wei, W.; Zhu, X.; and
Xiao, J. 2021. Speech2Video: Cross-Modal Distillation for
Speech to Video Generation. In INTERSPEECH, 1629–
1633.
Skorokhodov, I.; Tulyakov, S.; and Elhoseiny, M. 2022.
StyleGAN-V: A Continuous Video Generator With the
Price, Image Quality and Perks of StyleGAN2. In CVPR,
3626–3636.
Storrs, K. R.; Anderson, B. L.; and Fleming, R. W. 2021.
Unsupervised learning predicts human perception and mis-
perception of gloss. Nature Human Behaviour, 5(10): 1402–
1417. Number: 10 Publisher: Nature Publishing Group.
Tian, Y.; Che, Z.; Bao, W.; Zhai, G.; and Gao, Z. 2020. Self-
supervised Motion Representation via Scattering Local Mo-
tion Cues, volume 12359 LNCS. Springer International Pub-
lishing.
Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.;
and Ortega-Garcia, J. 2020. Deepfakes and beyond: A Sur-
vey of face manipulation and fake detection. Information
Fusion, 64: 131–148.
Tong, Z.; Song, Y.; Wang, J.; and Wang, L. 2022. Video-
MAE: Masked Autoencoders are Data-Efficient Learners
for Self-Supervised Video Pre-Training. ArXiv:2203.12602
[cs] type: article.
Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; and
Paluri, M. 2018. A Closer Look at Spatiotemporal Convolu-
tions for Action Recognition. In CVPR, 6450–6459.
Wang, G.; Zhang, P.; Xie, L.; Huang, W.; and Zha, Y. 2022.
Attention-Based Lip Audio-Visual Synthesis for Talking
Face Generation in the Wild. ArXiv:2203.03984 [cs, eess].
Wang, J.; Liu, Y.; Hu, Y.; Shi, H.; and Mei, T. 2021. FaceX-
Zoo: A PyTorch Toolbox for Face Recognition. In ACM
MM, MM ’21, 3779–3782. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 978-1-4503-8651-7.
Wolf, L.; Hassner, T.; and Maoz, I. 2011. Face recognition in
unconstrained videos with matched background similarity.
In CVPR, 529–534. ISSN: 1063-6919.
Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; and Deny, S. 2021.
Barlow Twins: Self-Supervised Learning via Redundancy
Reduction. arXiv preprint arXiv:2103.03230.
Zheng, Y.; Yang, H.; Zhang, T.; Bao, J.; Chen, D.; Huang,
Y.; Yuan, L.; Chen, D.; Zeng, M.; and Wen, F. 2022. Gen-
eral Facial Representation Learning in a Visual-Linguistic
Manner. In CVPR, 18697–18709.
Zhu, H.; Wu, W.; Zhu, W.; Jiang, L.; Tang, S.; Zhang, L.;
Liu, Z.; and Loy, C. C. 2022. CelebV-HQ: A Large-Scale
Video Facial Attributes Dataset. ArXiv:2207.12393 [cs].

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12546


