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Abstract

Graph contrastive learning is a general learning paradigm ex-
celling at capturing invariant information from diverse pertur-
bations in graphs. Recent works focus on exploring the struc-
tural rationale from graphs, thereby increasing the discrim-
inability of the invariant information. However, such meth-
ods may incur in the mis-learning of graph models towards
the interpretability of graphs, and thus the learned noisy and
task-agnostic information interferes with the prediction of
graphs. To this end, with the purpose of exploring the in-
trinsic rationale of graphs, we accordingly propose to cap-
ture the dimensional rationale from graphs, which has not re-
ceived sufficient attention in the literature. The conducted ex-
ploratory experiments attest to the feasibility of the aforemen-
tioned roadmap. To elucidate the innate mechanism behind
the performance improvement arising from the dimensional
rationale, we rethink the dimensional rationale in graph con-
trastive learning from a causal perspective and further formal-
ize the causality among the variables in the pre-training stage
to build the corresponding structural causal model. On the ba-
sis of the understanding of the structural causal model, we
propose the dimensional rationale-aware graph contrastive
learning approach, which introduces a learnable dimensional
rationale acquiring network and a redundancy reduction con-
straint. The learnable dimensional rationale acquiring net-
work is updated by leveraging a bi-level meta-learning tech-
nique, and the redundancy reduction constraint disentangles
the redundant features through a decorrelation process during
learning. Empirically, compared with state-of-the-art meth-
ods, our method can yield significant performance boosts
on various benchmarks with respect to discriminability and
transferability. The code implementation of our method is
available at https://github.com/ByronJi/DRGCL.

1 Introduction
Graph contrastive learning (GCL) is a general learning
paradigm excelling at seeking to understand invariant in-
formation from diverse perturbations in graphs (You et al.
2020; Suresh et al. 2021; You et al. 2021; Xia et al. 2022).
However, most of these methods focus on building sophis-
ticated data augmentations for GCL, while the intrinsic in-
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terpretability in graph representations is not explored, such
that the theoretical guarantee for the performance improve-
ment arising from adopting such approaches is insufficient,
and the model trained by following these methods may learn
stochastic noisy and task-agnostic information, thereby con-
fusing the prediction on downstream tasks. Therefore, the
graph rationale exploration is provoked to understand the
knowledge driving the model to make certain predictions
(Wu et al. 2022), where rationale is a specific subset of graph
features, e.g., graph structure, which can guide or explain the
model’s predictions (Ying et al. 2019). Successes achieved
by RGCL (Li et al. 2022c) demonstrate that exploring ratio-
nales in graphs can indeed promote the model to learn dis-
criminative representations in GCL. RGCL focuses on ex-
ploring the structural rationale (SR) from graphs, i.e., the
structure containing specific edges or nodes that are corre-
lated with the prediction of graphs. However, the features
contained by the nodes or messages passing through the
edges may still include certain discriminative information.
Thus, arbitrarily removing or assigning weights to the graph
structure can undermine the discriminability of the learned
representation. Concretely, we raise a crucial question:

“Does there exist a manner to explore the intrinsic ratio-
nale in graphs, thereby improving the GCL predictions?”

With the question in mind, we conduct exploratory ex-
periments with GraphCL (You et al. 2020) on the biochem-
ical molecule dataset PROTEINS, and the social network
dataset REDDIT-BINARY (RDT-B), where we randomly
preserve certain dimensions, i.e., a subset of the represen-
tations, while blocking the others. The experimental results
are illustrated in Figure 1. We observe from the results
and find that the graph representations only preserving spe-
cific dimensions indeed achieve better performance than the
primitive representations, and such dimensions are treated as
dimensional rationales (DRs) for the graph. The exploratory
experiments jointly prove the existence of DRs and the posi-
tive effects of specific DRs in the prediction of GCL. The in-
tuition behind the experimental exploration is that compared
with the SR, the DR is intrinsic to the representations learned
by GCL methods, which can tackle the long-standing issue
of the SR and further achieve the desideratum that jointly
preserves the discriminative information and blocks the task-
agnostic information of representations. We provide theoret-
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ical analysis to demonstrate that the proposed DR can degen-
erate into the conventional SR for GCL.

