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Abstract

As one of the most popular machine learning tools in the field
of unsupervised learning, clustering has been widely used
in various practical applications. While numerous methods
have been proposed for clustering, a commonly encountered
issue is that the existing clustering methods rely heavily on
local neighborhood information during the optimization pro-
cess, which leads to suboptimal performance on real-world
datasets. Besides, most existing clustering methods use Eu-
clidean distances or densities to measure the similarity be-
tween data points. This could constrain the effectiveness of
the algorithms for handling datasets with irregular patterns.
Thus, a key challenge is how to effectively capture the global
structural information in clustering instances to improve the
clustering quality. In this paper, we propose a new cluster-
ing algorithm, called SEC. This algorithm uses the global
structural information extracted from an encoding tree to
guide the clustering optimization process. Based on the re-
lation between data points in the instance, a sparse graph of
the clustering instance can be constructed. By leveraging the
sparse graph constructed, we propose an iterative encoding
tree method, where hierarchical abstractions of the encoding
tree are iteratively extracted as new clustering features to ob-
tain better clustering results. To avoid the influence of easily
misclustered data points located on the boundaries of the clus-
tering partitions, which we call “fringe points”, we propose an
iterative pre-deletion and reassignment technique such that
the algorithm can delete and reassign the “fringe points” to
obtain more resilient and precise clustering results. Empir-
ical experiments on both synthetic and real-world datasets
demonstrate that our proposed algorithm outperforms state-
of-the-art clustering methods and achieves better clustering
performances. On average, the clustering accuracy (ACC)
is increased by 1.7% and the normalized mutual informa-
tion (NMI) by 7.9% compared with the current state-of-the-
art (SOTA) algorithm on synthetic datasets. On real-world
datasets, our method outperforms other clustering methods
with an average increase of 12.3% in ACC and 5.2% in NMI,
respectively.

*Corresponding Authors
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction

As a widely studied unsupervised learning task, clustering
involves partitioning data points into different clusters ac-
cording to their similarity such that data points within the
same cluster share high similarity as much as possible. By
modeling clustering tasks as optimization problems, sev-
eral classic clustering methods have been proposed, such
as Lloyd-type methods, DBSCAN, hierarchical clustering
and MST clustering. However, a recurring limitation of the
existing methods is that they only use local neighborhood
information during the optimization process. Furthermore,
most existing clustering methods use Euclidean distances or
clustering densities to measure the similarity between data
points. These clustering methods might fail to capture the
intrinsic global patterns of the given clustering instances,
which could constrain the effectiveness of the algorithms
for handling datasets with irregular patterns. Consequently,
a critical challenge for achieving better clustering perfor-
mance lies in effective integration of global structural infor-
mation into the clustering optimization process.

As pointed out in (Du and Wang 2022), global structural
information of the data points represents the high-level pat-
terns and relationships across the entire dataset. Recently,
a new metric based on the graph’s structural information,
known as structural entropy, was introduced to analyze the
hierarchical structure of graphs. This metric utilizes an en-
coding tree approach, offering a novel perspective in graph
analysis (Li and Pan 2016). By minimizing the structural en-
tropy of the given graph, an encoding tree can be constructed
where each node of the encoding tree is associated with a
partition of the graph. In general, the encoding tree provides
hierarchical abstractions of the graph, allowing the preser-
vation of global structural information within its nodes.

For many datasets, the clustering performance is closely
related to the distinctiveness between clusters. To enlarge the
distinctiveness between clusters, we present an encoding-
tree-based structural metric where global structural infor-
mation of the given data points can be captured to guide
the clustering process. Firstly, we design a new sparse
graph embedding technique for clustering instances using k-
Nearest Neighbor (k-NN) and thresholding strategies. k-NN
and thresholding strategies help to identify the most rele-
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(a) Comparisons of clustering performances on k-means++ and
DBSCAN with the “fringe set”.

(b) Comparisons of clustering performances on k-means++ and
DBSCAN without the “fringe set”.

Figure 1: Comparisons of clustering performances on k-means++ and DBSCAN with and without the “fringe set”, where the
black box represents the locations for the “fringe set”. The error rate for clustering is given for k-means++ and DBSCAN in the
figure.

vant neighbors while removing irrelevant neighbors for each
node in the graph, which can provide potentially better local
and global learnable structures for encoding tree. Secondly,
in order to obtain complex and non-linear structures, we pro-
pose an iterative encoding tree method, where hierarchical
abstractions of the encoding tree are iteratively extracted as
new clustering features to better represent the intrinsic hid-
den relationships of the given datasets.

