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Abstract
Proximal Policy Optimization algorithm employing a clipped
surrogate objective (PPO-Clip) is a prominent exemplar of
the policy optimization methods. However, despite its re-
markable empirical success, PPO-Clip lacks theoretical sub-
stantiation to date. In this paper, we contribute to the field by
establishing the first global convergence results of a PPO-Clip
variant in both tabular and neural function approximation set-
tings. Our findings highlight the O(1/

√
T ) min-iterate con-

vergence rate specifically in the context of neural function
approximation. We tackle the inherent challenges in analyz-
ing PPO-Clip through three central concepts: (i) We intro-
duce a generalized version of the PPO-Clip objective, illu-
minated by its connection with the hinge loss. (ii) Employ-
ing entropic mirror descent, we establish asymptotic conver-
gence for tabular PPO-Clip with direct policy parameteriza-
tion. (iii) Inspired by the tabular analysis, we streamline con-
vergence analysis by introducing a two-step policy improve-
ment approach. This decouples policy search from complex
neural policy parameterization using a regression-based up-
date scheme. Furthermore, we gain deeper insights into the
efficacy of PPO-Clip by interpreting these generalized objec-
tives. Our theoretical findings also mark the first characteriza-
tion of the influence of the clipping mechanism on PPO-Clip
convergence. Importantly, the clipping range affects only the
pre-constant of the convergence rate.

1 Introduction
Policy optimization is a prevalent method for solving rein-
forcement learning problems, involving iterative parameter
updates to maximize objectives. Policy gradient methods, a
prominent subset of this approach, were introduced as a di-
rect solution using gradient descent. Their primary aim is
to identify an optimal policy that maximizes the total ex-
pected reward through interactions with the environment.
The selection of an appropriate step size is crucial as it sig-
nificantly influences policy gradient algorithm performance.
Addressing this challenge, Trust Region Policy Optimiza-
tion (TRPO) was created (Schulman et al. 2015). Utiliz-
ing a trust-region approach with a second-order approxima-
tion, TRPO guarantees substantial policy improvement. Un-
like computationally intensive TRPO, Proximal Policy Opti-
mization (PPO) (Schulman et al. 2017) leverages first-order
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derivatives for policy improvement. PPO encompasses two
main variants: PPO-KL and PPO-Clip, each with distinct
characteristics. PPO-KL adds a Kullback-Leibler divergence
penalty to the objective, while PPO-Clip integrates probabil-
ity ratio clipping. These variants showcase remarkable per-
formance across various environments, with PPO standing
out for its computational efficiency (Chen, Peng, and Zhang
2018; Ye et al. 2020; Byun, Kim, and Wang 2020).

Given the empirical success of these policy optimization
algorithms, recent works have made significant strides in en-
hancing their theoretical guarantees. In particular, (Agarwal
et al. 2020; Bhandari and Russo 2019) prove the global con-
vergence result of the policy gradient algorithm under differ-
ent settings. Additionally, (Mei et al. 2020) establishes the
convergence rates of the softmax policy gradient in both the
standard and the entropy-regularized settings. Furthermore,
it has been shown that various policy gradient algorithms
also enjoy global convergence (Fazel et al. 2018; Liu et al.
2020; Wang et al. 2021). In the context of TRPO and PPO,
(Shani, Efroni, and Mannor 2020) have utilized the mirror
descent method to establish the convergence rate of adaptive
TRPO under both the standard and entropy-regularized set-
tings. Furthermore, (Liu et al. 2019) have provided the con-
vergence rate of PPO-KL and TRPO under neural function
approximation.1 By contrast, despite that PPO-Clip is com-
putationally efficient and empirically successful, the follow-
ing question about the theory of PPO-Clip remains largely
open: Does PPO-Clip enjoy provable global convergence or
have any convergence rate guarantee?

In this paper, we answer the above question affirmatively.
To begin with, we generalize the PPO-Clip objective to en-
compass a wider range of variants, enhancing our compre-
hension of its efficacy. Accordingly, we present the first-ever
global convergence guarantee for a PPO-Clip variant un-
der both tabular and neural function approximation. Notably,
through convergence analysis, we offer two pivotal insights
into the clipping mechanism: (i) Under PPO-Clip, the pol-
icy updates scale with advantage magnitudes, while the sign
dictates whether to increase or decrease the action proba-
bilities. Notably, given the representation power of neural
networks, incorrect signs typically emerge when the advan-

1For the detailed discussion about related work, please refer to
Appendix H.
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tage magnitudes are nearly zero. In such cases, these values
insignificantly contribute to the objective, preserving the ob-
jective accuracy despite the incorrect signs. This perspective
illuminates the robustness and empirical success of PPO-
Clip. (ii) Through our convergence analysis, we demonstrate
that the clipping range merely affects the pre-constant of
the convergence rate, not the asymptotic behavior. All the
code is available at https://github.com/NYCU-RL-Bandits-
Lab/Neural-PPO-Clip and the full version is provided at
https://arxiv.org/abs/2312.12065.
Our Contributions. We summarize the main contributions
of this paper as follows:
• To establish the global convergence of PPO-Clip, we

leverage the connection between PPO-Clip and the hinge
loss, leading to the formulation of generalized PPO-Clip
objectives. Additionally, we harness the power of the en-
tropic mirror descent (EMDA) (Beck and Teboulle 2003)
for tabular PPO-Clip under direct policy parameterization,
thereby demonstrating its asymptotic convergence.