However, the innate mechanism of the performance im-
provement brought about by introducing the DR is not suffi-
ciently explored, such that we rethink the DR of graphs from
the causal perspective and accordingly develop a structural
causal model (SCM). By understanding the SCM, we dis-
close a counter-intuitive conclusion: the acquired graph DR
is determined as a causal confounder in GCL. The reason is
that the principle of unsupervised learning incurs the incon-
sistent variation of the acquired graph DR, such that the ac-
quired rationale may improve or degenerate the model per-
formance on downstream tasks, and inspired by the theory of
causal inference (Pearl et al. 2000; Glymour, Pearl, and Jew-
ell 2016), we assert that the acquired graph DR is a causal
confounder. The theoretical analysis can further be proved
by the empirical evidence. Accordingly, as shown in Figure
1, we observe that the points with different preserved dimen-
sion rates are scattered around the baseline dashes, which
proves that the inconsistency of the graph DRs may improve
or degenerate the model performance.

To this end, we intuitively propose the Dimensional
Rationale-aware Graph Contrastive Learning, namely
DRGCL, which initially acquires the graph DRs and further
adopts the backdoor adjustment technique (Glymour, Pearl,
and Jewell 2016). Specifically, we introduce the learnable
graph DR acquiring network, which is trained by adopting
a bi-level meta-learning technique. To extend the represen-
tation space of the acquired DR, we apply the graph DR re-
dundancy reduction as a regularization term during training.
We provide solid theoretical analyses to prove the validity
of DRGCL. Empirically, we compare our method with var-
ious baselines on benchmark graph datasets, which further
demonstrates the effectiveness of DRGCL. Contributions:

• We present a heuristic experiment to demonstrate the ex-
istence of the graph DR and further provide theoretical
analysis to prove that compared with the conventional
graph SR, the graph DR is more intrinsic to GCL.

• We formalize the mechanism of introducing DRs by
building an SCM and demonstrate that the acquired DR
is a causal confounder in GCL with sufficient theoretical
and empirical evidence.

• We propose DRGCL to acquire redundancy-against DRs
and perform the backdoor adjustment on SCM, thereby
consistently improving GCL performance.

• We provide solid theoretical and experimental analy-
ses, which jointly demonstrate the effectiveness of our
method in terms of discriminability and transferability.

2 Related Works
2.1 Graph Contrastive Learning
Many methods have been used to study graph-level con-
trastive learning. GraphCL (You et al. 2020) designs four
types of general augmentations for GCL. ADGCL (Suresh
et al. 2021) optimizes adversarial graph augmentation strate-
gies to prevent Graph Neural Networks (GNNs) from cap-
turing redundant information. JOAO (You et al. 2021) se-

lects augmentation pairs in GraphCL by an automated ap-
proach to solve the trial-and-errors. SimGRACE (Xia et al.
2022) utilizes an original GNN model and its perturbed ver-
sion as encoders to obtain correlated views further avoiding
the cost of trial-and-errors. RGCL (Li et al. 2022c) uses GN-
NExplainer (Ying et al. 2019) to find invariant SRs to dig
discriminative information. Our method applies DRs to our
models, which can find more intrinsic discriminability.

2.2 Graph Rationalization
Rationalization in Graphs has two research directions: post-
hoc explainability and intrinsic interpretability. Post-hoc ex-
plainability uses separate methods (Ying et al. 2019; Tan
et al. 2022a) to attribute predictions to the input graph.
Intrinsic interpretability integrates a rationalization mod-
ule, e.g., graph attention (Velickovic et al. 2017; Wu et al.
2022) or graph pooling (Lee, Lee, and Kang 2019; Ranjan,
Sanyal, and Talukdar 2020), into the model. The rationaliza-
tion module employs soft or hard masks on the input graph
to guide the model’s decisions. While existing methods use
SRs from masked subgraphs to train the GNN, our method
directly captures DRs within the graph embeddings.

2.3 Causal Inference
Causal inference (Pearl et al. 2000; Glymour, Pearl, and
Jewell 2016) has been widely applied in computer science
through deconfounding and counterfactual inference. De-
confounding methods (Li et al. 2022b; Gao et al. 2022;
Qiang et al. 2022, 2023) estimate the direct causal effect
behind confounders. Counterfactual inference (Tan et al.
2022b) aims at finding the smallest change in the input
which affects the model’s prediction. Our work introduces
the dimension confounder in GCL with an SCM. Guided by
SCM, we utilize the backdoor adjustment to obtain the di-
rect causal effect between the learned embedding and the
predicted label.