For the clustering problem, empirical observations sug-
gest that most of the misclustered data points locate on the
boundaries of the clustering partitions, which we call the
“fringe set”. Figure 1 gives illustrations to show the im-
pact of the fringe set for clustering problem. It can be seen
that the fringe set presents significant assignment challenges
for classic clustering methods such as k-means++ and DB-
SCAN. The existence of the fringe set can significantly de-
teriorate the performance of classic clustering methods. In
order to enhance the capability of the proposed algorithm to
better identify and assign data points in the fringe set, we
propose an iterative pre-deletion and reassignment method
that can identify, delete, and reassign data points in the
fringe set during the clustering optimization process. By us-
ing this method, interference caused by the fringe set can be
alleviated to obtain a more resilient and precise clustering
partition. The main contributions of this paper are summa-
rized as follows:

• We propose a new sparse graph embedding method
for clustering instances. The proposed graph embedding
method can provide a better representation of the rela-
tionships between the given data points.

• Based on the sparse graph obtained, we propose an it-
erative encoding tree method to extract global structural
information from the given clustering instances. The pro-
posed feature extraction method provides iterative hier-
archical abstractions of the encoding tree structure, en-
hancing the algorithm’s capability to capture the hidden
relationships within the entire dataset.

• We propose an iterative pre-deletion and reassignment
technique such that the fringe set can be identified,
deleted and reassigned during the clustering optimiza-
tion process. With this technique, the interference of the
fringe set can be alleviated to obtain better clustering re-

sults.
• Empirical experiments demonstrate that the proposed

SEC algorithm outperforms other state-of-the-art clus-
tering methods in terms of clustering quality. The aver-
age clustering performance shows an increase of 12.3%
in ACC and 5.2% in NMI on real-world datasets. In par-
ticular, for a specific subset of these real-world datasets,
the clustering ACC and NMI are increased by 20.6% and
9.8%, respectively.

Related Work
Lloyd-Type Clustering Methods
The main idea behind Lloyd-type clustering methods is to
iteratively assign data points to the nearest clustering cen-
troids and update the centroids to minimize the sum of the
squared distances. However, as pointed out in (Blömer et al.
2016), Lloyd-type methods (Lloyd 1982) are highly sen-
sitive to the initialization. Arthur and Vassilvitskii (Arthur
and Vassilvitskii 2007) proposed the k-means++ seeding
method, which uses D2-sampling strategy to achieve an
O(log k)-approximation guarantee on clustering quality.
Lattanzi and Sohler (Lattanzi and Sohler 2019) proposed a
combination of local search and k-means++ method, which
can yield a constant approximation in linear running time.
A distinct line of work for obtaining better initialization is
to integrate heuristic strategies into Lloyd-type methods (Li
and Wu 2012; Mawati, Sumertajaya, and Afendi 2014; Zhou
et al. 2017; Nainggolan et al. 2019; Yang et al. 2021; Huang
et al. 2021). However, they still rely heavily on the local
neighborhood information for clustering optimization.

MST Clustering Methods
MST clustering aims to create a minimum spanning tree
(MST) through iterative connections of data points with
minimum edge weights. Clustering partitions can be ob-
tained by cutting inconsistent edges with larger weights. For
MST clustering methods, Zahn (Zahn 1971) defined incon-
sistent edges as those edges with weights significantly larger
than the average weight of neighboring edges. Chowdhury
and Murthy (Chowdhury and Murthy 1997) proposed a new
measurement of inconsistency based on the identification of
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the boundaries separating distinct clusters. By integrating lo-
cal density information, several density-based MST cluster-
ing methods were proposed, such as the LDP-MST method
(Cheng et al. 2019), which avoids the influence of noisy
points and reduces the running time.

Density-Based Clustering Methods
Density-Based clustering methods (DB methods) form clus-
tering partitions according to the density of the data points.
DBSCAN (Ester et al. 1996) is one of the most widely used
methods that quantifies the density of data points using lo-
cal neighborhood information. However, as pointed out in
(Bhattacharjee and Mitra 2021), DBSCAN is highly sensi-
tive to the search radius of local neighborhoods. In (Ram
et al. 2010) and (Campello, Moulavi, and Sander 2013),
density fluctuations within the same cluster were considered
during the DBSCAN process to improve the algorithm’s ro-
bustness. In (Ankerst et al. 1999) and (Hou, Gao, and Li
2016), parameter-adaptive and non-parametric versions of
DBSCAN methods were proposed.

