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Abstract

Bayesian optimization (BO) is a sample-efficient method and
has been widely used for optimizing expensive black-box
functions. Recently, there has been a considerable interest in
BO literature in optimizing functions that are affected by con-
text variable in the environment, which is uncontrollable by
decision makers. In this paper, we focus on the optimization
of functions’ expectations over continuous context variable,
subject to an unknown distribution. To address this problem,
we propose two algorithms that employ kernel density esti-
mation to learn the probability density function (PDF) of con-
tinuous context variable online. The first algorithm is simpler,
which directly optimizes the expectation under the estimated
PDF. Considering that the estimated PDF may have high es-
timation error when the true distribution is complicated, we
further propose the second algorithm that optimizes the dis-
tributionally robust objective. Theoretical results demonstrate
that both algorithms have sub-linear Bayesian cumulative re-
gret on the expectation objective. Furthermore, we conduct
numerical experiments to empirically demonstrate the effec-
tiveness of our algorithms.

1 Introduction
Bayesian optimization (BO) (Shahriari et al. 2015; Frazier
2018) is a popular and sample-efficient method for optimiz-
ing expensive black-box functions. BO has shown excel-
lent performance in various fields, such as chemical molec-
ular design (Gómez-Bombarelli et al. 2018; Griffiths and
Hernández-Lobato 2020), neural architecture search (Klein
et al. 2017; Kandasamy et al. 2018b; Song et al. 2022), and
hyper-parameter tuning (Chen et al. 2018; Qian, Xiong, and
Xue 2020). The typical process of BO involves approximat-
ing the objective function by a Gaussian process (GP) sur-
rogate model (Rasmussen and Williams 2006), and then se-
lecting the most valuable point for evaluation by optimizing
an acquisition function based on the posterior of the surro-
gate model.

In some practical scenarios, uncontrollable context vari-
able from the environment can impact the objective function,
such as customer demand in inventory management (Dai,
Chen, and Birge 2000; Hannah, Powell, and Blei 2010),
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bid-ask spread and borrowing cost in portfolio optimiza-
tion (Boyd et al. 2017; Cakmak et al. 2020), and tempera-
ture in crop size optimization (Tay et al. 2022). There has
been some BO literature taking context variable into ac-
count with different objectives. Robust optimization aims
to find solutions that perform well in the worst-case sce-
nario (Marzat, Walter, and Piet-Lahanier 2013; Bogunovic
et al. 2018), while stochastic optimization (SO) focuses on
finding solutions that perform well in expectation (Williams
2000; Xie et al. 2012; Beland and Nair 2019; Kirschner
and Krause 2019; Toscano-Palmerin and Frazier 2022).
Risk optimization considers risk measures such as mean-
variance (Iwazaki, Inatsu, and Takeuchi 2021), value at risk
(VaR) (Cakmak et al. 2020; Nguyen et al. 2021) or condi-
tional VaR (Cakmak et al. 2020). However, robust optimiza-
tion ignores the distribution information of the context, and
most existing works on SO and risk optimization assume
that the distribution of context is known.

Distributionally robust BO (DRBO) (Kirschner et al.
2020; Nguyen et al. 2020; Inatsu et al. 2022; Tay et al. 2022)
is proposed to address problems with unknown context dis-
tribution by optimizing the worst expectation over a set of
distributions. Existing DRBO works focus on finite context.
When the context variable is in a continuous space, which
is common (e.g., temperature in crop size optimization, and
energy output in wind power prediction (Tay et al. 2022))
in practice, they usually discretize the space. However, the
computational complexity of the inner convex optimization
in DRBO is at least cubed to the size |C| of context space
C (Tay et al. 2022). Smaller |C| leads to poor approxima-
tion to the expectation over the continuous space, thus poor
performance, while larger |C| leads to unacceptable com-
putational complexity. While Tay et al. (2022) have devel-
oped a method based on fast worst case sensitivity to ef-
ficiently approximate and accelerate the inner optimization
problem, it suffers from linear regret due to approximation
errors. Nguyen et al. (2020) used Lagrange multipliers to
accelerate the optimization, but it is limited to the simulator
setting, where the decision makers can select the context.

In this paper, we consider the problem of maximizing the
SO objective maxx Ec∼p(c)[f(x, c)] over the decision vari-
able x ∈ X , where f is a black-box function, and the dis-
tribution p of context variable c ∈ C is continuous and un-
known. The context is observable after making decisions.
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To avoid the drawbacks of discretization, we propose two
algorithms to directly address this problem. The first algo-
rithm employs kernel density estimation (KDE) to estimate
the unknown context distribution and maximizes the ob-
jective function f ’s expectation under the estimated PDF,
which is simple and time-efficient. Considering that the esti-
mated PDF may have high estimation error when the true
distribution is complicated, we propose the second algo-
rithm, which also uses KDE for PDF estimation but max-
imizes a distributionally robust objective function, i.e., op-
timizes the worst-case expectation across a set of distribu-
tions around the estimated one. We provide theoretical anal-
yses for both algorithms, proving that they have sub-linear
Bayesian cumulative regret on the SO objective. The exper-
iments on synthetic functions and two real-world optimiza-
tion tasks (i.e., newsvendor problem and portfolio optimiza-
tion) demonstrate that our proposed algorithms achieve bet-
ter performance.