• Inspired by the tabular analysis, we present a two-step
policy improvement framework based on EMDA for Neu-
ral PPO-Clip. This framework enhances the manageabil-
ity of the analysis by effectively separating policy search
from policy parameterization. Accordingly, we establish
the first global convergence result and explicitly charac-
terize the O(1/

√
T ) min-iterate convergence rate for the

generalized PPO-Clip and hence provide an affirmative
answer to one critical open question about PPO-Clip.

• We gain deeper insights into the PPO-Clip performance.
Our theoretical findings yield two key insights into the
clipping mechanism, as mentioned earlier. Furthermore,
our analysis extends seamlessly to various Neural PPO-
Clip variants with different classifiers, guided by the pro-
vided sufficient conditions.

2 Preliminaries
Markov Decision Processes. Consider a discounted
Markov Decision Process (S,A,P, R, γ, µ), where S is the
state space (possibly infinite), A is a finite action space,
P : S × A × S → [0, 1] is the transition dynamic
of the environment, R : S × A → [0, Rmax] is the
bounded reward function, γ ∈ (0, 1) is the discount fac-
tor, and µ is the initial state distribution. Given a policy
π : S → ∆(A), where ∆(A) is the unit simplex over
A, we define the state-action value function Qπ(·, ·) :=
Eat∼π(·|st),st+1∼P(·|st,at)[

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 =
a]. Moreover, we define V π(s) := Ea∼π(·|s)[Q

π(s, a)] and
Aπ(s, a) := Qπ(s, a) − V π(s). Also, we denote π∗ as an
optimal policy that attains the maximum total expected re-
ward and denote π0 as the uniform policy. We introduce
νπ(s) = (1 − γ)

∑∞
t=0 γ

tP(st = s|s0 ∼ µ, π) as the
discounted state visitation distribution induced by π and
σπ(s, a) = νπ(s) ·π(a|s) as the state-action visitation distri-
bution induced by π. In addition, we define the distribution
ν∗ and σ∗ as the discounted state visitation distribution and
the state-action visitation distribution induced by the optimal
policy π∗, respectively. Moreover, we define σ̃π = νππ0 as
the state-action distribution induced by interactions with the

environment through π, sampling actions from the uniform
policy π0. We use Eνπ [·] and Eσπ [·] as the shorthand nota-
tions of Es∼νπ [·] and E(s,a)∼σπ

[·], respectively.
For the convergence property, we define the total expected

reward over the state distribution ν∗ as

L(π) := Eν∗ [V π(s)]. (1)

Here, a maximizer of (1) is equivalent to the original def-
inition of the optimal policy π∗. We will prove the global
convergence by analyzing the difference in L between our
policy and the optimal policy and show that the total ex-
pected reward monotonically increases.
Proximal Policy Optimization (PPO). PPO is an empir-
ically successful algorithm that achieves policy improve-
ment by maximizing a surrogate lower bound of the orig-
inal objective, either through the Kullback-Leibler penalty
(termed PPO-KL) or the clipped probability ratio (termed
PPO-Clip). PPO-KL and PPO-Clip represent the two main
branches of PPO, both aiming to enforce policy constraints
during updates for policy improvement. It is crucial to em-
phasize that PPO-Clip represents a conceptual approach, uti-
lizing the clipping mechanism to achieve policy constraints,
rather than being a precise algorithm itself. In this paper, our
focus is PPO-Clip. Let ρs,a(θ) denote the probability ratio
πθ(a|s)
πθt (a|s)

. PPO-Clip avoids large policy updates by applying
a simple heuristic that clips the probability ratio by the clip-
ping range ϵ and thereby removes the incentive for moving
ρs,a(θ) away from 1. Specifically, the PPO-Clip objective is

Lclip
t (θ) = Eσt

[min{ρs,a(θ)Aπθt (s, a),

clip(ρs,a(θ), 1− ϵ, 1 + ϵ)Aπθt (s, a)}]. (2)

