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Abstract
Open-World Compositional Zero-shot Learning (OW-CZSL)
aims to recognize novel compositions of state and object
primitives in images with no priors on the compositional
space, which induces a tremendously large output space
containing all possible state-object compositions. Existing
works either learn the joint compositional state-object em-
bedding or predict simple primitives with separate classi-
fiers. However, the former method heavily relies on external
word embedding methods, and the latter ignores the interac-
tions of interdependent primitives, respectively. In this paper,
we revisit the primitive prediction approach and propose a
novel method, termed Progressive Cross-primitive Compat-
ibility (ProCC), to mimic the human learning process for
OW-CZSL tasks. Specifically, the cross-primitive compati-
bility module explicitly learns to model the interactions of
state and object features with the trainable memory units,
which efficiently acquires cross-primitive visual attention to
reason high-feasibility compositions, without the aid of ex-
ternal knowledge. Moreover, to alleviate the invalid cross-
primitive interactions, especially for partial-supervision con-
ditions (pCZSL), we design a progressive training paradigm
to optimize the primitive classifiers conditioned on pre-
trained features in an easy-to-hard manner. Extensive experi-
ments on three widely used benchmark datasets demonstrate
that our method outperforms other representative methods on
both OW-CZSL and pCZSL settings by large margins.

Introduction
Humans can extrapolate new concepts from previously
learned knowledge. For instance, if the people are taught
what the fried chip and toasted bread are, most of them can
recognize the fried bread immediately. This ability is known
as compositional generalization (Atzmon et al. 2016), which
is one of the ultimate targets for artificial intelligence. In the
literature, such a task is formulated as Compositional Zero-
Shot Learning (CZSL). Concretely, the training set contains
images with corresponding descriptions (primitives), i.e.,
state and object. The model is expected to recognize un-
seen compositions based on known primitives, which is non-
trivial because object and state are semantically tangled, i.e.,
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objects in different states often have different appearances,
and states can vary greatly conditioned on different objects.
The major challenge behind the CZSL lies in how to model
the interactions between state and object primitives and ex-
trapolate seen compositions to unseen ones. Existing meth-
ods mainly focus on learning a shared embedding space for
object-state compositions (Li et al. 2020; Naeem et al. 2021;
Nagarajan and Grauman 2018; Khan et al. 2023) or compo-
sitional attribute and object classifiers (Purushwalkam et al.
2019; Misra, Gupta, and Hebert 2017; Li et al. 2022; Xu
et al. 2022; Yang et al. 2022).

However, the performances of these methods degrade to
some extent (Mancini et al. 2021, 2022) as for the open-
world setting (OW-CZSL), where there are no priors on
the unseen compositions, and the model must consider the
whole possible compositions in terms of all objects and
states. To deal with such a problem, existing mainstream
methods utilize feasibility constraints on the composition
embedding (Mancini et al. 2021, 2022) or independently
predict simple state and object primitives (Karthik, Mancini,
and Akata 2021, 2022). While (Mancini et al. 2021, 2022)
rely on different word embedding methods. The straight-
forward but effective Visual Product method like (Karthik,
Mancini, and Akata 2022) predicts the state and object prim-
itives while ignoring the compatibility between two prim-
itives. So external knowledge is introduced to eliminate
less feasible compositions, while it is cumbersome to select
proper external knowledge for varying datasets.

To address the aforementioned problems, we propose
Progressive Cross-primitive Compatibility (ProCC) network
to recognize compositions in the open-world setting and
a more realistic setting (i.e., partial supervision), aiming
at attaining cross-primitive compatibility during easy-hard
recognition progress, as shown in Figure 1. Specifically, fol-
lowing the route of the human learning process (Hochstein
and Ahissar 2002), we first learn to classify objects, which is
easier than recognizing states (Saini, Pham, and Shrivastava
2022; Karthik, Mancini, and Akata 2022) because the same
state varies greatly conditioned on objects and related con-
texts, i.e., ancient castle / ancient coin, and different states
are sometimes less feasible composed with the same object,
i.e., old dog / ripe dog. Then, with the learned knowledge

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12689



Figure 1: The overall concept of our method. Following the principle of ’forest before trees’ (Hochstein and Ahissar 2002),
human feedforward hierarchy underlies implicit processing for initial vision at a glance (i.e., green rectangle), and feedback
connections add details to explicit vision with scrutiny (i.e., red rectangle). As for composition generalization learning, humans
first ( I⃝) learn to recognize overall objects, then ( II⃝) gradually identify the scrutiny attribute of objects, i.e., state, and finally
( III⃝) reasonably compose the object and state primitives. Inspired by this, we aim to progressively recognize the object and state
primitives and guide the network to exploit discriminative information conditioned on learned knowledge via the CPC module.

of object primitive, we sequentially classify state primitives
conditioned on object features via Cross-Primitive Compat-
ibility (CPC) module, excavating discriminative informa-
tion. Finally, we finetune the whole network conditioned
on prior knowledge of two primitives. The ProCC achieves
cross-primitive compatibility by adjusting the visual atten-
tion to filter out less feasible compositions, without the aid
of external knowledge like Word2vec (Mikolov et al. 2013),
Glove (Pennington, Socher, and Manning 2014), Concept-
net (Speer, Chin, and Havasi 2017) etc. Also, the progres-
sive training paradigm effectively models the interactions of
primitives via conditioned features, especially for pCZSL,
where only partial label results in invalid interactions.