2 Background
2.1 Bayesian Optimization
BO is a popular algorithm for black-box optimization,
which consists of two main components: a surrogate model
and an acquisition function. GP (Rasmussen and Williams
2006) is the most commonly used surrogate model. The
function f is assumed to be a sample path from a GP,
denoted as GP(0, k(·, ·)), where 0 is the prior mean
and k(·, ·) is a kernel function. Given observed data set
Dt−1 = {(xi, ci, yi)}t−1

i=1 , where yi = f(xi, ci) + ϵi is
the noisy observation and ϵi ∼ N (0, σ2), we can calcu-
late the posterior distribution of the function f | Dt−1 ∼
GP(µt(x, c), kt((x, c), (x

′, c′))), where the posterior mean
µt(x, c) = kt−1(x, c)

⊤(Kt−1 + σ2I)−1yt−1, and poste-
rior covariance kt((x, c), (x

′, c′)) = k((x, c), (x′, c′)) −
kt−1(x, c)

⊤(Kt−1+σ2I)−1kt−1(x
′, c′). Here, kt−1(x, c)

= [k ((xi, ci), (x, c))]
⊤
i=1,...,t−1, Kt−1 ∈ R(t−1)×(t−1) is

the positive semi-definite kernel matrix with [Kt−1]ij =
k ((xi, ci), (xj , cj)), and yt−1 = [y1, . . . , yt−1]

⊤.
Based on the posterior distribution obtained from GP,

various acquisition functions can be used to determine
the next query point, e.g., Probability of Improvement
(PI) (Kushner 1964), Expected Improvement (EI) (Jones,
Schonlau, and Welch 1998) and Upper Confidence Bound
(UCB) (Srinivas et al. 2012). In this work, we use the
UCB acquisition function for both our algorithms, defined as
ucbt(x, c) = µt(x, c) +

√
βtσt(x, c), where βt is a hyper-

parameter to balance the exploitation and exploration. We
use σ2

t (x, c) = kt((x, c), (x, c)) to represent the posterior
variance at (x, c). Note that under deterministic environ-
ments, the context variable c ∈ C can be neglected.

2.2 Stochastic Bayesian Optimization
In real-world problems, the objective function may be af-
fected by context variable, which is uncontrollable by the
decision makers. The problem can be formalized as a black-
box function f(x, c) over a convex and compact domain
X × C ⊂ RDx × RDc , where X is a Dx-dimensional

decision space controlled by decision makers, and C is a
Dc-dimensional context space controlled by environment.
In this paper, we consider the setting that C is continuous.
At iteration t, a decision xt is made, followed by the ob-
servation of a context ct ∼ p(c) provided by the environ-
ment and observed by the decision maker. Note that the con-
text distribution p(c) is unknown here. Next, we observe the
noisy evaluation yt = f(xt, ct) + ϵt, where ϵt ∼ N (0, σ2).
We consider the SO setting aiming to identify the optimum
x∗ ∈ argmaxx∈X Ec∼p(c)[f(x, c)]. Given the evaluation
budget T , the goal is to minimize the cumulative regret of
SO objective, i.e.,

RT :=
T∑

t=1

(
Ec∼p(c)[f(x

∗, c)]− Ec∼p(c)[f(xt, c)]
)
. (1)

There has been plentiful research considering context
variable in the BO literature. For instance, Krause and
Ong (2011) considered the case that the context ct is given
before decision. When the context cannot be known before-
hand, numerous approaches have been proposed with differ-
ent optimization objectives.

Robust optimization considers a worst-case objective,
formulated as maxx minc∈C f(x, c), and has been studied
in (Marzat, Walter, and Piet-Lahanier 2013; Bogunovic et al.
2018). However, robust optimization is too pessimistic, ig-
noring the distribution information of context.

Stochastic optimization (SO) considers an average-case
optimization, i.e., maxx Ec∼p(c)[f(x, c)]. A special case
of SO is optimizing the expectation under input pertur-
bation maxx Ec∼p(c) [f(x ⋄ c)], where ⋄ denotes the per-
turbation of the input x by c, which has been discussed
in (Nogueira et al. 2016; Beland and Nair 2019; Oliveira,
Ott, and Ramos 2019; Fröhlich et al. 2020). The general case
of SO has also been studied using different acquisition func-
tions in (Williams 2000; Xie et al. 2012; Beland and Nair
2019; Kirschner and Krause 2019; Toscano-Palmerin and
Frazier 2022), which, however, assume that the distribution
of context is known.

Risk optimization uses risk measures, such as mean-
variance (Iwazaki, Inatsu, and Takeuchi 2021), value at risk
(VaR) (Cakmak et al. 2020; Nguyen et al. 2021) and con-
ditional VaR (Cakmak et al. 2020), as the objectives when
dealing with contextual uncertainty. For example, Cakmak
et al. (2020) and Nguyen et al. (2021) studied VaRδ(x) :=
sup{s : P(f(x, c) ≥ s) ≥ 1 − δ}, which measures the risk
under a specified level of confidence 1− δ.