Neural Networks. We introduce the notations and assump-
tions relevant to neural networks. It is important to highlight
that our analysis of neural networks draws inspiration from
(Liu et al. 2019), and we adopt their notations to ensure com-
patibility. Specifically, this paper centers around the analy-
sis of two-layer neural networks. For simplicity, let us con-
sider (s, a) ∈ Rd for all (s, a) ∈ S × A. We represent the
two-layer neural network as NN(α;m), where α denotes the
network input weights and m represents the network width.
These neural networks act as the parameterization for both
our policy πθ and the Q function. The parameterized func-
tion associated with NN(α;m) is depicted as follows:

uα(s, a) =
1√
m

m∑
i=1

bi · σ([α]⊤i (s, a)), (3)

where α = ([α]⊤1 , . . . , [α]
⊤
m)⊤ ∈ Rmd is the input weights,

with [α]i ∈ Rd, bi ∈ {−1, 1} are the weights of the output,
and σ(·) refers to the Rectified Linear Unit (ReLU) activa-
tion function. The initializations for the input weights α0

and bi are provided as follows:

bi ∼ Unif({1,−1}), [α0]i ∼ N (0, Id/d), (4)

where both bi and [α0]i are i.i.d. for each i ∈ [m] and Id is
the d× d identity matrix. The values of bi remain fixed fol-
lowing initialization, with the training exclusively focused
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on adjusting the weights α. To uphold the local lineariza-
tion characteristics, we employ a projection mechanism that
confines the training weights α within an ℓ2-ball centered at
α0, which is represented as Bf = {α : ∥α − α0∥2 ≤ Rf},
where f is the canonical name of the networks (It will be f
for the policy network and Q for the Q function network in
the following section).

Our examination of neural networks is grounded in the
subsequent assumptions, which are widely adopted regu-
larity conditions for neural networks in the reinforcement
learning literature (Liu et al. 2019; Antos, Szepesvári, and
Munos 2007; Farahmand et al. 2016):
Assumption 1 (Q Function Class). We assume that the our
neural network class possesses sufficient representational
capacity to model the Q function of any given policy π.
Specifically, for any R > 0, define a function class

FR,m =
{ 1√

m

m∑
i=1

bi · 1{[α0]
⊤
i (s, a) > 0} · [α]⊤i (s, a)

}
,

(5)

for all α satisfying ∥α − α0∥2 ≤ R, where bi and α0 are
initialized as (4). We assume that Qπ(s, a) ∈ FRQ,mQ

for
any policy π, where RQ and mQ are the projection radius
and width of the neural network for Q function.

Given that T πQπ remains a Q function, Assumption 1
affords us the property of completeness within our function
class under the Bellman operator T π .
Notations: We use ⟨a, b⟩ and a◦b to denote the inner product
and the Hadamard product, respectively.

3 Generalized PPO-Clip Objectives
Connecting PPO-Clip and Hinge Loss. According to (Hu
et al. 2020; Pi et al. 2020), the original PPO-Clip objective
could be connected with the hinge loss. Specifically, the gra-
dient of the clipped objective is indeed the negative of the
gradient of hinge loss objective, i.e.,

∂

∂θ
min{ρs,a(θ)A(s, a), clip(ρs,a(θ), 1− ϵ, 1 + ϵ)A(s, a)}

= − ∂

∂θ
|A(s, a)| ℓ(sign(A(s, a)), ρs,a(θ)− 1, ϵ), (6)

where ℓ(yi, fθ(xi), ϵ) is the hinge loss defined as max{0, ϵ−
yi · fθ(xi)}, ϵ is the margin, yi ∈ {−1, 1} the label corre-
sponding to the data xi, and fθ(xi) serves as the binary clas-
sifier. For completeness, please see Appendix I for a detailed
comparison of the two objectives. From the above, maximiz-
ing the objective in (2) can be rewritten as minimizing the
following loss:

L(θ) =
∑
s∈S

dπµ(s)
∑
a∈A

(
π(a|s)|Aπ(s, a)|·

ℓ(sign(Aπ(s, a)), ρs,a(θ)− 1, ϵ)
)
. (7)

In practice, we draw a batch of state-action pairs and use the
sample average to approximately minimize the loss in (7).
Generalized PPO-Clip Objectives. Based on the above
reinterpretation of PPO-Clip, we provide a general form of

the PPO-Clip loss function from a hinge loss perspective as
follows,

LHinge(θ) =
1

|D|
∑

(s,a)∈D

weight×ℓ(label, classifier,margin).

(8)
Different combinations of classifiers, margins, and weights
lead to different loss functions, thereby representing diverse
algorithms. PPO-Clip is a special case of (8) with a spe-
cific classifier ρs,a(θ) − 1. Another variant, termed PPO-
Clip-sub in this paper, can be obtained by employing a sub-
traction classifier, i.e., πθ(a|s)− πθt(a|s). There are several
other variants under this generalized objective by employ-
ing distinct classifiers, e.g., log(πθ(a|s)) − log(πθt(a|s))
and

√
ρs,a(θ) − 1. We demonstrate the empirical evalua-

tion of these variants in Section 6. Given the above exam-
ples, the proposed objective provides to generalizing PPO-
Clip via various classifiers, thereby expanding the objective
choices within the context of PPO-Clip. This generaliza-
tion also connects the PPO-Clip with the classifier selection
paradigm. Additionally, this generalized objective provide
an intution to understand more about the clipping mecha-
nism. Please refer to Section 5.4.