Hierarchical Clustering Methods
Hierarchical clustering mainly falls into two categories: di-
visive and agglomerative methods. The divisive approach
starts with a single cluster that encompasses all data points
and iteratively splits this cluster into smaller clusters until
each cluster contains a single data point. The agglomerative
approach iteratively merges the most similar clusters until a
single cluster containing all the data points is formed. Stein-
bach, Karypis, and Kumar (Steinbach, Karypis, and Kumar
2000) used the k-means method to iteratively form smaller
clusters. Gracia and Binefa (Gracia and Binefa 2011) mod-
ified the definition of the k-means objective function to
achieve better performance. (Sneath 1973) used the Eu-
clidean distance to define the similarity when performing
merging operations. (Yang et al. 2023) used local density
to improve the merging process for hierarchical clustering
methods.

Preliminaries
Given an integer n ∈ Z+, denote [n] as the set {1, 2, . . . , n}.
Given a set X = {xi|i ∈ [n]} of data points and a la-
beling partition C = {cj |j ∈ [k]}, for any data point xi,
let li = (li1, . . . , lik) be the binary vector denoting which
cluster xi is assigned to, where lij = 1 if xi is in the j-th
cluster, otherwise lij = 0. Given an undirected weighted
graph G = (V,E,W ), where V is the vertex set, E is
the edge set, and W : E → R+ is the weight func-
tion of edges, let V OL =

∑
e∈E W (e) be the sum of the

weights of edges. For each v ∈ V , we denote the sum of
the weights of its connected edges as vol(v). For a point ci
with li = {li1, . . . , lik}, the center cj for the j-th cluster is
defined as cj =

∑
i∈[n] lijxi/

∑
i∈[n] lij .

Clustering with Global Structural Feature
For clustering tasks, existing clustering methods commonly
rely on the pairwise distances and densities to group the data
points into clusters. Thus, a fundamental challenge is how

to effectively incorporate global structural features into the
clustering optimization process.

In this section, we present a new algorithm called the SEC
algorithm (Algorithm 1), which integrates structural entropy
to capture the global structural features of the clustering in-
stances. The SEC algorithm mainly consists of three parts:
(1) sparse graph embedding (lines 2-3 of Algorithm 1); (2)
structural entropy extraction (lines 4-5 of Algorithm 1); (3)
iterative pre-deletion and reassignment (line 7 of Algorithm
1). Figure 2 provides a graph illustration to show how the
algorithm works.

The proposed sparse graph embedding method adapts the
k-NN and thresholding strategies for graph sparsification.
In the structural entropy extraction phase, an encoding tree
is first constructed based on the obtained graph embedding.
Each vertex of the encoding tree represents a graph parti-
tion determined by the structural entropy of the graph nodes.
Then, we propose an iterative encoding tree method to ob-
tain global structural features by iteratively augmenting the
dimension of the raw dataset and adjusting the tree structure.

Figure 2: A graph illustration on how Algorithm 1 works

To avoid the influence of easily misclustered data points,
we propose a new definition called the fringe set to find data
points that are located in the regions consisting of multiple
distinct clusters and share similar structural entropy. Data
points in the fringe set are inherently difficult to separate. To
overcome this challenge, in the iterative pre-deletion and re-
assignment phase, we propose a fringe set exclusion method,
which can identify, delete, and reassign the fringe points dur-
ing the clustering optimization process.

Graph Embedding
For the clustering problem, a natural way of graph embed-
ding is to represent the given dataset as a complete graph,
where the weight between any two point is their Euclidean
distance. However, for the clustering problem, intra-cluster
similarity should be much smaller than the inter-cluster sim-
ilarity. Hence, a complete graph may mislead the relation-
ship between data points and prevent the algorithm from ob-
taining good structural information. Thus, we present a new
graph embedding method, as described in Algorithm 2, to
construct a sparse graph for the clustering problem.