Distributionally robust optimization (DRO). The above
methods usually ignore the context distribution or assume
the distribution of the context variable is known. When
the distribution is unknown, the DRO objective can be
adopted, considering the worst-case expectation over a
set of distributions. The DRO objective is formulated as
maxx minq∈Q Ec∼q(c)[f(x, c)], where Q is a given dis-
tribution set on the context space C. Different approaches
have been proposed to optimize the DRO objective. For in-
stance, Nguyen et al. (2020) considered the simulator set-
ting where the decision makers can select the context c,
while Inatsu et al. (2022) considered DRO under chance
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constraints. Kirschner et al. (2020) used maximum mean
discrepancy (MMD) to construct the distribution set Q given
a reference distribution. However, they only considered the
case where the context space is discrete with a size of |C|,
and the inner optimization is a |C|-dimensional optimization
problem, which can be computationally expensive when the
size |C| is large. Tay et al. (2022) proposed using worst-case
sensitivity for approximation and acceleration of the inner
optimization. However, the approximation error can lead to
a decrease in the performance, and the regret bound they de-
rived is linear even when the distribution distance ϵt = 0 in
Theorem 4 in (Tay et al. 2022). Continuous DRO has been
discussed in (Husain, Nguyen, and Hengel 2022), but the al-
gorithms they proposed only hold under certain conditions,
which will be discussed in Section 3.

In this paper, we consider the SO objective and assume
that the distribution of context variable is continuous and
unknown. The setting is similar to the data-driven setting
in (Kirschner et al. 2020), which, however, used a discrete
context space. A similar setting has also been discussed
in bandit problems (Lamprier, Gisselbrecht, and Gallinari
2018), where the context distributions for each arm are un-
known and estimated online.

2.3 Kernel Density Estimation
Kernel density estimation (KDE) (Silverman 1986; Scott
2015; Chen 2017) is a non-parametric method used for esti-
mating the probability density function (PDF) of a random
variable, and is widely used in machine learning commu-
nities due to its flexibility (Elgammal et al. 2002; Pérez,
Larrañaga, and Inza 2009). The basic idea of KDE is to es-
timate the PDF by aggregating the density assigned around
each sample. Given the i.i.d. samples {ci}ti=1 drawn from
p(c), the estimated distribution p̂(c) of p(c) is calculated as

p̂(c) =
∑t

i=1
K

(
H−1

t (c− ci)
)
/(t|Ht|), (2)

where Ht = diag([h(1)
t , h

(2)
t , . . . , h

(Dc)
t ]) is a diagonal pos-

itive definite bandwidth matrix, |Ht| and H−1
t denote the

determinant and inverse of Ht, respectively, and K(·) is
a kernel function satisfying K(c) = K(−c), ∀c ∈ C,∫
C cc

TK(c) dc = m2(K)IDc
for some constant m2(K) >

0, and
∫
C K(c) dc = 1.

Besides flexibility, KDE has good theoretical convergence
properties for different error functions, e.g., uniform er-
ror (Jiang 2017), ℓ1 error (Deroye and Gyorfi 1985) and
mean integrated square error (MISE) (Wand and Jones
1994; Chen 2017). In this work, we primarily focus on
MISE, which is one of the most well-known error mea-
surements. Lemma 1 gives an upper bound on the MISE.
It can be shown that by choosing h

(i)
t ∀i to be of or-

der Θ
(
t−1/(4+Dc)

)
, the MISE can be upper bounded by

O
(
t−4/(Dc+4)

)
(Wand and Jones 1994), which will play a

crucial role in deriving the regret bound for our algorithms
in Section 3.

Lemma 1 (Wand and Jones, 1994). Suppose K(·) is a
bounded kernel for KDE, and p(c) is a twice-differentiable

PDF over C. Let J =
∫
C(p(c)− p̂(c))2 dc with p̂ defined as

Eq. (2). Then the MISE E[J ] has an order of

O
(

1

t|Ht|
R(K) +

1

4
m2(K)2(vecT(H2

t ))Ψ4(vec(H2
t ))

)
,

where R(K) =
∫
C K(c)2 dc, vec(·) is the vector opera-

tor that vectorizes a matrix into a column vector, Ψ4 =∫
C(vec(∇2 p(c)))(vecT(∇2 p(c))) dc is a D2

c ×D2
c matrix

of integrated second order partial derivatives of the PDF p,
and the expectation E[J ] is taken over the randomness of
samples {ci}ti=1 from p(c).

3 Stochastic Bayesian Optimization
with Kernel Density Estimation

We propose two algorithms to optimize the SO objective
with unknown continuous context PDF. The main idea is to
estimate the PDF of the context online using KDE. The only
difference lies in the design and optimization of their acqui-
sition functions. The first algorithm, SBO-KDE, is directly
based on an acquisition function of SO objective, which
takes the expectation under the PDF estimated by KDE.
The second one, DRBO-KDE, is based on a distributionally
robust acquisition function, which accounts for distribution
discrepancy between the true and estimated PDF, by taking
the worst-case expected value in the distribution set centered
around the estimated PDF.