4 Tabular PPO-Clip
4.1 Direct Policy Parameterization
In this section, we study the global convergence of PPO-Clip
with direct parameterization, i.e., policies are parameterized
by π(a|s) = θs,a, where θs ∈ ∆(A) denotes the vector
θs,· and θ ∈ ∆(A)|S|. We use V (t)(s) and A(t)(s, a) as the
shorthands for V π(t)

(s) and Aπ(t)

(s, a), respectively.
For the sake of clarity, we focus our discussion on the

original PPO-Clip rather than delving into the broader scope
of the generalized objective (8). Furthermore, we also pro-
vide additional analysis for other PPO-Clip variants with dif-
ferent classifiers in Appendix F. Note that by choosing the
weight as |A(t)(s, a)|, the classifier as ρ(t)s,a(θ) − 1, and the
margin as ϵ in (8) at the t-th iteration, the generalized ob-
jective would recover the form of the objective of PPO-Clip,
which denoted as L̂(t)(θ). The detailed algorithm is shown
in Appendix A as Algorithm 7.

In each iteration, PPO-Clip updates the policy by mini-
mizing the loss L̂(t)(θ) via the EMDA (Beck and Teboulle
2003). While there are alternative ways to minimize the
loss L̂(t)(θ) over ∆(A)|S| (e.g., the projected subgradient
method), we leverage EMDA for the following two reasons:
(i) PPO-Clip achieves policy improvement by increasing or
decreasing the probability of those state-action pairs in D(t)

based on the sign of A(t)(s, a) as well as properly reallo-
cating the probabilities of those state-action pairs not con-
tained in the batch (to ensure the probability sum is one).
Using EMDA enforces a proper reallocation in PPO-Clip,
as shown later in the proof of Theorem 1 in Appendix E;
(ii) The exponentiated gradient scheme of EMDA guaran-
tees π(t) remains strictly positive for all state-action pairs
in each iteration t, ensuring the well-defined nature of the
probability ratio ρs,a(θ) used in PPO-Clip. In this section,
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we consider the stylized setting with tabular policy and true
advantage mainly for motivating the PPO-Clip method and
its analysis.

4.2 Global Convergence of PPO-Clip with Direct
Parameterization

We first make the following assumptions. Note that we only
consider these assumptions in the tabular case.

Assumption 2 (Infinite Visitation to Each State-Action
Pair). Each state-action pair (s, a) appears infinitely often
in {D(τ)}, i.e., limt→∞

∑t
τ=0 1{(s, a) ∈ D

(τ)} =∞, with
probability one.

Assumption 3. In each iteration t, the state-action pairs in
D(t) have distinct states.

Assumption 2 resembles the standard infinite-exploration
condition commonly used in the temporal-difference meth-
ods, such as Sarsa (Singh et al. 2000). Assumption 3 is rather
mild: (i) This can be met by post-processing the mini-batch
of state-action pairs via an additional sub-sampling step; (ii)
In most RL problems with discrete actions, the state space is
typically much larger than the action space.

Theorem 1 (Global Convergence of PPO-Clip). Under
PPO-Clip, we have V (t)(s)→ V π∗

(s) as t→∞, ∀s ∈ S ,
with probability one.

The proof of Theorem 1 is provided in Appendix E. We
highlight the main ideas behind the proof of Theorem 1: (i)
State-wise policy improvement: Through the lens of gener-
alized objective, we show that PPO-Clip enjoys state-wise
policy improvement in every iteration with the help of the
EMDA subroutine. This property greatly facilitates the rest
of the convergence analysis. (ii) Quantifying the probabili-
ties of those actions with positive or negative advantages in
the limit: By (i), we know the limits of the value functions
and the advantage function all exist. Then, we proceed to
show that the actions with positive advantages in the limit
cannot exist by establishing a contradiction. The above also
manifests how reinterpreting PPO-Clip helps with establish-
ing the convergence guarantee.

5 Neural PPO-Clip
In this section, we begin by illustrating the process of decou-
pling policy search and policy parameterization, drawing in-
spiration from the tabular case. Subsequently, we provide a
comprehensive overview of the neural PPO-Clip algorithm.
We proceed to delineate the intricacies posed by our analysis
and present our results on the min-iterate convergence rate,
both for the generalized PPO-Clip. In particular, the conver-
gence rate of PPO-Clip can be view as a special case of our
general results. Lastly, we offer a profound insight into the
understanding of the clipping mechanism.

5.1 EMDA-Based Policy Search
Drawing inspiration from the tabular case, we proceed to
present our two-step policy improvement scheme based on
EMDA, and we call it EMDA-based Policy Search. Specifi-
cally, this scheme consists of two subroutines:

• Direct policy search: In this step, we directly search for
an improved policy in the policy space by EMDA. More
specifically, in each iteration t, we do a policy search by
applying EMDA with direct parameterization to minimize
the generalized PPO-Clip objective in (8) for finitely many
iterations K and thereby obtain an improved policy π̂t+1

as the target policy. The pseudo code of EMDA is pro-
vided in Algorithm 2. Notably, under EMDA, we can ob-
tain an explicit expression of the target policy π̂t+1.