In summary, our contributions are four-fold:
1) We propose a novel Progressive Cross-primitive Com-

patibility (ProCC) network, mimicking the human learning
progress of recognizing the state and object compositions
without external knowledge.

2) We revisit Visual Product methods and present a Cross-
Primitive Compatibility (CPC) module to model the interac-
tions of classifiers to exploit the discriminative visual atten-
tion conditioned on each other, guiding the model to gener-
alize to feasible compositions.

3) The progressive training paradigm alleviates the invalid
cross-primitive interactions without the aid of cumbersome
external knowledge, especially for pCZSL.

4) Comprehensive experimental results on three large-
scale datasets for OW-CZSL and pCZSL tasks demonstrate
the effectiveness of our proposed approach, which outper-
forms the state-of-the-art methods1.

Related Work
Compositional Zero-shot Learning. Compositional Zero-
shot Learning (CZSL) aims to recognize the state and object
from the images, and even the state-object compositions are
not ever seen in the training datasets. Different from typi-
cal zero-shot learning (Xian et al. 2019; Huynh and Elham-
ifar 2020; Li et al. 2021), which aims to utilize attributed
vectors or inherent semantic descriptions to recognize un-
seen instances, The main challenge of CZSL is modeling

1Codes is in https://github.com/huofushuo/procc and appendix
is in https:// arxiv.org/abs/2211.12417

the relation and affordance of states and objects, generaliz-
ing this capability to unseen compositions. Existing meth-
ods mainly deal with CZSL in two ways. The first way is
inspired by Biederman’s Recognition-ByComponents the-
ory(Biederman 1987) and Hoffman’s part theory (Hoffman
and Richards 1984). For instance, Misra et al. (Misra, Gupta,
and Hebert 2017) learns a transformation between individual
classifiers of states and objects. Other representative meth-
ods learn a hierarchical decomposition and composition of
the state and object primitives (Yang et al. 2020; Hao, Han,
and Wong 2023; Hu and Wang 2023), model objects to be
symmetric under attribute transformations (Li et al. 2020),
and learn independent prototypical representations of visual
primitives then propagated prototype via a compositional
graph (Ruis, Burghouts, and Bucur 2021). The second way
tries to learn the joint representation of the state-object com-
positions from given images. Specially, SymNet (Li et al.
2020) enforces symmetries in the representation of objects
given their state transformations. Graph network is also em-
ployed in (Naeem et al. 2021) to enforce the compositional
information transfer from seen to unseen compositions. AoP
(Nagarajan and Grauman 2018) regards attribute as the oper-
ator and models each state as a linear transformation of ob-
jects. CANet (Wang et al. 2023) learns conditional attributes
to enhance embedding space. LAP (Khan et al. 2023) ex-
ploits the self-attention mechanism to embed related compo-
sitions closer and unrelated far away. Differently, causality-
based methods (Atzmon et al. 2020; Yang et al. 2022) ex-
plore decomposable objects and state representations.
Open-world Compositional Zero-shot Learning. Above
methods perform well on the close-world CZSL, while suf-
fering from severe degradation for the open-world setting
(Mancini et al. 2021, 2022; Karthik, Mancini, and Akata
2022), where the output space has not imposed any limit.
Mancini et al, (Mancini et al. 2021) compute feasibility
scores (i.e., cosine similarity) between visual features and
compositional embeddings to reduce the output space. Then
they further inject the feasibility scores both at the loss level
and within the graph connections (Mancini et al. 2022).
(Karthik, Mancini, and Akata 2022) follows the Visual Prod-
uct (Misra, Gupta, and Hebert 2017) and predicts state and
object primitives independently with non-linear feature ex-
tractors. To refine the relation between independent prim-
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itives, Conceptnet (Speer, Chin, and Havasi 2017) is intro-
duced as the external knowledge. We revisit the Visual Prod-
uct and achieve cross-primitive compatibility in an easy-
hard learning manner, avoiding the external knowledge in
(Karthik, Mancini, and Akata 2022) and cumbersome word
embeddings in (Mancini et al. 2021, 2022).