3.1 SBO-KDE
SBO-KDE optimizes the SO objective Ec∼p̂t(c)[f(x, c)] di-
rectly by using the estimated distribution p̂t by KDE. The
key component of the algorithm is the acquisition function
αt(x) = Ec∼p̂t(c)[ucbt(x, c)], which can be interpreted as
the expectation of the UCB acquisition function under the
estimated distribution p̂t. The algorithm procedure is de-
scribed in Algorithm 1. In line 1, the initial data set Dn0

=
{(xi, ci, yi)}n0

i=1 is sampled using Sobol sequence (Owen
2003), where n0 is the number of initial points. The opti-
mization procedure is shown in lines 2–8. At iteration t, with
the observed context Ct−1 = {ci}t−1

i=1 , we estimate the un-
known context distribution p(c) using KDE in line 3, and
the estimated distribution is denoted as p̂t(c). Then we fit
a GP model based on the current data set Dt−1 in line 4.
With the estimated PDF and the posterior information, we
optimize the acquisition function using sample average ap-
proximation (SAA) to get the next query point xt in line 5.
SAA uses the average of sample values to estimate the value
of acquisition function αt(x). When evaluating xt, the con-
text ct provided by the environment and the noisy function
value yt is observed in line 6. The data set is then augmented
with the new triple (xt, ct, yt) in line 7. The whole process
is repeated for T − n0 iterations.

To optimize the acquisition function αt(x), any technique
from traditional SO can be employed. In this work, we adopt
the SAA method (Homem-de Mello 2008; Kim, Pasupathy,
and Henderson 2015), which optimizes the average func-
tion value of Monte Carlo samples. Specifically, we draw M
samples {ĉi}Mi=1 from p̂t(c) and estimate the value of acqui-
sition function as α̂M

t (x) = 1
M

∑M
i=1 ucbt(x, ĉi). We then
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Algorithm 1: SBO-KDE
Parameters: number n0 of initial points, budget T
Process:

1: Obtain the initial data set Dn0
= {(xi, ci, yi)}n0

i=1 and
context Cn0

= {ci}n0
i=1 using Sobol sequence;

2: for t = n0 + 1 to T do
3: Use KDE to obtain p̂t based on Ct−1 = {ci}t−1

i=1;
4: Fit a GP model using Dt−1 = {(xi, ci, yi)}t−1

i=1;
5: Optimize xt = argmaxx∈XEc∼p̂t(c)[ucbt(x, c)] us-

ing SAA;
6: Evaluate xt, and then observe ct ∼ p(c) and yt =

f(xt, ct) + ϵt;
7: Dt = Dt−1 ∪ {(xt, ct, yt)}
8: end for

optimize xt = argmaxx∈X α̂M
t (x) using L-BFGS (No-

cedal 1980). SAA is a popular technique for optimizing ac-
quisition functions in BO (Balandat et al. 2020; Cakmak
et al. 2020), due to its exponential convergence property in
Proposition 1. The property can be derived based on the the-
oretical results from (Homem-de Mello 2008; Balandat et al.
2020), and the proof is provided in (Huang et al. 2023). The
exponential convergence rate of SAA enables us to obtain
good acquisition function optimization quality of αt(x).
Proposition 1. Suppose that (i) {ĉi}Mi=1 is i.i.d., and (ii)
f is a GP with continuously differentiable prior mean and
kernel function. Then, ∀δ > 0, there exist Q < ∞ and
η > 0 such that P(dist(x̂∗

M ,X ∗
t ) > δ) ≤ Qe−ηM for

all M ≥ 1, where dist(x̂∗
M ,X ∗

t ) = infx∈X∗
t
∥x − x̂∗

M∥2,
x̂∗
M ∈ argmaxx∈X α̂M

t (x) and X ∗
t = argmaxx∈X αt(x).

Although the acquisition function αt(x) uses an esti-
mated context distribution p̂t by KDE, we prove that the
algorithm SBO-KDE can still achieve a sub-linear bound
under the true distribution p, as shown in Theorem 1. The
sub-linear bound is on the commonly used Bayesian cumu-
lative regret (BCR) (Russo and Van Roy 2014; Kandasamy
et al. 2018a; Nguyen et al. 2020) in Definition 1, which is
actually the expectation of RT in Eq. (1).
Definition 1 (BCR). Let rt := Ec∼p[f(x

∗, c)] −
Ec∼p[f(xt, c)] denote the regret at iteration t, where
x∗ ∈ argmaxx∈X Ec∼p[f(x, c)] is the optimum. Then, the
Bayesian cumulative regret is defined as

BCR(T ) := E

[
T∑

t=1

rt

]
(3)

= E

[
T∑

t=1

(Ec∼p[f(x
∗, c)]− Ec∼p[f(xt, c)])

]
,

where the outer expectation is taken over the GP f , the ran-
domness of samples from p(c) and the observation noise ϵt.