• Neural approximation for the target policy: Given the
target policy π̂t+1 obtained by EMDA, we then approxi-
mate it in the parameter space by utilizing the representa-
tion power of neural networks via a regression-based pol-
icy update scheme (e.g., by using the mean-squared er-
ror loss). The detailed neural parameterization will be de-
scribed in the next subsection.

While the decision to employ EMDA is inspired by the tab-
ular case, there are two primary motivations and benefits for
integrating EMDA with direct parameterization:
• Decoupling improvement and approximation: One ma-

jor goal of this paper is to provide rigorous theoretical
guarantees for PPO-Clip under neural function approxi-
mation. To make the analysis tractable and general, we
would like to decouple policy improvement and function
approximation of the policy. To achieve this, we adopt the
EMDA-based two-step approach outlined previously.

• EMDA-induced closed-form expression of the target
policy: For policy optimization analysis, the goal is of-
ten to derive a closed-form optimal solution for the pol-
icy improvement objective as the ideal target policy. How-
ever, such a closed-form optimal solution of an arbitrary
objective function does not always exist. A case in point
is the loss function of PPO-Clip. From this view, EMDA,
which enjoys closed-form updates, substantially facilitates
the convergence analysis, as can be observed in Proposi-
tion 1 presented in the subsequent subsection 5.2.

5.2 Neural PPO-Clip
Parameterization Setting. At each iteration t, we param-
eterize our policy as an energy-based policy πθt(a|s) ∝
exp{τ−1

t fθt(s, a)}, where τt denotes the temperature pa-
rameter and fθt(s, a) = NN(θt;mf ) corresponds to the
energy functions. The width of the neural network fθ is
denoted as mf , as defined in Section 2. Likewise, we pa-
rameterize our state-action value function as Qω(s, a) =
NN(ω;mQ), with widthmQ of the neural networkQω . Con-
currently, we define Vω(s) as the value function derived
from the Bellman Expectation Equation. Also, we define
Aω(s, a) := Qω(s, a)−Vω(s) to be the advantage function.
Policy Improvement. According to the EMDA-based Pol-
icy Search framework presented above, we first give the
closed-form of the obtained target policy of Neural PPO-
Clip as follows. The detailed proof is in Appendix B.
Proposition 1 (EMDA Target Policy). For the target policy
obtained by the EMDA subroutine at the t-th iteration, we
have

log π̂t+1(a|s) ∝ Ct(s, a)Aωt
(s, a) + τ−1

t fθt(s, a), (9)
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where Ct(s, a)Aωt
(s, a) = −

∑K−1
k=0 ηg

(k)
s,a as given in Al-

gorithm 2.

Recall that the target policy π̂ is the direct parameteri-
zation in the policy space, but our policy πθ is an energy-
based (softmax) policy that is proportional to the exponen-
tiated energy function. This explains why we consider the
log π̂t+1(a|s) in Proposition 1. Another benefit of using
EMDA is that it closely matches the energy-based policies
considered in Neural PPO-Clip due to the inherent exponen-
tiated gradient update.

Then, we discuss the details of the neural function ap-
proximation of our policy. After obtaining the target policy
by Proposition 1, we solve the Mean Squared Error (MSE)
subproblem with respect to θ to approximate the target pol-
icy as follows:

Eσ̃t
[(fθ(s, a)− τt+1(Ct(s, a)Aωt

(s, a) + τ−1
t fθt(s, a)))

2].
(10)

Notice that we consider the state-action distribution σ̃t sam-
pling the action through a uniform policy π0. In this manner,
we use more exploratory data to improve our current policy.
In particular, we use the SGD to tackle the above subprob-
lem, and the pseudo code is provided in Appendix A.
Policy Evaluation. To evaluate Q, we use a neural network
to approximate the true state-action value function Qπθt by
solving the Mean Square Bellman Error (MSBE) subprob-
lem. The MSBE subproblem is to minimize the following
objective with respect to ω at each iteration t:

Eσt
[(Qω(s, a)− [T πθtQω](s, a))

2], (11)

where T πθt is the Bellman operator of policy πθt such that

[T πθtQω](s, a)

= E[r(s, a) + γQω(s
′, a′) | s′ ∼ P(·|s, a), a′ ∼ πθt(·|s′)].