The formal graph embedding process is given in Algo-
rithm 2. The algorithm iteratively finds the k-nearest neigh-
bors (denoted as k-NN) of each data point (steps 2 to 4)
to form the edges of the graph. However, the k-NN method
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Algorithm 1: SEC

Input: Dataset X , a set D = {d1, . . . , dt} of tree depths,
the number of clusters k, a set N = {nn1, . . . , nnt} of
neighbor search parameters, a set ϵ = {ϵ1, . . . , ϵt} of
thresholds, and parameters δ and t.

Output: Labels of data points.
1: for all i = 1, 2, · · · , t do
2: G(V,E,W )← BuildGraph(X,nni, ϵi);
3: V OL←

∑
e∈E W (e);

4: ent← EncodingTree(G, di);
5: X ← concat(X, ent);
6: end for
7: l← IterativeDeletion(X, k, δ);
8: return l;

Algorithm 2: BuildGraph

Input: Dataset X , a number of edges N and a threshold ϵ.
Output: A sparse graph G.

1: Initialize G as an empty graph;
2: for all i = 1, 2, · · · , n do
3: for all j = 1, 2, · · · , N do
4: Let x be the j-furthest point from xi;
5: If d (x, xi) > ϵ, then break;
6: Add edge(x, xi) with weight d (x, xi);
7: end for
8: end for
9: return G (V,E,W );

may overlook the non-uniform patterns within the graph due
to its strict requirement that each node must be connected to
precisely k neighbors. Therefore, in step 5 of Algorithm 2,
a thresholding step is used to remove irrelevant neighbors
for each node, where data points with distances larger than a
certain threshold should not be assigned to the same cluster
since they are significantly distant from each other.

Encoding Tree Construction
The encoding tree is a hierarchical tree structure that can
reflect the hierarchical abstractions of the intrinsic and non-
linear patterns among the data points. Based on this struc-
ture, features with global structural information can be ex-
tracted to help the clustering optimization process.

A standard encoding tree is a binary tree constructed from
leaf nodes to the root node (Li and Pan 2016). Each node of
the encoding tree is a partition of the graph. Given a graph
G with vertex set V and edge set E, an encoding tree T of
G should satisfy the following properties: 1) for each node
vτ ∈ T , it contains a vertex subset Tvτ ⊆ V ; 2) for the root
node vr, it contains the whole vertex set V ; 3) for each node
vτ ∈ T , it has a parent node v+τ , and a child node set V −

τ ;
4) for any two nodes na and nb such that na and nb share
the same parent node vτ , it should be guaranteed that Tna

∩
Tnb

= ∅; 5) for each leaf node v, Tv is a singleton subset
containing a single graph vertex, where the total number of
leaf nodes is exactly |V |.

The one-dimensional structural entropy of a graph

G (denoted as H1(G)) is defined as H1(G) =

−
∑

v∈V
vol(v)
V OL · log

vol(v)
V OL . For each node vτ ∈ T with

vτ ̸= vr, the node entropy is defined as HT (G; vτ ) =

− gvτ
V OL log2

vol(vτ )

vol(v+
τ )

, where gvτ is the sum of the weights
of all the edges between nodes in Tvτ and outside
Tvτ

, and vol (vτ ) is
∑

v∈Tvτ
vol (v). The D-dimensional

structural entropy of G can be defined as HD(G) =
minT

∑
vτ∈T,vτ ̸=vr

HT (G; vτ ), where T represents the set
of encoding trees with heights at most D.

The encoding tree is constructed by iteratively merging
the leaf nodes to minimize the structural entropy until a bi-
nary tree is formed. However, directly constructing an en-
coding tree may not yield appropriate clustering partitions.
This may arise from the significant imbalance between the
number of nodes in the encoding tree and the number of pre-
defined clusters for partitioning. To achieve improved clus-
tering partitions, we aim to limit the height of the encod-
ing tree to a pre-defined tree height D, where a tree-height
restriction approach is proposed. The tree-height restriction
approach mainly consists of three operations: the COM-
BINE, the DROP, and the SINGUP. Intuitively, the COM-
BINE operation aims to minimize the structural entropy dur-
ing tree construction, the DROP operation aims to reduce the
tree height of the encoding tree to satisfy certain height con-
straint with minimum increase in structural entropy, and the
SINGUP operation aims to adjust the encoding tree to the
specified tree height without additional increase in structural
entropy.