Approach
Problem Formulation
Compositional Zero-Shot Learning (CZSL) aims to rec-
ognize the composition of two primitives, i.e., an state
(e.g., tiny) and an object (e.g., dog). Given S and O as
two sets of states and objects, spanning all classes, we com-
pose a set of possible state-object pairs, i.e., C = S ×
O = {(s, o) |s ∈ S, o ∈ O}. Formally, given a training set
Ds = {(i, c)|i ∈ Is, c ∈ Cs}, where Is is an training im-
age set, and Cs is the corresponding state-object labels. The
close world CZSL follows the generalized ZSL (Xian et al.
2019) that the test sample comes from either seen (Cs) or
unseen (Cu) composition (Cs ∪ Cu). For the Open-World
CZSL (OW-CZSL) setting (Mancini et al. 2021), there as-
sumes no prior on the set of testing compositions. It means
the model must consider the full compositional space (C),
which is much larger than Cs ∪ Cu. Consequently, the un-
seen compositions are Cu

ow = C\Cs. OW-CZSL introduces
a more practical setting while bringing more challenging
problems: 1) It is hard to generalize from small seen com-
positions to large unseen compositions. 2) There are a large
number of less feasible compositions in the full composi-
tion space (C), confusing the prediction models. Recently,
(Karthik, Mancini, and Akata 2022) proposes a new practi-
cal setting, i.e., only training with one of the state and object
annotations, named partial-supervision CZSL (pCZSL).
Formally, for the training set Cs, The relation of the par-
tial label of state and object primitives can be formulated as:
{(s, u)}∪{(u, o)} = Cs, where u indicates unlabeled prim-
itives. Consequently, the test set in pCZSL has the full output
composition space (C) like OW-CZSL, while the training set
in pCZSL does not have the composition knowledge about
any state-object pairs. Therefore, the joint training strategy
may fail due to lacking the explicit supervision to learn how
states interact with objects and vice-versa.

Progressive Cross-primitive Compatibility (ProCC)
Most CZSL methods (Atzmon et al. 2020; Li et al. 2020;
Nagarajan and Grauman 2018; Purushwalkam et al. 2019;
Saini, Pham, and Shrivastava 2022; Mancini et al. 2021,
2022; Naeem et al. 2021) explicitly modulate the interac-
tions of states and objects to improve the generalization abil-
ity. However, it is less effective for OW-CZSL and pCZSL
due to large output space and missing labels. Some meth-
ods (Karthik, Mancini, and Akata 2021, 2022) follow the
Visual Product (Misra, Gupta, and Hebert 2017) that inde-
pendently predict the state and object primitives, disregard-
ing compositional nature. Following the route of (Karthik,
Mancini, and Akata 2021, 2022; Misra, Gupta, and Hebert
2017), we propose Progressive Cross-primitive Compatibil-
ity (ProCC) network while achieving cross-primitive com-

patibility. Also, like the human learning process (Hochstein
and Ahissar 2002), ProCC trains the network in an easy-
hard manner, which dynamically models interactions be-
tween state and object primitives, alleviating the negative
influence of no explicit supervision on both states and ob-
jects in pCZSL. Figure 2 shows the framework of the pro-
posed approach. In the following subsections, we revisit the
Visual Product and introduce a cross-primitive compatibility
module and progressive learning strategy.
Revisit Visual Product. Generally, given an image i, CZSL
wants to model the joint probability distribution p(si, oi|i).
The visual product simplifies this as follows:

p(si, oi|i) ≈ p(si|i)× p(oi|i) (1)

In this way, Visual Product treats the states and objects in-
dependently only from the visual cues, without side infor-
mation (i.e., word embeddings). Concretely, input image i is
firstly encoded to obtain the feature z as: z = ω(i). Then
the object (i.e., φo ⟨z, o⟩) and state (i.e., φs ⟨z, s⟩) classi-
fiers assign z to the vectors in the probability simplex o
and s, spanning all object and state classes. Visual Prod-
uct minimizes the cross-entropy loss of seen compositions
(Ds = {Is, Cs}) for both object and state predictions:

ℓvp = ℓobj(i, oi) + ℓstate(i, si) (2)

ℓobj = min
φo

∑
ℓce(φo ⟨ω(i), o⟩ , oi) (3)

ℓstate = min
φs

∑
ℓce(φs ⟨ω(i), s⟩ , si) (4)

where (i, (si, oi)) ∈ Ds. Thus, the prediction function is:

f(i) = arg max
(s,o)∈C

φs ⟨ω(i), s⟩ × φo ⟨ω(i), o⟩ (5)

where C represents the full state-object composition pairs
in OW-CZSL. As the search space is huge, Visual Prod-
uct is more effective than previous methods, which aim
to produce discriminative state-object embeddings (Karthik,
Mancini, and Akata 2021, 2022). Recently, (Karthik,
Mancini, and Akata 2021, 2022) expanded the visual prod-
uct and equipped the classifiers with multi-layer perceptrons
(MLP) to excavate discriminative features. Also, external
knowledge (Speer, Chin, and Havasi 2017) is employed in
(Karthik, Mancini, and Akata 2022) to estimate the feasi-
bility scores of compositions. Here, we explicitly model the
composition interactions via Cross-Primitive Compatibility
(CPC) module during the training procedure, without ex-
ternal knowledge. Also, considering the pCZSL setting and
better modulating the primitive compatibility, the progres-
sive learning strategy, following the human learning pro-
cess (Hochstein and Ahissar 2002), is proposed to facilitate
cross-primitive compatibility in an easy-hard manner.
Cross-primitive Compatibility Module. Visual Product
methods independently predict compositions via Equation
1, which ignores the fact that the feasibility of state-object
compositions is heavily conditioned on each other. A more
practical compositional probability can be modeled as:

p(si, oi|i) ≈ p(si|i, fo(i)))× p(oi|i, fs(i))) (6)

where fo(i) and fs(i) are intermediate features of the ob-
ject and state primitives. It is non-trivial to directly model
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Figure 2: The framework of ProCC. Features from the encoder (ω) are respectively fed to the object and state (φo and φs)
classifiers, where the Cross-Primitive Compatibility (CPC) aims to model the cross-primitive interactions. Progressive learning
strategy is proposed to gradually modulate primitive compatibility, especially for pCZSL. For detailed training procedure, please
refers to Appendix: Algorithm 1. Class Activation Maps (CAM) of input samples are illustrated to show visual attention.

Figure 3: The detailed framework of the object-state Cross-
Primitive Compatibility (CPCo→s). Features from the object
classifier (φo−1 and φo−2) are encoded by learnable Cross-
Primitive Memory (CPM) units. Then respectively interact
with state features (φs−1 and φs−2) to achieve compatibility
of state features conditioned on objects.

the relationship between objects and states due to the di-
verse semantic entanglement and a large number of pos-
sible compositions. We integrate the feasibility reasoning
into the trainable Cross-Primitive Compatibility (CPC) mod-
ule, which facilitates interactions between two classifiers to
explore informative visual attention conditioned on feature
representations of each primitive. Specifically, The features
extracted by the encoder (ω) are fed to primitive classifiers
(i.e., φo and φs). The primitive classifiers follow the Visual
Product methods (Karthik, Mancini, and Akata 2021, 2022)
that consist of multi-layer perceptron (MLP), specifically
three-layer MLP, for classifications. As shown in Figure 2
and Equation 6, the network is symmetric and we take the
object-state CPC (CPCo→s) module for example, as shown
in Figure 3, intermediate features from φo−1 and φo−2 are
fed to φs to interact with state features. However, direct
modulation state features will induce information degrada-
tion because of the huge task diversity. We propose learnable
Cross-Primitive Memory (CPM) units for soft interactions.
Specifically, the learnable CPM unit introduces conditioned
information to modulate corresponding features along with
the residual connection, which is formulated as follows:

φm
o−l = σ

(
Convk1d (φo−l)

)
, l ∈ (1, 2) (7)

φ,
s−l = φs−l × φm

o−l + φs−l, l ∈ (1, 2) (8)

Figure 4: Visualizations of class activation maps of ProCC
with and without CPC modules on the testing dataset of
MIT-States. The discriminative regions are marked with red
rectangles. More visualizations are in Appendix 2.

where Convk1d and σ represent the 1d convolution layer and
softmax activation function. Kernel size (k) is equal to 1/10
feature dimension to efficiently capture the long-range de-
pendency. For the hyper-parameter analysis of CPC, please
refers to Appendix 3. Then the enhanced state features are
fed to the next layer of φs as:

φs−(l+1) = fs−l(W
T
s−lφ

,
s−l + bs−l), l ∈ (1, 2), (9)

where W and b are weights and biases of MLP. Accord-
ingly, the conditioned cross-primitive interactions are in-
jected into each other, reducing less feasible primitive pre-
dictions. Therefore, Equations 3 and 4 can be re-write as:

ℓconobj = min
φo,φo→s

∑
ℓce(φo ⟨z|φs→o(φs(z)), o⟩ , oi) (10)

ℓconstate = min
φs,φs→o

∑
ℓce(φs ⟨z|φo→s(φo(z)), s⟩ , si) (11)

where z = ω(i), (i, (si, oi)) ∈ Ds, and ℓconvp = ℓconobj +ℓconstate
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Figure 5: Confusion matrices about prediction probabilities
of states conditioned on objects (w/ CPC) or not (w/o CPC).

Visual Explanation. To further illustrate and explain the ef-
fect of the CPC module, we visualize the attention learned
from the classifier via Class Activation Map (CAM) (Zhou
et al. 2016) in Figure 4. The standard CAM is formulated as:

CAMc(x, y) =
∑
k

ωc
kfk(x, y) (12)

where CAMc means the class activation map that leads to
the classification of an image to class c. fk(x, y) and ωc

k
stand for the activation of unit k in the last layer at spa-
tial location (x, y) and the weight corresponding to class
c for unit k. Here, ωc