(12)

The pseudo code of neural TD update for state-action value
function Qω is in Appendix A. It is worth mentioning that
this variant of Neural PPO-Clip is not a fully on-policy al-
gorithm. Although we interact with the environment by our
current policy, we sample the actions by the uniform policy
π0 for policy improvement. We provide the pseudo code of
Neural PPO-Clip as the following Algorithm 1 (please refer

Algorithm 1: Neural PPO-Clip
Input:LHinge(θ), T , ϵ, EMDA step size η, number of EMDA
iterations K, number of SGD, TD update iterations Tupd
Initialization: uniform policy πθ0

1: for t = 1, · · · , T − 1 do
2: Set temperature parameter τt+1

3: Sample the tuple {si, ai, a0i , s′i, a′i}
Tupd
i=1

4: Run EMDA as Algorithm 2 with LHinge(θ)
5: Run TD as Algorithm 5: Qωt

= NN(ωt;mQ)
6: Calculate Vωt

and the advantage Aωt
= Qωt

− Vωt

7: Run SGD as Algorithm 6: fθt+1
= NN(θt+1;mf )

8: Update the policy πθt+1
∝ exp{τ−1

t+1fθt+1
}

9: end for

Algorithm 2: EMDA
Input: LHinge(θ), EMDA step size η, number of EMDA it-
erations K, initial policy πθt , sample batch {si}

Tupd
i=1

Initialization: θ̃(0) = πθt , Ct(s, a) = 0, for all s, a
Output: π̂t+1 and Ct

1: for k = 0, · · · ,K − 1 do
2: for each state s in the batch do
3: Find g(k)s,a =

∂LHinge(θ)
∂θs,a

∣∣∣
θ=θ̃(k)

, for each a

4: Let ws = (e−ηgs,1 , . . . , e−ηgs,|A|)

5: θ̃(k+1) = 1
⟨ws,θ̃(k)⟩ (ws ◦ θ̃(k))

6: Ct(s, a)← Ct(s, a)− ηg(k)s,a/Aωt
(s, a), for

each a with Aωt
(s, a) ̸= 0

7: end for
8: end for
9: π̂t+1 = θ̃(K)

to Algorithm 3 in Appendix A for the complete version) and
the pseudo code of EMDA as Algorithm 2. The pseudo code
of Algorithms 5-6 used by Algorithm 1 is in Appendix A.

Regarding our analyses, we need assumptions about dis-
tribution density. Assumption 4 states that the distribu-
tion σπ is sufficiently regular, which is required to analyze
the neural network error. Additionally, the common theory
works (Antos, Szepesvári, and Munos 2007; Farahmand,
Szepesvári, and Munos 2010; Farahmand et al. 2016; Chen
and Jiang 2019; Liu et al. 2019) have the concentrability as-
sumption, we also have this common regularity condition.
Assumption 4 (Regularity of Stationary Distribution).
Given any state-action visitation distribution σπ , there exists
a universal upper bounding constant c > 0 for any weight
vector z ∈ Rd and ζ > 0, such that Eσπ [1{|z⊤(s, a)| ≤
ζ}|z] ≤ c · ζ/∥z∥2 holds almost surely.
Assumption 5 (Concentrability Coefficient and Ratio). De-
fine the density ratio between the policy-induced distribu-
tions and the policies,

ϕ∗t = Eσ̃t
[

∣∣∣∣dπ∗

dπ0
− dπθt
dπ0

∣∣∣∣2] 12 , ψ∗
t = Eσt

[

∣∣∣∣dσ∗

dσt
− dν∗

dνt

∣∣∣∣2] 12 ,
(13)

where the above fractions are the Radon–Nikodym Deriva-
tives. We assume that there exist 0 < ϕ∗, ψ∗ <∞ such that
ϕ∗t < ϕ∗ and ψ∗

t < ψ∗, for all t. Also, let C∞ < ∞ be the
concentrability coefficient. We assume that the density ratio
between the optimal state distribution and any state distribu-
tion, i.e. ∥ν∗/ν∥∞ < C∞ for any ν.

5.3 Convergence Guarantee of Neural PPO-Clip
In this subsection, we present the convergence analysis of
Neural PPO-Clip. Inspired by the analysis of (Liu et al.
2019), we analyze the convergence behavior of Neural PPO-
Clip based on the neural networks analysis technique. Nev-
ertheless, the analysis presents several unique technical chal-
lenges in establishing its convergence: (i) Tight coupling be-
tween function approximation error and the clipping behav-
ior: The clipping mechanism can be viewed as an indicator
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function. The function approximation for advantage would
significantly influence the value of the indicator function in
a highly complex manner. As a result, handling the error be-
tween the neural approximated advantage and the true ad-
vantage serves as one major challenge in the analysis (please
refer to the proof of Lemma 5 in Appendix C for more de-
tails); (ii) Lack of a closed-form expression of policy update:
Due to the clipping function in the hinge loss objective and
the iterative updates in the EMDA subroutine, the new pol-
icy does not have a simple closed-form expression. This is
one salient difference between the analysis of Neural PPO-
Clip and other neural algorithms (cf. (Liu et al. 2019)); (iii)
Neural networks analysis on advantage function: Another
technicality is that the advantage function requires the neu-
ral network projection and linearization properties to char-
acterize the approximation error. However, since we use the
neural network to approximate the state-action value func-
tion instead of the advantage function, it requires additional
effort to establish the error bound of the advantage function
(please refer to the proof of Lemma 3).