Definition 1 Given two vertexes v1c , v
2
c ∈ V −

r , the oper-
ation COMBINE

(
v1c , v

2
c

)
is defined as creating a child

node vτ for vr to serve as the parent node for v1c and v2c ,
where Tvτ

= Tv1
c
+ Tv2

c
. The operation DROP (vτ ) is de-

fined as removing the node vτ from T and connecting the
children of vτ to its parent, where Tv+

τ
= Tv+

τ
∪ Tvτ . Given

a leaf node vi ∈ V , the operation SINGUP (vi, D) is de-
fined as adding a node v′i as the parent of vi and the child of
v+i repeatedly until the depth of vi is D, where Tv

′
i
= Tvi .

The specific encoding tree construction process is given
in Algorithm 3. Based on the proposed tree operations, Al-
gorithm 3 can be divided into three stages.

STAGE 1. In stage 1 (steps 2 to 3), the algorithm ex-
plores all possible COMBINE operations to determine the
best one that yields the maximal reduction in structural en-
tropy. Then, two children v1c and v2c are merged to form a
new tree node. In Algorithm 3, COMBINE operations are
repeated until |V −

r | < 3. Finally, a binary encoding tree T
can be obtained.

STAGE 2. In stage 2 (steps 5 to 6), all possible DROP
operations are explored to reduce the height. We use
TDROP(vτ ) to denote the encoding tree that is obtained af-
ter performing the operation DROP (vτ ). Then, we repeat
stage 2 until the height of the encoding tree is no larger than
D. If there exists a node v not satisfying the height con-
straint, using DROP operations might reduce the height of
the children of v. As a result, there might exist some leaf
nodes with different heights. Thus, the remaining task in-
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Algorithm 3: EncodingTree

Input: Graph G = (V,E,W ), tree depth D > 1.
Output: A vector of structural entropy for the data points.

1: Build an initial encoding tree T with a root node vr, and
each leaf node of vr corresponds to a unique vertex in
V as one of its children;

2: while |V −
r | > 2 do

3: COMBINE
(
v1c , v

2
c

)
← argmax(v1

c ,v
2
c)
{HT (G) −

HT
COMBINE(v1

c ,v2
c) (G) |v1c , v2c ∈ V −

r };
4: end while
5: while Height(T ) > D do
6: DROP(vτ ) ← argminvτ

{HTDROP(vτ ) (G) −
HT (G) |vτ ∈ T&vτ ̸= vr&vτ /∈ V };

7: end while
8: for all vi ∈ V do
9: If Depth(T, vi) < D, then Call SINGUP (vi, D);

10: end for
11: for all i ∈ {1, 2, . . . , n} do
12: Find a path P = [vi, . . . , vr] in encoding tree T from

vi to the root vr;
13: HT (xi)← −

∑
vτ∈P

gvτ
V OL log vol(vτ )

vol(v+
τ )

;

14: end for
15: return [HT (x1) ,HT (x2) , . . . ,HT (xn)]

T;

volves adjusting the heights of the leaf nodes to ensure that
all the leaf nodes share the same height.

STAGE 3. In this stage, we use the SINGUP operation to
simultaneously modify all leaf nodes to restrict their height
to the specified parameter D without increasing the struc-
tural entropy of the graph partitions. The time complexity
for the SINGUP operation is O(nD), where D is the speci-
fied height after adjustment, and n is the number of vertices
in the graph.

To this end, we have introduced how to obtain structural
entropy for both the graph G and the nodes in the encoding
tree. For the clustering problem, we will next introduce the
definition of structural entropy for a data point to achieve the
hierarchical abstraction of the entire dataset.
Definition 2 Given an encoding tree T , for each data point
xi ∈ X corresponding a leaf node vi ∈ T , there exists a
unique path P = [vi, . . . , vr] from vi to the root node vr.
The structural entropy of data point xi is defined as the cu-
mulative sum of the entropy associated with each node along
the path P , whereHT (xi) = −

∑
vτ∈P

gvτ
V OL log vol(vτ )

vol(v+
τ )

.

Based on the three tree operations defined and the struc-
tural entropy of data points, a modified encoding tree can
be constructed using Algorithm 3, where a vector of global
features is constructed for each data point in the dataset.