k is the final layer of the MLP (i.e.,
φo−3 and φs−3), which has been modulated by the CPC
modules. Figure 4 shows some visualization examples with
(w/) and without (w/o) CPC module. As the encoder (ω) is
pre-trained for the object classification task, most CAMs for
the object classifier can locate and recognize the proper at-
tention regions. However, the CAMs for the state classifier
vary greatly as state primitives are conditioned on the object
primitive and related contexts. For the tiny dog and huge
dog compositions, the CPC module drives the model to fo-
cus on the discriminative regions that a dog with a small
head compared with other objects tends to classify to the
tiny otherwise classify to huge. For more abstract compo-
sitions, broken bridge and ripe banana compositions, the
state primitives heavily depend on the object primitives oth-
erwise may induce less feasibility compositions. The state
of broken is mainly reflected in the curvatures of the bridge
and the ripe primitive of the banana displays the black spots
on the surface. Overall, the CPC module enables the effi-
cient adjustment of visual attention conditioned on mutual
relations. Moreover, Figure 5 illustrates the confusion ma-
trices about state and object primitives. Concretely, we se-
lect ten typical state and object primitives in the MIT-States
(Isola, Lim, and Adelson 2015) dataset. Prediction proba-
bilities of states are accumulated then normalized with and
without CPC module to formulate the confusion matrices
(Confusion matrices of objects prediction probabilities are in
Appendix 2). We can learn that the CPC module facilitates
reasoning compatible compositions with high confidence.
Progressive Learning Strategy. However, jointly train-
ing the state and object classifiers may induce two issues:
(1) When it comes to the more practical setting, partial

supervision Compositional Zero-Shot Learning (pCZSL),
where only the partial label, not both, is available (Karthik,
Mancini, and Akata 2022). The missing label makes the
joint training strategy invalid to model the interactions be-
tween the state and object primitives. A naive way of learn-
ing from such partial supervision is to update the parame-
ters of the state and object classifier only based on the avail-
able labels, which lacks the interaction information across
primitives via the CPC module. Recent method (Karthik,
Mancini, and Akata 2022) estimates the missing labels via
pseudo-labeling (Lee 2013) as well as utilizes the external
knowledge (Speer, Chin, and Havasi 2017). The challenge of
missing labels also exists in the standard Multi-Task Learn-
ing (MTL) that the traditional updating rule will give inferior
results due to the missing annotations (Vandenhende et al.
2022; Kim et al. 2018; Nekrasov et al. 2019; Li, Liu, and
Bilen 2022). Some typical solutions propose hard knowl-
edge distillation (Kim et al. 2018), alternative optimization
strategy (Nekrasov et al. 2019), and learning in the joint pair-
wise task spaces (Li, Liu, and Bilen 2022). However, com-
pared with the MTL task, the missing label issue matters
more to the CZSL task, as the object and state primitives
are heavily tangled. (2) Also, jointly training results in sub-
optimal interactions as the diverse difficulty of object and
state predictions. Concretely, classifying states is more chal-
lenging than objects (Saini, Pham, and Shrivastava 2022;
Karthik, Mancini, and Akata 2022). Therefore, joint train-
ing inevitably induces noisy conditioned information, which
hinders to reason cross-primitive compatibility. Quantitative
analysis is shown in Appendix 4.

To enable the full interaction of state and object primi-
tives, we propose a progressive learning strategy, mimick-
ing the easy-hard learning process shown in Figure 1. Con-
cretely, with the features from the encoder (ω), we first train
the object classifier φo with given labels (Equation 3), to ob-
tain object features (φo−l, x ∈ (1, 2)). Then we sequentially
train the state classifier φs and CPCo→s (φo→s) conditioned
on pre-trained object features (φo−l) (Equation 11), to in-
teract to adjust the visual attention. Finally, we fine-tune the
state and object classifiers (φs and φo) as well as CPC mod-
ules (φo→s and φs→o) conditioned on the well-trained fea-
tures (Equations 10 and 11). We utilize this training protocol
both in the OW-CZSL and pCZSL settings. During the easy-
hard recognition progress, our method alleviates invalid in-
teractions of cross primitives, especially in the pCZSL set-
ting, without external knowledge. For detailed training pro-
cedure, please refers to Algorithm 1.

Experiments
Datasets and Evaluation Metrics. We conduct experiments
on three widely-use datasets including UT-Zappos (Yu and
Grauman 2014), MIT-States (Isola, Lim, and Adelson 2015),
and C-GQA (Misra, Gupta, and Hebert 2017). Details of
three datasets are listed in Appendix 1. For the OW-CZSL,
we follow the splits of (Mancini et al. 2021, 2022; Karthik,
Mancini, and Akata 2022) and evaluate based on the gen-
eralized settings, where the test samples are from both seen
and unseen compositions. Considering the performance of
the model with different bias factors for the unseen com-
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Algorithm 1: Training procedure of ProCC.
Input: Training data Ds = {(i, c)|i ∈ Is, c ∈ Cs},

pre-trained ω, learning rate λ1, λ2, λ3

Output: Optimal φo, φs, CPC: φo→s, φs→o

1 Initialize: φo, φs, φo→s, φs→o;
2 Stage 1: // train φo

3 while not converged do
4 Sample a batch from Ds as images (ik)

n
k=1 with

their object labels (ok)nk=1 ;
5 for samples in the batch do
6 Compute ℓobj via Equation 3.;
7 Update φo ← φo − λ1∇φo

ℓobj

8 Stage 2: // train φs and φo→s

9 while not converged do
10 Sample a batch from Ds as images (ik)

n
k=1 with

their state labels (sk)nk=1 ;
11 for samples in the batch do
12 Compute ℓconstate via Equation 11.;
13 Update