Given that we need to analyze the error between our ap-
proximation and the true function, we further define the
target policy under the true advantage function Aπθt as
πt+1(a|s) := C̄t(s, a)A

πθt (s, a) + τ−1
t fθt(s, a), where

C̄t(s, a) is the Ct(s, a) obtained under Aπθt . Moreover, all
the expectations about Aω throughout the analysis are with
respect to the randomness of the neural network initializa-
tion. Below we state the min-iterate convergence rate and
the sufficient condition of Neural PPO-Clip, which is also
the main theorem of our paper. Throughout this section, we
solely suppose Assumptions 1, 4, and 5 hold.

The central result of this paper is Theorem 2. In this the-
orem, LC(T ) and UC(T ) are functions influenced by T and
determined by C̄t, a classifier-specific attribute. For detailed
supporting lemmas and proofs, see Appendix C.
Theorem 2 (General Convergence Rate of Neural PPO–
Clip). Consider the Neural PPO-Clip with the classifier sat-
isfying the following conditions for all t,

(i) LC(T ) · |Aπ(s, a)| ≤ C̄t(s, a) · |Aπ(s, a)|
≤ UC(T ) · |Aπ(s, a)|,

(14)

(ii) LC(T ) = ω(T−1), UC(T ) =O(T−1/2). (15)

Then, the policy sequence {πθt}Tt=0 obtained by Neural
PPO-Clip satisfies

min
0≤t≤T

{L(π∗)− L(πθt)}

≤
log |A|+

∑T−1
t=0 (εt + ε′t) + TU2

C(2ψ
∗ +M)

TLC(1− γ)
, (16)

where εt = C∞τ
−1
t+1ϕ

∗ϵ
1/2
t+1 + Y 1/2ψ∗ϵ

′1/2
t , ε′t = |A| ·

C∞τ
−2
t+1ϵt+1, M = 4Eνt

[maxa(Qω0
(s, a))2] + 4R2

f , and
Y = 2M + 2(Rmax/(1− γ))2.

To demonstrate that our convergence analysis is general
for Neural PPO-Clip with various classifiers, we choose to
state Theorem 2 in a general form utilizing the condition

(14) and (15). Indeed, we show that (14) and (15) can be
naturally satisfied by using the standard PPO-Clip classifier
described in (7) in the following Corollary 1. Importantly,
these conditions are not technical assumptions for our theo-
rem. Notably, we also establish that PPO-Clip-sub (a variant
of generalized PPO-Clip utilizing a distinct classifier) aligns
with the result presented in Theorem 2. For a comprehensive
statement and analysis, please refer to Appendix D.

Corollary 1 (Global Convergence of Neural PPO-Clip,
Informal). Consider Neural PPO-Clip with the standard
PPO-Clip classifier ρs,a(θ) − 1 and the objective function
L(t)(θ) in each iteration t as

Eνt [⟨πθt(·|s),
|Aπθt (s, ·)| ◦ ℓ(sign(Aπθt (s, ·)), ρs,·(θ)− 1, ϵ)⟩]. (17)

(i) If we specify the EMDA step size η = T−α where
α ∈ [1/2, 1) and the temperature parameter τt = Tα/(Kt).
Recall that K is the number of EMDA iterations. Let the
neural networks’ widths be mf ,mQ, and the SGD and TD
updates Tupd be configured as in Appendix D, we have

min
0≤t≤T

{L(π∗)− L(πθt)}

≤ log |A|+K2(2ψ∗ +M) +O(1)

Tα(1− γ)
. (18)

Hence, Neural PPO-Clip hasO(T−α) convergence rate. (ii)
Furthermore, let the α = 1/2, we obtain the fastest conver-
gence rate, which is O(1/

√
T ).

Notably, the min-iterate convergence rates presented in
(16) and (18) are commonly observed in the realms of non-
convex optimization and neural network theory (Lacoste-
Julien 2016; Ghadimi and Lan 2016; Liu et al. 2019), and
they do not constitute stringent results. Furthermore, it is
worth pointing out that in (16), the terms εt and ε′t corre-
spond to the errors introduced by policy improvement and
policy evaluation, respectively. These errors can be con-
trolled by adjusting neural network widths and the number
of TD and SGD iterations Tupd, and they can be made arbi-
trarily small. Further details can be found in Appendix C.

Consequently, the convergence rate obtained by our anal-
ysis is determined by UC(T )

2/LC(T ). After a brief calcula-
tion, it becomes evident that under conditions (14) and (15),
the most optimal convergence rate achievable through (16)
isO(1/

√
T ). This scenario arises when LC(T ) = UC(T ) =

O(T−1/2). This insight underscores that within our analysis,
the original PPO-Clip stands as the algorithm that achieves
the most favorable bound.