Iterative Pre-deletion and Reassignment
For the clustering problem, it is observed that most mis-
clustered data points are located at the boundaries consist-
ing of distinct clustering partitions, which we refer to as
the fringe points. Fringe points can lead to significant de-
viation of the clustering boundaries. To avoid the impact of

the fringe points and obtain better clustering partitions, we
propose an iterative pre-deletion and reassignment method,
which can iteratively delete and reassign the fringe points
during the clustering process. The fringe points are defined
using the projective distance, which is given in Definition 3.

Definition 3 Given a point A and a vector−−→BC from point B
to point C, the projective distance Pd between point A and
vector −−→BC is defined as Pd(A,

−−→
BC) =

−−→
BC · −−→BA/d(B,C),

where−−→BC ·−−→BA is the dot product of the vectors and d(B,C)
is the Euclidean distance between points B and C.

Based on projective distance, the fringe set is defined in
Definition 4. In the clustering process, Algorithm 4 can iden-
tify and exclude the fringe set before each clustering cen-
ter updating step. To avoid significant deviation from the
ground truth clustering partitions, the algorithm finds the
midpoints between the updated centers with and without the
fringe set as the new centers. After updating the clustering
centers, data points in the fringe set are randomly assigned
to the obtained centers to achieve better clustering results.
Definition 4 Consider a dataset X ⊆ Rd and a set C ⊆
Rd of centers, where X = {xi|i ∈ [n]} and C = {cj |j ∈
[k]}, let chi be the center to which xi is assigned. The set
of points, denoted by {xi|Pd(xi,−−−→chi

cj) > δ
2d(chi

, cj), i ∈
[n], j ∈ [k], j ̸= hi}, forms what is called a fringe set, and
the points in the fringe set are called fringe points, where δ
is a constant specified by the input of the algorithm.

Algorithm 4: IterativeDeletion

Input: Data points X = {xi|i = 1, 2, . . . , n}, the number
of clusters k, and the “fringe set” region parameter δ.

Output: Labels of the clustering partitions.
1: Let C = {c1, . . . , ck} and L = (l1, . . . , ln) be the set of

the centers and labels returned by the k-means++ algo-
rithm, respectively;

2: Initialize CnF , CF , C ′ ← C and LnF , LF , L′,← L;
3: while True do
4: for all i = 1, 2, . . . , n do
5: Let chi

be the center that xi is assigned to;
6: for all j = 1, 2, . . . , k do
7: If Pd(xi,−−−→chi

cj) > δ
2d(chi

, cj) and j ̸= h,
lnFihi
← 0 and lFij ← 1;

8: end for
9: end for

10: for all j = 1, 2, . . . , k do

11: cnFj ←
∑

i∈[n]
lnF
ij xi∑

i∈[n]
lnF
ij

, cFj ←
∑

i∈[n]
lFijxi∑

i[n]
lF
ij

, c′j ←

cnF
j +cFj

2 ;
12: end for
13: Update the labels L′ = (l′1, . . . , l

′
n) as

l′i = (l′i1, . . . , l
′
ik), where l′ij = 1 if

j = argminj∈[k] d(xi, c
′
j), otherwise l′ij = 0;

14: If L′ ̸= L, LnF , LF , L ← L′. Otherwise, stop the
while loop;