φs∪o→s ← φs∪o→s − λ2∇φs∪o→sℓ
con
state

14 Stage 3: // finetune φo, φs, φo→s, and φs→o

15 while not converged do
16 Sample a batch from Ds as images (ik)

n
k=1 with

their object and state labels (ok, sk)nk=1 ;
17 for samples in the batch do
18 Compute ℓconvp via Equations 10 and 11.;
19 Update φtotal ← φtotal − λ3∇φtotal

ℓconvp

positions, we vary the bias on the seen composition (Cs)
during the test phase and report the performance as best
seen (S), best unseen (U ), best harmonic mean (HM), and
the Area Under the Curve (AUC). For the pCZSL, follow-
ing (Karthik, Mancini, and Akata 2022), we remove the la-
bel and calculate the metrics on the full output composition
space (C). As we can not access the full-labeled seen com-
positions (Cs), we do not subtract any bias on Cs. There-
fore, we use the seen (S), unseen (U), and HM metrics.
Baselines. For OW-CZSL, we compare ProCC with other
OW-CZSL methods, including CompCos (Mancini et al.
2021), KGSP (Karthik, Mancini, and Akata 2022), and Co-
CGE (Mancini et al. 2022). CZSL methods are also com-
pared, including LE+ (Misra, Gupta, and Hebert 2017), AoP
(Nagarajan and Grauman 2018), TMN (Purushwalkam et al.
2019), SymNet (Li et al. 2020), CGE (Naeem et al. 2021),
and CANet (Wang et al. 2023). For pCZSL, ProCC is com-
pared with KGSP (Karthik, Mancini, and Akata 2022) as
well as standard (OW-)CZSL methods like CGE (Naeem
et al. 2021), CompCos (Mancini et al. 2021), and Co-CGE
(Mancini et al. 2022), with the same partial label protocol.
Implementation Details. Following the standard protocols
in the CZSL, we utilize the pre-trained ResNet-18 (He et al.
2016) as the feature encoder (ω) to extract 512-dimensional
feature vectors and learn classifiers on top of these features.
Following (Naeem et al. 2021; Karthik, Mancini, and Akata

2022), each classifier is composed of Multi-Layer Percep-
trons (MLP) with three layers with dimensions 768, 512,
and the number of output classes, respectively, and comprise
Layer Normalization(Lei Ba, Kiros, and Hinton 2016) and
Dropout(Srivastava et al. 2014). To be consistent with other
methods, we randomly augment input images with random
crop and horizontal flip. We use PyTorch to implement our
network and optimize it with Adam (Kingma and Ba 2015)
with default settings. The batch size is 256, and the learning
rate is 5.0 × 10−5 for the first two stages and 1.0 × 10−5

for the third stage. For the UT-Zappos, MIT-States, and C-
GQA datasets, the total training time is approximately 1, 3,
and 5 hours for 30/60/20, 40/80/30, and 50/100/25 epochs
for three stages, respectively, with the early stop strategy.

Open-World CZSL (OW-CZSL) Results
The results of OW-CZSL setting are illustrated in Table 1.
Generally, closed-world CZSL methods achieve inferior per-
formance, especially in two large datasets (i.e., C-GQA and
MIT-States), due to the large cardinality of the output space.
ProCC outperforms previous methods on almost all met-
rics in terms of three datasets. Concretely, as for the most
challenging dataset, i.e., C-GQA, the proposed method ex-
ceeds the previous SOTA methods, especially for best har-
monic (HM) metrics (3.4→3.8: ↑12%), which means that
ProCC has the better ability to recognize both the seen and
unseen compositions. Also, in the validation sub-dataset,
Our method suppresses the best baseline (i.e., KGSP) by
a large margin in two overall evaluation indexes (i.e., HM:
13.2→16.1: ↑22%; AUC: 2.9→4.0: ↑38%). As for the MIT-
States dataset, our method also has comparative results. No-
tably, we achieve the best performance on the U metric,
which validates the generalization ability of ProCC. For UT-
Zappos, it is specially designed for shoes and is relatively
simpler than others. ProCC consistently outperforms others,
i.e., S: 59.3→62.2; U : 47.2→48.0; HM: 39.1→39.9; AUC:
22.9→23.6. Remarkably, previous methods typically utilize
word embeddings to encode the word expression, which al-
ready contains semantic knowledge of similar objects and at-
tributes for composition learning (Saini, Pham, and Shrivas-
tava 2022). Recent Visual Product based method (Karthik,
Mancini, and Akata 2022) employs more complex classi-
fiers (with hidden layers of 768 and 1024) than ours as well
as uses external knowledge to eliminate the less feasibility
compositions. We predict the state and object primitives with
more lightweight classifiers and explicitly model the cross-
primitive interactions to learn the relationship between prim-
itives without external knowledge.