3 Problem Formulations
3.1 Graph Contrastive Learning
Given a graph G sampled from the dataset of M graphs, de-
noted as G ∈ {Gm : m ∈ M}, we formulated the aug-
mented graph Ĝ by applying the augmentation distribution
T (Ĝ|G). During pre-training, we sample a minibatch of N
graphs from Gm and denote it as G′ = {Gn}Nn=1, where Gn
represents the n-th sample. We perform stochastic data aug-
mentations to transform each sample Gn into two augmented
views Ĝn,i and Ĝn,j . Then Ĝn,i and Ĝn,j are fed into a fea-
ture extractor to get their feature representations zn,i and
zn,j . Then a GCL loss function is defined to enforce max-
imizing the consistency between positive pairs zn,i, zn,j ,
such as InfoNCE loss (You et al. 2020; Xia et al. 2022):

LIN =

N∑
n=1

− log
exp (d (zn,i, zn,j) /τ)∑N

n′=1,n′ ̸=n exp (d (zn,i, zn′,j) /τ)
, (1)

where τ denotes the temperature parameter and d (·, ·) de-
notes the cosine similarity function.
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Figure 1: Experimental scatter diagrams obtained by GraphCL with randomly preserving dimensions on PROTEINS and RDT-
B datasets. The red dashed lines denote the performance achieved by the primitive representation of GraphCL. The colored
scattered points denote the downstream classification performance of embeddings with certain dimensions preserved. Note that
the unreserved dimensions are directly valued by 0. The experimental principle emerges from the intuition that the prediction
on downstream tasks may be significantly affected if the multi-dimensional representations are perturbed.
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Figure 2: SCM for GCL pretraining.

3.2 Structural Causal Model
The intuition of our work comes from the investigation of the
effects of preserving different DRs in the graph embedding,
as shown in Figure 1. According to (Wang et al. 2022), the
cross-entropy loss can be bounded by the contrastive loss,
indicating that we can improve the performance on down-
stream classification tasks by enhancing the discriminabil-
ity of representations learned by GCL during pre-training.
Thus, improving the quality of the acquired DRs during pre-
training derives the indirect promotion of the DRs acquired
on downstream tasks. To this end, we establish an SCM to
elaborate the causality among the variables in GCL: graph
embedding E, acquired graph DR R, and graph contrastive
label Y . The SCM is depicted in Figure 2, with each link
representing a causality between two variables:
• E → Y . The graph embedding E can directly affect the

graph contrastive label Y .
• R → E. The acquired graph DR R affects the learned

features of the graph embeddings by contributing to the
gradient effect of the training of the graph encoder, which
further affects the graph embedding E.

• R → Y . In GCL, the graph contrastive learning label is
related to the anchor, such that the acquired graph DR R
causally affects the anchor due to the proposed iterative
training paradigm of DRGCL.

According to the SCM, the acquired graph DR R is the
causal confounder between E and Y due to the causal ef-
fects of R towards E and Y .

3.3 Causal Intervention via Backdoor
Adjustment

(Pearl et al. 2000) proposes the definition of the backdoor
path to demarcate the scope of application of the back-
door criterion. In our SCM, there exists a backdoor path
E ← R → Y , resulting in the spurious correlation between
E and Y . Then, if we use P (Y |E) to measure the causal-
ity between E and Y as the approach adopted by the con-
ventional GCL methods, the task-irrelevant features would
affect the downstream classification. To eliminate the causal
effect of the backdoor path, we can intervene on the variable
E and condition on the confounding factor R. The adjust-
ment formula can be written as follows:

P (Y |do(E)) =
∑
r

P (Y |E,R = r)P (R = r), (2)

where r denotes the value of R.