15: end while
16: return L;
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Experiment
In this section, we conduct empirical experiments on dif-
ferent synthetic and real-world datasets to evaluate the per-
formance of our proposed SEC algorithm. All the experi-
ments are conducted on 72 Intel Xeon Gold 6230 CPUs with
500GB memory.
Algorithms. In our experiment, we consider six algorithms:
our SEC algorithm, the k-means++ algorithm (denoted as
KM) in (Arthur and Vassilvitskii 2007), the fuzzy k-means
algorithm (denoted as FK) in (Ruspini 1969) (a variation of
the k-means algorithm which assigns each point to the cen-
ter with probability), the DBSCAN algorithm (denoted as
DB) in (Ester et al. 1996) (a classic density-based method),
the LDP-MST algorithm (denoted as LM) in (Cheng et al.
2019) (the state-of-the-art MST and density-based cluster-
ing method), and the HCDC algorithm (denoted as HC) in
(Yang et al. 2023) (the state-of-the-art algorithm for hierar-
chical clustering methods).
Datasets. We evaluate the effectiveness of our algorithm
on both synthetic and real-world datasets. Following the
prior work (Arthur and Vassilvitskii 2007; Ester et al. 1996;
Cheng et al. 2019; Yang et al. 2023), synthetic datasets
are two-dimensional, and all the real-world datasets can be
found in the UCI machine learning repository 1.
Experimental Setup. The distances between data points are
set as Euclidean distances. Following the settings in (Arthur
and Vassilvitskii 2007; Ester et al. 1996; Cheng et al. 2019;
Yang et al. 2023), we run all the algorithms on each dataset
for five times and report the average results. For our algo-
rithm, we also study the influence of structural entropy and
design an ablation experiment to show the impact of iterative
construction of the encoding tree and iterative pre-deletion
of the fringe set (see the full version).
Evaluation. Following the settings in (Arthur and Vassil-
vitskii 2007; Ester et al. 1996; Cheng et al. 2019; Yang
et al. 2023), we use two external evaluation criteria: ac-
curacy (ACC) and normalized mutual information (NMI).
With ACC, we can evaluate the percentage of correctly as-
signed data points. For NMI, it measures the similarity be-
tween the clustering results and the true partitioning of the
datasets.
Experiment on Synthetic Datasets. The synthetic datasets
are summarized in Table 1. For each dataset X , the fringe
set ratio is measured as the number of fringe points relative
to the data size, denoted as FR = |FP |/|X| in the table.

Datasets Instances Clusters FR
square5 1000 4 0.133

compound 399 6 0.318
ds4c2sc8 462 8 0.050
threenorm 1000 2 0.153

aggre 788 7 0.039
2d-3c-no123 715 3 0.010
2d-20c-no0 1517 20 0.010

s4 5000 15 0.202
sizes5 1000 4 0.018

Table 1: Synthetic datasets

1https://archive.ics.uci.edu

Data KM FK DB HC LM Ours
square5 0.865 0.865 0.733 0.278 0.556 0.868

compound 0.654 0.659 0.699 0.995 0.807 0.972
ds4c2sc8 0.760 0.903 0.656 0.589 0.762 0.961
threenorm 0.672 0.646 0.823 0.514 0.623 0.896

aggre 0.784 0.792 0.990 0.996 0.997 1.0
2d3cno123 0.867 0.794 0.964 0.994 0.917 0.997
2d20cno0 0.941 0.860 0.978 0.994 0.962 0.995

s4 0.795 0.8 0.5328 0.288 0.662 0.806
sizes5 0.978 0.689 0.965 0.991 0.991 0.997

Table 2: Results of ACC scores on synthetic datasets

Tables 2 and 3 show the comparison results on 9 synthetic
datasets. Our SEC algorithm outperforms others in cluster-
ing ACC on 8 datasets. On average, SEC improves ACC by
17.8%, 22.9%, 19.3%, 58.7%, and 20.2% over k-means++,
fuzzy k-means, DBSCAN, HCDC, and LDP-MST, respec-
tively. By fixing the state-of-the-art result as a reference, the
average ACC is increased by 1.7%. Similarly, for NMI, the
average clustering NMI of our SEC algorithm is increased
by 61.5%, 98.0%, 26.5%, 311.7%, and 49.1%, respectively.
By fixing the state-of-the-art result as a reference, the aver-
age NMI is increased by 7.9%.

Data KM FK DB HC LM Ours
square5 0.642 0.641 0.461 0.073 0.406 0.649

compound 0.718 0.711 0.641 0.987 0.852 0.935
ds4c2sc8 0.748 0.846 0.690 0.726 0.815 0.921
threenorm 0.097 0.066 0.328 0.026 0.122 0.520

aggre 0.879 0.849 0.979 0.988 0.992 1.0
2d3cno123 0.720 0.611 0.850 0.965 0.806 0.984
2d20cno0 0.963 0.936 0.980 0.991 0.981 0.993

s4 0.720 0.721 0.589 0.386 0.688 0.731
sizes5 0.884 0.566 0.837 0.943 0.941 0.977

Table 3: Results of NMI scores on synthetic datasets

Real-World Datasets. Table 4 summarizes the real-world
datasets used in our experiments. Table 5 and Table 6 show
the comparison results on the real-world datasets.