Partial-supervision CZSL (pCZSL) Results
As for the more challenging setting, pCZSL, the challenges
come from not only the huge output composition space but
also the missing labels. As we can learn from Table 2, our
method achieves SOTA performances compared with pre-
vious CZSL, OW-CZSL, and pCZSL methods. Concretely,
for the largest dataset, C-GQA, the performance of SOTAs
on pCZSL severely degrades compared with OW-CZSL,
even for KGSP, which is equipped with the pseudo label
and external knowledge. Our method consistently exceeds
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Method
C-GQA MIT-States UT-Zappos

Val Test Val Test Val Test
HM AUC S U HM AUC HM AUC S U HM AUC HM AUC S U HM AUC

TMN NA NA NA NA NA NA 2.1 0.2 12.6 0.9 1.2 0.1 21.2 9.2 55.9 18.1 21.7 8.4
AoP NA NA NA NA NA NA 3.2 0.3 16.6 5.7 4.7 0.7 23.4 10.1 50.9 34.2 29.4 13.7
LE+ 9.3 1.8 19.2 0.7 1.0 0.08 5.3 0.5 14.2 2.5 2.7 0.3 26.6 14.3 60.4 36.5 30.5 16.3
VisProd 10.5 2.0 24.8 1.7 2.8 0.33 7.2 1.0 20.9 5.8 5.6 0.7 28.8 15.4 54.6 42.8 36.9 19.7
SymNet 12.3 2.5 26.7 2.2 3.3 0.43 8.0 1.2 21.4 7.0 5.8 0.8 32.5 16.7 53.3 44.6 34.5 18.5
CGE 12.8 2.8 28.3 1.3 2.2 0.30 8.3 1.8 29.6 4.0 4.9 0.7 34.5 18.9 58.8 46.5 38.0 21.5
CompCos 12.0 2.4 28.4 1.8 2.8 0.39 8.4 1.5 25.4 10.0 8.9 1.6 32.5 18.1 59.3 46.8 36.9 21.3
Co-CGE 12.3 2.7 28.7 1.6 2.6 0.37 8.4 2.1 26.4 10.4 10.1 2.0 34.8 19.2 60.1 44.3 38.1 21.3
KGSP 13.2 2.9 26.6 2.1 3.4 0.44 7.9 1.4 23.4 7.0 6.7 1.0 33.2 19.8 58.0 47.2 39.1 22.9
CANet 14.3 2.8 27.3 1.9 3.2 0.39 8.3 1.7 25.3 6.7 6.6 1.2 35.1 19.8 58.7 46.0 38.7 22.1
Ours 16.1 4.0 29.0 2.6 3.8 0.54 8.6 1.9 27.6 10.6 7.8 1.6 36.5 22.4 62.2 48.0 39.9 23.6

Table 1: Quantitative comparisons in the OW-CZSL setting. We report the best seen (S), best unseen (U ) accuracy, HM, AUC
on the test and validation sub-datasets. The best and second-best results are bold and underlined.

Method
C-GQA MIT-States UT-Zappos

Val Test Val Test Val Test
S U HM S U HM S U HM S U HM S U HM S U HM

CGE 19.2 2.9 5.6 17.4 0.4 0.9 10.0 2.8 4.3 19.6 1.3 2.4 46.5 3.5 6.6 50.3 3.4 5.0
CompCos 18.2 3.0 5.2 24.3 0.4 0.7 11.1 2.9 4.6 10.8 2.0 3.6 50.2 3.9 7.3 52.4 4.1 7.6
Co-CGE 19.8 3.9 6.4 22.1 0.6 1.2 14.8 3.3 5.3 13.1 2.3 4.0 47.2 6.1 10.8 52.6 5.4 9.9
KGSP 20.1 4.8 8.3 22.3 0.9 1.7 15.7 3.2 5.3 13.5 2.6 4.4 49.4 5.9 9.7 53.8 6.9 12.3
Ours 21.6 5.4 8.7 24.1 1.1 2.0 16.3 3.5 5.8 14.1 2.9 4.8 51.0 7.1 12.5 55.1 8.1 14.1

Table 2: Quantitative comparisons in the pCZSL setting. We report the seen (S), unseen (U) accuracy, and best harmonic mean
(HM) on the test and validation sub-datasets. The best and second-best results are bold and underlined.

Method
OW-CZSL pCZSL

C-GQA MIT-States C-GQA MIT-States
HM AUC HM AUC S U HM S U HM

w/o CPC 3.3 0.40 6.2 0.8 17.4 0.5 1.0 11.6 2.2 3.7
w/o CPI 3.4 0.41 6.1 0.9 17.7 0.5 1.0 12.0 2.1 3.6
w/o CPM 3.5 0.48 6.6 1.0 18.9 0.7 1.4 12.2 2.5 4.1
w/o P-L 3.7 0.50 7.6 1.5 22.4 0.8 1.6 12.5 2.5 4.1
w/ Ex-1&2 3.6 0.48 7.8 1.5 22.6 1.0 1.9 13.2 2.7 4.4
w/o Stage3 3.5 0.47 7.4 1.4 23.2 1.1 2.0 13.6 2.8 4.6
w/ 4 Stages 3.6 0.50 7.6 1.4 23.7 1.0 1.9 13.8 2.8 4.7
w/ 5 Stages 3.7 0.53 7.7 1.4 23.9 1.1 2.1 13.6 2.9 4.8
w/ 6 Stages 3.8 0.56 7.7 1.6 24.0 1.1 2.1 13.8 2.8 4.7
Ours 3.8 0.54 7.8 1.6 24.1 1.1 2.0 14.1 2.9 4.8