As in (Srinivas et al. 2012), we assume that the input space
Z = X×C ⊂ [0, r]Dx+Dc = [0, r]D is convex and compact,
and f satisfies the following Lipschitz assumption.
Assumption 1. The function f is a GP sample path from
GP(0, k(·, ·)) with k(z, z′) ≤ 1, ∀z, z′ ∈ Z . Let [D] =

{1, 2, . . . , D}. For some a, b > 0, ∀L > 0, the partial
derivatives of f satisfy

∀i ∈ [D], P(supz∈Z | ∂f(z)/∂zi |> L) ≤ ae−(L/b)2 .

Theorem 1 provides an upper bound on BCR(T ) of
SBO-KDE. Ignoring the log factors from βT γT , compared
with the bound of stochastic BO (SBO) with O(T 1/2)
in (Kirschner and Krause 2019), our bound increases
to O(T (2+Dc)/(4+Dc)), which comes from the estima-
tion error of KDE under the unknown context distribu-
tion setting. However, the bound is still sub-linear, i.e.,
limT→∞ BCR(T )/T = 0.
Theorem 1. Let βt = 2 log(t2/

√
2π) +

2Dx log(t
2Dxabr

√
π/2). With the underlying PDF

p(c) satisfying the condition in Lemma 1, p̂t(c) defined as
Eq. (2) and h

(i)
t = Θ

(
t−1/(4+Dc)

)
∀i ∈ [Dc], the BCR of

SBO-KDE satisfies

BCR(T ) ≤π2

3
+

√
βT γTC2

(√
TDc/(4+Dc) +

√
T
)

+ 2C1T
2+Dc
4+Dc , (4)

where C1, C2 > 0 are constants, γT = max|D|=T I(yD,
fD), I(·, ·) is the information gain, and yD,fD are the noisy
and true observations of a data set D, respectively.

We present only a proof sketch here, and the detailed
proof can be found in (Huang et al. 2023). The proof
idea is to decompose the instantaneous regret rt into
the following three terms using the estimated PDF p̂t.
Specifically, rt = Ec∼p[f(x

∗, c)] − Ec∼p[f(xt, c)] =
(Ec∼p[f(x

∗, c)] − Ec∼p̂t
[f(x∗, c)]) + (Ec∼p̂t

[f(x∗, c)] −
Ec∼p̂t

[f(xt, c)])+(Ec∼p̂t
[f(xt, c)]−Ec∼p[f(xt, c)]). The

first and last terms can be upper bounded using the error
bound between the true distribution p and the estimated
distribution p̂t as given in Lemma 1. The second term
Ec∼p̂t [f(x

∗, c)] − Ec∼p̂t [f(xt, c)] is the UCB regret un-
der expectation over p̂t, which can be upper bounded us-
ing the similar idea as in (Kandasamy et al. 2018a). That is,
using the fact that xt = argmaxx∈X Ec∼p̂t

[ucbt(xt, c)],
we further decompose the second term as follows:
Ec∼p̂t

[f(x∗, c)] − Ec∼p̂t
[f(xt, c)] ≤ (Ec∼p̂t

[f(x∗, c)] −
Ec∼p̂t

[ucbt(x
∗, c)]) + (Ec∼p̂t

[ucbt(xt, c)] − Ec∼p̂t
[f(xt,

c)]), which can be upper bounded under the posterior infor-
mation of GP. By summing up the upper bound on rt from
t = 1 to T , the upper bound on BCR(T ), i.e., Eq. (4), can
be derived.

3.2 DRBO-KDE
Considering that the true PDF of context variable in prac-
tice may be complicated, leading to a non-negligible dis-
tribution discrepancy between the estimated PDF and the
true PDF, we further propose the second algorithm, DRBO-
KDE. The optimization objective is the worst-case expec-
tation minq∈B(p̂t,δt) Ec∼q[f(x, c)] within a distribution set
B(p̂t, δt) = {q : d(q, p̂t) ≤ δt}, where d(·, ·) is a distance
measure over the distribution space, and δt > 0 is the ra-
dius of the ball centered around p̂t. We choose the total vari-
ation metric (Tsybakov 2008) here, which is a type of ϕ-
divergence (Bayraksan and Love 2015). The total variation
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between two distributions Q and P , with PDFs dQ = q and
dP = p respectively, is defined as dTV (Q,P ) = d(q, p) =∫
C p(c)ϕ

(
q(c)
p(c)

)
dc with ϕ(x) = |x − 1| and Q ≪ P . The

total variation metric can be thought of as the ℓ1 distance
between two PDFs when Q ≪ P .

While DRBO with ϕ-divergence over continuous space
has been discussed in (Husain, Nguyen, and Hengel 2022),
the proposed algorithms under χ2-divergence and total vari-
ation hold only if the variance of the function value is suffi-
ciently high, which can be derived from the result of Theo-
rem 1 in (Namkoong and Duchi 2017). Therefore, we re-
develop an algorithm for DRBO over continuous context
space using total variation. Proposition 2 derives an equiva-
lent form of the DRO objective under total variation, which
transforms the inner convex minimization problem, which
has infinite dimensions, into a two-dimensional convex SO
problem. This transformation has been commonly utilized
in DRO literature (Bayraksan and Love 2015; Rahimian and
Mehrotra 2022). For the sake of completeness, we also pro-
vide a detailed derivation in (Huang et al. 2023).
Proposition 2 (DRO under Total Variation). Given a
bounded function f(x, c) over X × C, a radius δ > 0 and a
PDF p(c), we have

min
q∈B(p,δ)

Ec∼q(c) [f(x, c)] (5)

= max
(α,β)∈S(f)

Ec∼p(c) [−β − δα+min{f(x, c) + β, α}] ,

where B(p, δ) = {q : d(q, p) ≤ δ}, and S(f) := {(α, β) :
β ∈ R, α ≥ 0, α+ β ≥ − infc∈C f(x, c)}.