Datasets Instances Dimensions Clusters FR
iris 150 4 3 0.073

wine 178 13 3 0.275
glass 214 9 6 0.519

PenDigits 10992 16 10 0.185
Yeast 1484 8 10 0.499

segment 2310 19 7 0.277
control 600 60 6 0.148

Table 4: Real-world datasets

It can be seen from Tables 5 and 6 that our SEC algorithm
outperforms the existing clustering algorithms on all of the
real-world datasets used in our experiments. By calculating
the average values over all datasets, on average, SEC im-
proves ACC by 21.9%, 28.8%, 25.1%, 43.2%, and 29.3%
over k-means++, fuzzy k-means, DBSCAN, HCDC, and
LDP-MST, respectively. The NMI improvements are 19.3%,
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47.4%, 34.7%, 52.2%, and 18.9%, respectively. In particu-
lar, for more than half of the datasets used in the experi-
ments, the clustering ACC and NMI are increased by 20.6%
and 9.8%, respectively. In the full version, we present the
experimental results of 92 synthetic and real-world datasets
used in other clustering methods in the related work. On av-
erage, our SEC algorithm improves the ACC and NMI by
3.09% and 18.82%, respectively.

Data KM FK DB HC LM Ours
iris 0.893 0.893 0.893 0.907 0.973 0.973

wine 0.944 0.697 0.668 0.562 0.983 0.989
glass 0.542 0.495 0.491 0.407 0.449 0.626

PenDigits 0.667 0.684 0.741 0.532 0.744 0.812
Yeast 0.377 0.327 0.389 0.396 0.416 0.428

segment 0.501 0.493 0.530 0.452 0.552 0.770
control 0.645 0.737 0.687 0.648 0.408 0.872

Table 5: Results of ACC scores on real-world datasets

Data KM FK DB HC LM Ours
iris 0.758 0.893 0.734 0.806 0.901 0.901

wine 0.816 0.421 0.416 0.299 0.928 0.947
glass 0.418 0.355 0.436 0.307 0.284 0.534

PenDigits 0.682 0.638 0.729 0.651 0.770 0.779
Yeast 0.271 0.176 0.2 0.246 0.256 0.295

segment 0.510 0.477 0.602 0.564 0.686 0.687
control 0.726 0.679 0.821 0.816 0.671 0.868

Table 6: Results of NMI scores on real-world datasets

Discussion on Experiments. To better show the results
of the SEC algorithm, we mainly divide the datasets into
four categories: (1) Type-1: datasets with stripe-like shape
and without fringe sets; (2) Type-2: datasets with fringe
sets and without stripe-like shape; (3) Type-3: datasets with
fringe sets and stripe-like shape; (4) Type-4: datasets with-
out stripe-like shape and fringe sets. Figure 3 provides an
illustration of typical examples for each type of the dataset.

Figure 3: Typical examples for each type of the datasets

Table 7 summarizes the statistical analysis for different
types of datasets used in the experiments. We report the
number of each type of dataset, the ACC and NMI improve-
ments using the SEC algorithm, and the number of datasets
where the SEC algorithm finds optimal clustering partitions

numbers ACC boost NMI boost count of opt
type-1 5 - - 5
type-2 20 2.720% 5.169% 5
type-3 34 2.391% 47.260% 21
type-4 47 5.060% 1.240% 21

Table 7: Statistical analysis of the experimental results

Figure 4 demonstrates the impact of structural entropy on
clustering quality, where the visualization for four of the
two-dimensional datasets with stripe-like shapes and with-
out fringe sets is provided. We give plots of the raw datasets
and the datasets after incorporating structural entropy. The
k-means algorithm achieves ACCs of 0.25, 0.702, 0.706,
and 0.7406, respectively; and our algorithm achieves 1, 1,
1, and 1, respectively. It can be seen that the four datasets
do not have distinct Voronoi structures. As pointed out in
(Reddy, Jana, and Member 2012), it is hard for k-means al-
gorithms to get high-quality results on these datasets. The
new datasets, obtained after dimensionality expansion using
structural entropy, exhibit distinct Voronoi structures, which
is the main reason that high-quality results can be obtained.

Figure 4: Comparisons of datasets with and without global
structural features

Conclusion
In this work, we propose a new clustering method called
SEC, which uses structural entropy to obtain global struc-
tural features to guide the clustering process. Moreover, a
pre-deletion and reassignment method is used in SEC to
handle datasets with fringe sets to obtain better clustering
performance. Experimental results show that our proposed
SEC method outperforms other state-of-the-art clustering al-
gorithms in terms of clustering quality.
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