5.4 Understanding the Clipping Mechanism
In this subsection, we delve into the more profound under-
standing of the clipping mechanism.
Rationale Behind the PPO-Clip Convergence. As out-
lined in Section 3, the clipping mechanism establishes a con-
nection to the hinge loss, consequently shaping the objective
as (8). Notably, in the context of the original PPO-Clip, we

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12605
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Figure 1: Evaluation of PPO-Clip with different classifiers and popular benchmark methods in MinAtar and OpenAI Gym.

specify the objective as follows:

1

|D|
∑

(s,a)∈D

|Aπ(s, a)| ℓ(sign(Aπ(s, a)), ρs,a(θ)− 1, ϵ).

(19)
We delve more deeply into this objective (19). It is im-

portant to note that if the signs of the advantages are incor-
rect, it can lead to significant errors in computing the objec-
tive value during learning. However, due to the impressive
empirical performance of neural networks in approximating
values, erroneous signs of advantages tend to occur mainly
when |Aπ(s, a)| is close to zero. Moreover, when |Aπ(s, a)|
is near zero, its contribution to the objective remains rel-
atively insignificant. Consequently, despite incorrect signs,
the objective value remains reasonably accurate. This per-
spective offers an explanation for the robustness and impres-
sive empirical performance of PPO-Clip. Additionally, this
notion supports the potential of PPO-Clip to achieve con-
vergence. Furthermore, this concept is essential to compre-
hend the novel proof technique introduced in Lemma 5. This
lemma forms the cornerstone for bounding the errors in pol-
icy improvement and evaluation. For more detailed insights,
please refer to Appendix C.
Characterization of the Clipping Mechanism. Our con-
vergence analysis reveals that clipping mechanisms solely
impact the pre-constant of convergence rates. Surprisingly,
our analysis and results show that the clipping range ϵ only
influences the pre-constant of the Neural PPO-Clip conver-
gence rate. This is unexpected since, intuitively, ϵ is con-
sidered analogous to the penalty parameter of PPO-KL (Liu
et al. 2019), which directly affects convergence rates. Con-
trary to expectations, we discover that the EMDA step size η
plays a crucial role in determining convergence rates, rather
than the clipping range ϵ. This result is illustrated by the in-
volvement of the clipping mechanism in the EMDA subrou-
tine through the indicator functions in the gradients. More-
over, as the clipping range ϵ is contained inside the indicator
function, it only influences the number of effective EMDA
updates but not the magnitude of each EMDA update. Since
we know that the convergence rate is determined by the mag-
nitude of the gradient updates (i.e., UC(T ), LC(T ), which is
η-dependent and η is T -dependent), the clipping range can
only affect the pre-constant of the convergence rate and the
rate would still beO(1/

√
T ). For a more comprehensive un-

derstanding, please refer to Appendices C and D.

6 Experiments
Experimental Setup. Given the convergence guarantees
in Section 5.3, to better understand the empirical behav-
ior of the generalized PPO-Clip objective, we further con-
duct experiments to evaluate Neural PPO-Clip with dif-
ferent classifiers. Specifically, we evaluate Neural PPO-
Clip, Neural PPO-Clip-sub (as introduced in Section 3), and
two additional classifiers, log(πθ(a|s))− log(πθt(a|s)) and√
ρs,a(θ) − 1(termed as Neural PPO-Clip-log and Neural

PPO-Clip-root), against benchmark approaches in several
RL benchmark environments. Our implementations of Neu-
ral PPO-Clip are based on the RL Baseline3 Zoo frame-
work (Raffin 2020). We test the algorithms in both MinAtar
(Young and Tian 2019) and OpenAI Gym environments
(Brockman et al. 2016). In addition, the algorithms are com-
pared with popular baselines, including A2C and Rainbow.
A2C follows the implementation and default settings from
RL Baseline3 Zoo. For Rainbow, we adopt the configuration
from (Ceron and Castro 2021). Please refer to Appendix G
for more details about our experiment settings.
Variants of Neural PPO-Clip Achieves Comparable Em-
pirical Performance. Figure 1 shows the training curves of
Neural PPO-Clip with various classifiers and the benchmark
methods. Notably, we observe that Neural PPO-Clip with
various classifiers can achieve comparable or better perfor-
mance than the baseline methods in both RL environments.
To be mentioned, the performance of Rainbow is consis-
tent with the results reported by (Ceron and Castro 2021).
In summary, the outcomes depicted above underscore the
practicality of the hinge loss reinterpretation of PPO-Clip
within standard RL tasks. Furthermore, this approach posi-
tions classifier selection as a potential hyperparameter for
the future deployment of PPO-Clip.

7 Concluding Remarks
The convergence behavior of PPO-Clip, a longstanding open
problem, is addressed in this paper, providing the first con-
vergence result and deeper insights. Our limitations are (i)
analysis under discrete action space and (ii) reliance on NN
error analysis, typically requiring large NN width. Despite
the empirical success of PPO-Clip without this, our two-
layer NN exploration suggests our results hold if approx-
imation errors are well-managed. We anticipate this work
will spark a deeper understanding of PPO-Clip within the
RL community.
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