Based on Proposition 2, we propose DRBO-KDE as
presented in Algorithm 2. The only difference between
SBO-KDE and DRBO-KDE is the definition and opti-
mization of the acquisition function in line 5. For DRBO-
KDE, the acquisition function is defined as αt(x) =
minq∈B(p̂t,δt) Ec∼q(c) [ucbt(x, c)], which is the worst ex-
pectation of UCB in the distribution set B(p̂t, δt). By ap-
plying Proposition 2, we can equivalently transform the op-
timization into a two-dimensional SO problem: αt(x) =
max(α,β)∈S(ucbt) Ec∼p̂t(c)[−β − δtα + min{ucbt(x, c) +
β, α}]. We also use SAA to optimize the acquisition func-
tion, i.e., we sample the Monte Carlo samples {ĉi}Mi=1 from
p̂t(c) to find the next query point

xt = argmax
x∈X

max
(α,β)∈S(ucbt)

1

M

∑M

i=1
(−β − δtα

+min{ucbt(x, ĉi) + β, α}). (6)

This is a two-stage optimization, where the inner opti-
mization problem is a two-dimensional convex optimization
problem which can be solved efficiently, and the outer opti-
mization is solved by using L-BFGS (Nocedal 1980). Note
that S(ucbt) can be calculated by numerical optimization.

Theorem 2 gives an upper bound on BCR(T ) of DRBO-
KDE. Compared with the bound of SBO-KDE in Theo-
rem 1, the bound of DRBO-KDE is higher by the additional
terms related to δt. This is because in our proof, we used
the estimated distribution p̂t to establish the connection be-
tween the true distribution p and the distribution set B(p̂t, δt)

Algorithm 2: DRBO-KDE
Parameters: number n0 of initial points, evaluation budget
T , radius δt > 0
Process:

1: Obtain the initial data set Dn0
= {(xi, ci, yi)}n0

i=1 and
context Cn0

= {ci}n0
i=1 using Sobol sequence;

2: for t = n0 + 1 to T do
3: Use KDE to obtain p̂t based on Ct−1 = {ci}t−1

i=1;
4: Fit a GP model using Dt−1 = {(xi, ci, yi)}t−1

i=1;
5: Optimize xt = argmaxx∈X minq∈B(p̂t,δt) Ec∼q(c)

[ucbt(x, c)] using Eq. (5) and SAA;
6: Evaluate xt, and then observe ct ∼ p(c) and yt =

f(xt, ct) + ϵt;
7: Dt = Dt−1 ∪ {(xt, ct, yt)}
8: end for

around p̂t. If we could directly build the connection between
p and B(p̂t, δt), we might obtain a better bound, which is,
however, more challenging and is left for future work. Nev-
ertheless, by setting δt = O

(
t−2/(4+Dc)

)
, the bound of

DRBO-KDE can also be sub-linear with the same order of
O
(
T (2+Dc)/(4+Dc)

)
as SBO-KDE.

Theorem 2. Let βt = 2 log(t2/
√
2π) +

2Dx log(t
2Dxabr

√
π/2). With the underlying PDF

p(c) satisfying the condition in Lemma 1, p̂t(c) defined as
Eq. (2) and h

(i)
t = Θ

(
t−1/(4+Dc)

)
∀i ∈ [Dc], the BCR of

DRBO-KDE satisfies

BCR(T ) ≤π2

3
+

√
βT γTC2

(√
TDc/(4+Dc) +

√
T

+

√√√√C3

T∑
t=1

δ2t

)
+ 2C1T

2+Dc
4+Dc +

T∑
t=1

C4δt,

where C1, C2, C3, C4 > 0 are constants, γT =
max|D|=T I(yD,fD), I(·, ·) is the information gain, and
yD,fD are the noisy and true observations of a data set
D, respectively.

We also only present a proof sketch here, and the detailed
proof is provided in (Huang et al. 2023). The idea is sim-
ilar to that of Theorem 1 for SBO-KDE. Specifically, for
any function g, let qgx := argminq∈B(p̂t,δt) Ec∼q[g(x, c)].
Then, we decompose the instantaneous regret at iteration t as
rt = Ec∼p[f(x

∗, c)]−Ec∼p[f(xt, c)] = (Ec∼p[f(x
∗, c)]−

Ec∼p̂t
[f(x∗, c)])+(Ec∼p̂t

[f(x∗, c)]−Ec∼qf
x∗
[f(x∗, c)])+

(Ec∼qf
x∗
[f(x∗, c)]−Ec∼qfxt

[f(xt, c)])+(Ec∼qfxt
[f(xt, c)]