4 Methodology
In this paper, we focus on developing a novel GCL learning
framework which is shown in Figure 3.

4.1 Graph Dimensional Rationale Acquiring
Network

By following the data augmentations in GraphCL (You et al.
2020), we sample two transformations t1 and t2 from the
augmentation distribution T and further obtain two cor-
related views Ĝn,i and Ĝn,j . Then we feed them into the
GNN-based encoder fθ(·) to extract graph-level represen-
tations hn,i, hn,j . To acquire the DRs from the candidate
graphs, we introduce a learnable DR weight, denoted as
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Figure 3: Illustration of DRGCL. The solid blue line pointing backwards represents the regular training step. The solid red line
pointing backwards represents the meta-learning step.

Figure 4: The visualization of the representations learned
by GraphCL and our method using the redundancy reduc-
tion method on the BBBP dataset, respectively. The learned
features are projected into a colored image in RGB format,
where different colors represent different types of features.
The abscissa axis represents the feature dimensions, and the
ordinate axis represents samples of different classes. The
greater the color contrast, the lower the dimensional feature
similarity. These plots represent the similarity between di-
mension features with the first 64 samples of BBBP.

R =
{
ωk

∣∣k ∈ J1, DK
}

, where D represents the number of
graph embedding dimensions, which is treated as containing
the shared knowledge with the acquired DR.

h̃ = h⊙R, (3)

where h̃ denotes the representation derived by preserving
the acquired DR, and ⊙ represents an element-wise product
operation. By utilizing this operation, we obtain h̃n,i and
h̃n,j . Furthermore, we utilize a projection head gDRIN

ϑ (·) to

map the graph representations into a latent space:

z̃n,i = gDRIN
ϑ (h̃n,i), z̃n,j = gDRIN

ϑ (h̃n,j). (4)

Subsequently, we utilize the DR-aware InfoNCE loss as

LDRIN =

N∑
n=1

− log
exp (d (z̃n,i, z̃n,j) /τ)∑N

n′=1,n′ ̸=n exp (d (z̃n,i, z̃n′,j) /τ)
. (5)

4.2 Graph Dimensional Rationale Redundancy
Reduction

From the perspective of information theory, each dimension
captures a subset of the information entropy of the graph
representation. As depicted in Figure 4, GraphCL encoun-
ters the issue of graph dimensional redundancy, which indi-
cates that multiple dimensions in graph embeddings share
overlapping information entropy. To tackle the issue, in-
spired by classical multivariate analysis methods (Hotelling
1992; Zhang et al. 2021), we apply the graph DR redun-
dancy reduction to DRGCL. Following the aforementioned
manner to get h̃, we obtain h̃i, h̃j , which denote the repre-
sentations from a minibatch of N graphs of two augmented
views Ĝi and Ĝj . Subsequently, we use a specific projection
head gRR

ϑ′ (·) to map the graph representations into a latent
space:

z̃i = gRR
ϑ′ (h̃i), z̃j = gRR

ϑ′ (h̃j). (6)

Then we apply an instance-dimensional normalization to
ensure each feature dimension has a 0-mean and 1/

√
N -

standard deviation distribution, which is implemented as:

z̄ =
z̃− µ(z̃)

σ(z̃) ∗
√
N
. (7)
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Algorithm 1: The DRGRL training algorithm
Input: Graph dataset Gm withM graphs, minibatch sizeN , and
a hyper-parameter α.
Initialize The neural network parameters: θ for fθ(·), ϑ for
gDRIN
ϑ (·), ϑ′ for gRR

ϑ′ (·), and R =
{
ωk

∣∣k ∈ J1, DK
}

. The
learning rates: βθ and βϑ, etc.
repeat

for t-th training iteration do
Iteratively sample a minibatch G′ with N examples from
Gm, G′ = {Gn : n = 1, 2, ...N}
Randomly sample two augmentations t1, t2 from T , the
augmented views of Gn can be denoted as Ĝn,i and Ĝn,j ,
the augmented views of G′ can be denoted as Ĝ′, including
Ĝi, Ĝj .
for n = 1 to N do

h̃n,i = fθ(Ĝn,i)⊙R, h̃n,j = fθ(Ĝn,j)⊙R
z̃n,i = gDRIN

ϑ (h̃n,i), z̃n,j = gDRIN
ϑ (h̃n,j)

end for
LDRIN =

∑N
n=1 − log

exp(d(z̃n,i,z̃n,j)/τ)∑N
n′=1,n′ ̸=n

exp(d(z̃n,i,z̃n′,j)/τ)

h̃i = fθ(Ĝi)⊙R, h̃j = fθ(Ĝj)⊙R
z̃i = gRR

ϑ′ (h̃i), z̃j = gRR
ϑ′ (h̃j)

z̄i =
z̃i−µ(z̃i)