Table 3: Ablation studies for both OW-CZSL and pCZSL.

them both on validation and testing datasets. For the MIT-
States dataset, our method surpasses the second-best method
by a large margin in HM metric (i.e., val: 5.3→5.8:↑9%;
test: 4.4→4.8:↑9%). For the simplest dataset, UT-Zappos,
our method also has the best performance. Note that we do
not use any external knowledge like Word2vec, Glove, Con-
ceptnet, and other semi-supervised learning techniques (Lee
2013; Grandvalet and Bengio 2004) for the missing annota-
tions. The superior performance indicates even with partial
labels of object and state primitives, our progressive learning
strategy can also model the interactions of cross primitives
with the pre-trained classifiers.

Ablation Study
We analyze two important components: Cross-Primitive
Compatibility (CPC) module and the progressive learning
strategy. We adopt the same implementation strategy and
conduct the OW-CZSL and pCZSL experiments on the two
largest datasets, i.e., C-GQA and MIT-States.
Effect of the Cross-Primitive Compatibility Module. In
Table 3, I⃝ without the CPC module (w/o CPC), the per-
formance is severely degraded both on the OW-CZSL and
pCZSL settings. Because lacking the interaction between
cross primitives makes the network degenerate to previ-
ous Visual Product baselines (Karthik, Mancini, and Akata
2021, 2022). Meanwhile, KGSP utilizes the external knowl-
edge and surpasses the ablation configuration, especially in
pCZSL setting. II⃝ Moreover, to further evaluate the condi-
tional modulation, we employ channel attention (Hu, Shen,
and Sun 2018; Wang et al. 2020) on the same primitive
classifiers without cross-primitive interaction (w/o CPI). III⃝
Also, we ablate the learnable cross-primitive memory (w/o
CPM) and directly modulate other primitives with learned
features. Results indicate that exploring internal primitives
brings marginal improvement for composition learning as
classifiers have extracted enough internal information, and
modulating primitives via hard masks also gives sub-optimal
results. Note that the CPC is extremely lightweight with two
trainable 1d convolution layers. IV⃝ Besides, more ablations
about architectures of CPC and classifiers are in Appendix
3. Generally, the CPC module greatly improves the perfor-
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mance with negligible computation burden also without ex-
ternal information, which is practical for real-world scenes.
Effect of the Progressive Learning Strategy. Another im-
portant aspect of the ProCC is the progressive learning strat-
egy. From Table 3, I⃝ we can learn that with the tradi-
tional end-end training strategy (w/o P-L), the performance
of ProCC degrades to some extent, especially in the pCZSL
setting (i.e., HM: 2.0→1.6 (C-GQA) and 4.8→4.1 (MIT-
States)). As jointly training the whole network under the
pCZSL setting does not explicitly learn the relationship be-
tween state and object primitives, which is the critical is-
sue in the CZSL task. While for the OW-CZSL setting, joint
training induces some noisy conditioned information, due to
the diverse difficulty of classifying object and state primi-
tives. Also, we exchange the training sequence (i.e., Stage
2 → 1 → 3) (w/ Ex-1&2) and ablate the fine-tuning stage
(w/o Stage 3). II⃝ For the configuration of w/ Ex-1&2, the
performance of ProCC degrades on both settings. Due to
the challenge of classifying state primitives (Saini, Pham,
and Shrivastava 2022; Karthik, Mancini, and Akata 2022),
modulation object features conditioned on noisy state fea-
tures results in invalid interactions. III⃝ For the configura-
tion of w/o Stage 3, where only CPCo→s works, the perfor-
mance degrades to some extent. We have two observations:
CPCo→s brings more improvements than CPCs→o; CPCs→o

and fine-tuning based on well-trained features also matter
for the cross-primitive compatibility and global optimum.
IV⃝ Moreover, following the same training protocol, we train
the network for more stages, i.e., with extra Stage 1 (w/ 4
Stages), extra Stage 1 and 2 (w/ 5 Stages), and extra Stage
1, 2, and 3 (w/ 6 Stages). We see that more training stages
can not bring much accuracy improvement, as the model has
converged after Stage 3.

Conclusion
In this paper, we propose a method named Progressive
Cross-primitive Compatibility (ProCC) network for both
OW-CZSL and pCZSL tasks. The simple but effective
Cross-Primitive Compatibility module drives the network
learning to predict feasible object and state primitives con-
ditioned on mutual relations. Also, the progressive learning
strategy significantly eliminates the invalid cross-primitive
interactions in pCZSL and noisy conditioned information, in
an easy-hard learning manner. Comprehensive experiments
on OW-CSZL and pCZSL settings illustrate superior perfor-
mance compared with other state-of-the-art methods.
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