−Ec∼p̂t [f(xt, c)]) + (Ec∼p̂t [f(xt, c)] − Ec∼p[f(xt, c)]).
All terms, with the except of the third one, can be bounded
using the error bound between the estimated PDF p̂t and the
true distribution p or the radius δt of the distribution ball
B(p̂t, δt). The third term is the UCB regret, but under the
DRO objective at each iteration, which can be bounded us-
ing the posterior information of GP and the fact that qgx be-
longs to B(p̂t, δt) for any x and g.
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4 Experiments
In order to empirically evaluate the effectiveness of SBO-
KDE and DRBO-KDE, we conduct numerical experiments
on synthetic functions and two real-world problems, i.e., the
Newsvendor and portfolio problem. We use five identical
random seeds (100–104) for all problems and methods. The
code is available at https://github.com/lamda-bbo/sbokde.

4.1 Experimental Setting
We adopt the frequently-used cumulative regret (or reward)
in BO literature considering uncertainty (Kirschner et al.
2020; Tay et al. 2022) as performance evaluation metric. The
experimental setting of our algorithms and compared base-
lines are summarized as follows.

SBO-KDE. We choose the Gaussian kernel K(x) =

(2π)−Dc/2e−∥x∥2
2 for KDE. The bandwidth h

(i)
t =

(4/(Dc + 2))1/(4+Dc)σ̂
(i)
t t−1/(4+Dc) based on the rule of

thumb (Silverman 1986), where σ̂
(i)
t is the standard devia-

tion of the ith dimension of observed context.
DRBO-KDE. The radius of the distribution set is set as

δt = t−2/(4+Dc), which can guarantee a sub-linear regret as
we introduced in Section 3.2. The kernel and bandwidth for
KDE are the same as those used in SBO-KDE.

DRBO-MMD (Kirschner et al. 2020) discretizes the con-
tinuous context space C, and selects the next query point
xt = argmaxx∈X minQ∈B(P̂t,δt)

Ec∼Q[ucbt(x, c)] with
mean maximum discrepancy (MMD) as the distribution dis-
tance on the discretized context space C̃. The reference dis-
tribution P̂t is the empirical distribution in C̃, and we set
δt = (2+

√
2 log (1/γ))/

√
t with γ = 0.1, as suggested by

Lemma 3 in (Kirschner et al. 2020). Due to its high compu-
tational complexity of the inner convex optimization, we use
a small discretization size |C̃| = ⌈1001/Dc⌉Dc .

DRBO-MMD-MinimaxApprox (Tay et al. 2022) accel-
erates DRBO-MMD with minimax approximation. Thus, we
can use a larger discretization size |C̃| = ⌈10241/Dc⌉Dc .

StableOpt (Bogunovic et al. 2018) selects xt = arg
maxx∈X minc∈Ct

ucbt(x, c). There is no standard way to
choose Ct. Instead of setting Ct = C, which is overly conser-
vative and assumes worst-case scenario under the full con-
text space, we set each dimension of Ct to [µ

(i)
c −σ

(i)
c , µ

(i)
c +

σ
(i)
c ], where µ

(i)
c and σ

(i)
c are the mean and standard devia-

tion of the ith dimension of observed context, respectively.
GP-UCB (Srinivas et al. 2012) ignores the context vari-

able. That is, it builds GP only on the decision space X and
selects the next query point xt by maximizing the UCB ac-
quisition function.

Further detailed descriptions and hyper-parameters of
these algorithms are provided in (Huang et al. 2023).

4.2 Synthetic Functions
We conduct experiments on four commonly used synthetic
test functions (Surjanovic and Bingham 2013), in which we
follow the approach of setting some dimensions as context
variable from (Williams 2000; Cakmak et al. 2020). The
functions include the Ackley function with one dimension

set as a context variable following a normal distribution, the
Modified Branin function with two dimensions set as con-
text variable following a normal distribution, the Hartmann
function with one dimension set as a context variable follow-
ing a normal distribution, and the Complicated Hartmann
function whose context variable follows a more complicated
distribution (a mixture of six normal and two Cauchy distri-
butions). More details can be found in (Huang et al. 2023).
For the first three functions, we use the cumulative regret
in Eq. (1) as the metric,1 and we calculate the expecta-
tion Ec∼p(c)[f(x, c)] by averaging 221 quasi-Monte Carlo
(QMC) samples.2 For the last function, due to the complex-
ity of the context distribution, it is difficult to perform QMC
sampling, so we only report the observed cumulative reward,
that is

∑T
t=1 f(xt, ct).