σ(z̃i)∗
√
N

, z̄j =
z̃j−µ(z̃j)

σ(z̃j)∗
√
N

LRR = F(z̄i, z̄j)︸ ︷︷ ︸
invariance term

+λ(F(z̄⊤i z̄i, I) + F(z̄⊤j z̄j , I))︸ ︷︷ ︸
decorrelation term

# regular training step, fix R
argminθ,ϑ,ϑ′ LRR + α · LDRIN

# compute trial weights and retain computational
# graph, fix θ and ϑ

θtrial = θ − βθ∇θLDRIN

(
gDRIN
ϑ

(
fθ

(
Ĝ′
)
⊙R

))
,

ϑtrial = ϑ− βϑ∇ϑLDRIN

(
gDRIN
ϑ

(
fθ

(
Ĝ′
)
⊙R

))
#meta training step using second derivative

argmin
R

LDRIN

(
gDRIN
ϑtrial

(
fθtrial

(
Ĝ′
)
⊙R

))
end for

until θ, ϑ, ϑRR, and R converge.

The obtained normalized z̄i and z̄j are further used to form
the redundancy reduction loss for a certain graph as

LRR = F(z̄i, z̄j)︸ ︷︷ ︸
invariance term

+λ(F(z̄⊤i z̄i, I) + F(z̄⊤j z̄j , I))︸ ︷︷ ︸
decorrelation term

, (8)

where F(·, ·) = ∥· − ·∥2F , ∥·∥2F denotes the Frobenius norm
and λ is a trade-off hyperparameter. Intuitively, the invari-
ance term makes the embedding invariant to the distortions
of a graph by minimizing the difference between two nor-
malized representations. By trying to equate the off-diagonal
elements of the auto-correlation matrix of each view’s repre-
sentation to 0, the decorrelation term reduces the redundancy
between the representations, thereby avoiding the collapsed
trivial solution outputting the same vector for all inputs. In
Figure 4, it can be intuitively observed that adopting the re-
dundancy reduction loss, our DRGCL can indeed learn rep-
resentations with information-decoupled dimensions.

Figure 5: A counter-intuitive high-dimensional phenomenon
in the problem of measuring concentration on a sphere. Al-
most the whole area of a high-dimensional sphere is concen-
trated in an ϵ-strip around its equator and actually around
any great circle.

4.3 Dimensional Rationale-aware Graph
Contrastive Learning with Backdoor
Adjustment

During pre-training, a conventional training paradigm and
a meta-learning training paradigm are iteratively employed.
Specifically, we train the encoder fθ(·), and the projec-
tion heads gDRIN

ϑ (·) and gRR
ϑ′ (·) in a conventional man-

ner, while the DR weight R is trained by adopting the
meta-learning objective. The overall training procedure of
DRGCL consists of two steps. In the first training step, we
follow the standard contrastive learning approach to train
fθ(·), gDRIN

ϑ (·), and gRR
ϑ′ (·). This involves jointly minimiz-

ing the contrastive loss and the redundancy reduction loss:
LDRGCL = LRR + α · LDRIN , (9)

where α is a hyper-parameter that governs the trade-off be-
tween the two loss components. The second training step
is based on meta-learning. We use a second-derivative tech-
nique (Liu, Davison, and Johns 2019) to solve a bi-level opti-
mization problem. We encourageR to re-weight the specific
dimensions to preserve task-relevant information, which is
regarded as the DR for graph embeddings, so that DRGCL
can perform the causal intervention via backdoor adjustment
during training. Specifically, R is updated by computing
its gradients with respect to the performance of fθ(·) and
gDRIN
ϑ (·). The corresponding performance is measured by

using the gradients of fθ(·) and gDRIN
ϑ (·) during the back-

propagation of graph contrastive loss. Based on this updat-
ing mechanism during pre-training, the iterations of R can
include sufficient values to perform the backdoor adjustment
conditional on R with respect to E and Y . Formally, we up-
date the DR weightR by