The results are shown in Figure 1(a). We can observe that
the proposed algorithms, SBO-KDE and DRBO-KDE, out-
perform all the other baselines on the synthetic functions.
In the Ackley function, SBO-KDE performs slightly better
than DRBO-KDE, which is because DRBO-KDE is more
conservative. However, in the Complicated Hartmann func-
tion with a more complex context distribution, DRBO-KDE
performs better. This is because KDE may suffer from a
higher estimation error for complicated distributions, while
DRBO-KDE takes into account the discrepancy between the
estimated distribution and the true distribution, thus exhibit-
ing a more robust performance. To observe the higher es-
timation error between the KDE and the true context dis-
tribution under the complicated distribution, we report the
discrepancy measured by total variation between PDF esti-
mated by KDE and the true context distribution under the
two distributions on Hartmann function in (Huang et al.
2023). In the Modified Branin and original Hartmann func-
tions, the performance of SBO-KDE and DRBO-KDE is
very close. It is interesting to note that GP-UCB, which
does not consider context variable, has an acceptable per-
formance. This may be because GP-UCB can model the im-
pact of context variable on function evaluations as evaluation
noise. DRBO-MMD performs well in the Modified Branin
function but performs worse in the other functions, which is
related to the quality of the discretization space approxima-
tion. StableOpt performs poorly because the robust objec-
tive is too pessimistic. DRBO-MMD-MinimaxApprox also
has poor performance, which could be due to the minimax
approximation error being too large for these problems.

In addition to the performance of optimization, we also
provide the computational complexity comparison of the al-
gorithms in (Huang et al. 2023). Besides, although we use a
small dimension of context variable by following the exper-
iments in DRBO literature, where the dimension of context
variable tends to be relatively low (at most three) (Kirschner
et al. 2020; Tay et al. 2022), we conduct experiments on

1The optimal solution is approximately obtained by optimizing
the average of QMC samples using multi-restart L-BFGS.

2We set it arbitrarily. Using more QMC samples leads to more
accurate estimation. Due to limitations in computing resources, we
use 221 QMC samples, which, however, can guarantee the estima-
tion accurate enough.
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Figure 1: Mean and standard error of cumulative regret (the lower the better) or cumulative reward (the higher the better).

one more problem with four-dimensional context in (Huang
et al. 2023), to show the performance of algorithms on prob-
lems with higher dimensional context variable.

4.3 Real-World Problems
We further examine the effectiveness of our algorithms on
two real-world optimization tasks, including newsvendor
problem and portfolio optimization. Newsvendor problem is
a classic inventory management problem in stochastic op-
timization, where a seller pre-determines the inventory to
satisfy customer demand, and portfolio optimization is the
process of adjusting trading strategies to maximize the re-
turns on investment.

Newsvendor problem. The first real-world problem we
consider is a continuous newsvendor problem (Eckman et al.
2021), where a vendor purchases a certain amount of liquid
denoted by x, and sells to customers with a demand of c
units. The vendor incurs a cost of s0 per unit for the initial
inventory and sells the liquid to customers at a price of s1 per
unit. Any unsold liquid at the end of the day can be sold for a
salvage value of w per unit. The decision variable is the pur-
chase quantity x, and the context variable is the customer de-
mand c. The goal is to maximize the vendor’s profit, which is
defined as f(x, c) = s1 min{x, c}+wmax{0, x−c}−s0x.
We use the default setting of (Eckman et al. 2021), where
s0 = 5, s1 = 9, and w = 1. Additionally, the customer
demand c follows a Burr Type XII distribution with PDF
p(c;α, β) = αβ cα−1

(1+cα)β+1 , where α = 2 and β = 20.
Portfolio optimization. The second real-world problem

is portfolio optimization (Cakmak et al. 2020; Nguyen et al.
2021). The problem involves three-dimensional decision
variable (risk and trade aversion parameters, and holding
cost multiplier), and two-dimensional context variable (bid-
ask spread and borrowing cost). The objective function is the
posterior mean of a GP trained on 3, 000 samples, which are
generated by (Cakmak et al. 2020) from the CVXPortfolio
problem (Boyd et al. 2017). We define two tasks by setting

the distribution of the context variable as normal distribu-
tion or uniform distribution. For a more detailed description,
please refer to (Huang et al. 2023). We modify the problem
to the setting where the distribution is unknown and the con-
text can be observed after each evaluation.

The results are shown in Figure 1(b). Newsvendor prob-
lem uses 221 QMC samples for calculating the expecta-
tion, while portfolio optimization uses 216 QMC samples
because the evaluation is more time-consuming. SBO-KDE
and DRBO-KDE still outperform all the other baselines,
with SBO-KDE demonstrating better performance. Among
the methods that consider context variable in the newsvendor
problem, only SBO-KDE and DRBO-KDE outperform GP-
UCB. For portfolio optimization with a normal context dis-
tribution, DRBO-MMD is competitive with DRBO-KDE,
which is because the expectation under the discretized con-
text space has a good approximation over the continuous
context space.

5 Conclusion
In this paper, we consider the stochastic optimization prob-
lem with an unknown continuous context distribution, and
propose the two algorithms, SBO-KDE and DRBO-KDE.
The former directly optimizes the SO objective using the
estimated density from KDE. The latter optimizes the dis-
tributionally robust objective considering the discrepancy
between the true and estimated PDF, which is more suit-
able when the KDE approximation error might be high due
to the complexity of the true distribution. We prove sub-
linear Bayesian cumulative regret bounds for both algo-
rithms. Furthermore, we conduct numerical experiments on
synthetic functions and two real-world problems to empir-
ically demonstrate the effectiveness of the proposed algo-
rithms. One limitation of this work is that we assume that
the distribution of context variable remains static over time.
We will investigate scenarios where distributional shifts oc-
cur in our future work.
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