argmin
R

LDRIN

(
gDRIN
ϑtrial

(
fθtrial

(
Ĝ′
)
⊙R

))
, (10)

where Ĝ′, including Ĝi, Ĝj , denotes the augmented views of
G′, and G′ is sampled from the graph dataset Gm. θtrial and
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Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R. ↓
GL - - - 81.7 ± 2.1 - 77.3 ± 0.2 41.0 ± 0.2 69.9 ± 1.0 11.0
WL 80.0 ± 0.5 73.0 ± 0.6 - 80.7 ± 3.0 - 68.8 ± 0.4 46.1 ± 0.2 72.3 ± 3.4 8.3

DGK 80.3 ± 0.5 73.3 ± 0.8 - 87.4 ± 0.7 - 78.0 ± 0.4 41.3 ± 0.2 67.0 ± 0.6 8.0
node2vec 54.9 ± 1.6 57.5 ± 3.6 - 72.6 ± 10.0 - - - - 12.3
sub2vec 52.8 ± 1.5 53.0 ± 5.6 - 61.1 ± 15.8 - 71.5 ± 0.4 36.7 ± 0.4 55.3 ± 1.5 13.0

graph2vec 73.2 ± 1.8 73.3 ± 2.0 - 83.2 ± 9.3 - 75.8 ± 1.0 47.9 ± 0.3 71.1 ± 0.5 9.3
InfoGraph 76.2 ± 1.0 74.4 ± 0.3 72.9 ± 1.8 89.0 ± 1.1 70.7 ± 1.1 82.5 ± 1.4 53.5 ± 1.0 73.0 ± 0.9 5.8
GraphCL 77.9 ± 0.4 74.4 ± 0.5 78.6 ± 0.4 86.8 ± 1.3 71.4 ± 1.2 89.5 ± 0.8 56.0 ± 0.3 71.2 ± 0.4 5.0
ADGCL 73.9 ± 0.8 73.3 ± 0.5 75.8 ± 0.9 88.7 ± 1.9 72.0 ± 0.6 90.1 ± 0.9 54.3 ± 0.3 70.2 ± 0.7 6.1
JOAO 78.1 ± 0.5 74.6 ± 0.4 77.3 ± 0.5 87.4 ± 1.0 69.5 ± 0.4 85.3 ± 1.4 55.7 ± 0.6 70.2 ± 3.1 6.5

JOAOv2 78.4 ± 0.5 74.1 ± 1.1 77.4 ± 1.2 87.7 ± 0.8 69.3 ± 0.3 86.4 ± 1.5 56.0 ± 0.3 70.8 ± 0.3 5.8
RGCL 78.1 ± 1.0 75.0 ± 0.4 78.9 ± 0.5 87.7 ± 1.0 71.0 ± 0.7 90.3 ± 0.6 56.4 ± 0.4 71.9 ± 0.9 3.3

SimGRACE 79.1 ± 0.4 75.3 ± 0.1 77.4 ± 1.1 89.0 ± 1.3 71.7 ± 0.8 89.5 ± 0.9 55.9 ± 0.3 71.3 ± 0.8 3.3
DRGCL 78.7 ± 0.4 75.2 ± 0.6 78.4 ± 0.7 89.5 ± 0.6 70.6 ± 0.8 90.8 ± 0.3 56.3 ± 0.2 72.0 ± 0.5 2.8

Table 1: Unsupervised representation learning classification accuracy (%) on TU datasets (mean 10-fold cross-validation accu-
racy with 5 runs). A.R denotes the average rank of the results. The top-3 results are highlighted in bold.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG.
No Pre-Train 65.8 ± 4.5 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 67.0
AttrMasking 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 71.1
ContextPred 68.0 ± 2.0 75.7 ± 0.7 63.9 ± 0.6 60.9 ± 0.6 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 70.9

GraphCL 69.7 ± 0.7 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2 75.4 ± 1.4 70.8
ADGCL 68.3 ± 1.0 73.6 ± 0.8 63.1 ± 0.7 59.2 ± 0.9 77.6 ± 4.2 74.9 ± 2.5 75.5 ± 1.3 75.0 ± 1.9 70.9
JOAO 70.2 ± 1.0 75.0 ± 0.3 63.0 ± 0.5 60.0 ± 0.8 81.3 ± 2.5 71.7 ± 1.4 76.7 ± 1.2 77.3 ± 0.5 71.9

JOAOv2 71.4 ± 0.9 74.2 ± 0.6 63.2 ± 0.5 60.5 ± 0.7 81.0 ± 1.6 73.7 ± 1.0 77.5 ± 1.2 75.5 ± 1.3 72.1
RGCL‡ 71.4 ± 0.7 75.2 ± 0.3 63.3 ± 0.2 61.4 ± 0.6 76.4 ± 3.4 72.6 ± 1.5 77.9 ± 0.8 76.0 ± 0.8 71.8

SimGRACE‡ 71.3 ± 0.9 73.9 ± 0.4 63.4 ± 0.5 60.6 ± 1.0 64.0 ± 1.2 69.4 ± 1.2 75.0 ± 1.1 74.6 ± 0.7 69.0
DRGCL 71.2 ± 0.5 74.7 ± 0.5 64.0 ± 0.5 61.1 ± 0.8 78.2 ± 1.5 73.8 ± 1.1 78.6 ± 1.0 78.2 ± 1.0 72.5

Table 2: Transfer learning performance on molecular property prediction in ZINC-2M (mean ROC-AUC + std over 10 runs).
AVG. denotes the average result in all datasets. ‡means there exist differences in producing the results. RGCL finetunes ClinTox
for 300 epochs and MUV for 50 epochs. For fairness, we reproduce them by finetuning for 100 epochs. SimGRACE only
provides the results for BBBP, ToxCast, and SIDER. We provide the results of SimGRACE on other datasets in benchmarks.

ϑtrial denote the trial weights of the encoders and projec-
tion heads, respectively, after one gradient update using the
contrastive loss defined in Equation 5. The update of these
trial weights is formulated as follows:

θtrial = θ − βθ∇θLDRIN

(
gDRIN
ϑ

(
fθ

(
Ĝ′
)
⊙R

))
,

ϑtrial = ϑ− βϑ∇ϑLDRIN

(
gDRIN
ϑ

(
fθ

(
Ĝ′
)
⊙R

))
,

(11)

where βθ and βϑ are learning rates. The intuition behind
such a behavior is to leverage the second-derivative trick,
which involves computing a derivative over the derivative of
the combination θ, ϑ in order to update R. Specifically, we
compute the derivative with respect to R using a retained
computational graph of θ, ϑ and then update the DR weight
R by back-propagating this derivative as defined in Equation
10. Intuitively, the initialization of R is biased. During pre-
training, R is updated per batch over epochs, resulting in
the acquirement of local R with sufficient self-supervision
for the current batch. After pre-training, all graphs have gra-
dient contributions to R, thereby achieving the global DR.
The two steps for updating fθ(·), gDRIN

ϑ (·), gRR
ϑ′ (·) and up-

datingR are iteratively imposed until convergence. The Al-

gorithm of the training pipeline is detailed in Algorithm 1.
For the fitting on downstream tasks, we utilize the graph

DR-aware embeddings for downstream tasks.

5 Theoretical Analyses

5.1 Discussion on Relation between SR and DR

To facilitate comprehension, we recap the necessary prelim-
inaries of GNN as follows. Suppose that G = (V, E) is a
graph instance with the edge set E and the node set V . The
unified GNN framework follows a neighborhood aggrega-
tion strategy, where the representation of a node is iteratively
updated by aggregating representations of its neighbors (Xu
et al. 2019). After undergoing k iterations of aggregation, the
representation of a node effectively captures the structural
information present within its k-hop network neighborhood.
Formally, the k-th layer of a GNN is

a(k)
v = AGGREGATE(k)

({
h(k−1)

u : u ∈ N (v)
})

,

h(k)
v = COMBINE(k)

(
h(k−1)

v ,a(k)
v

)
,

(12)
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Dataset No PreTrain AttrMasking ContextPred GraphCL JOAO JOAOv2 SimGRACE DRGCL
PPI-306K 64.8 ± 2.0 65.2 ± 1.6 64.4 ± 1.3 67.9 ± 0.9 64.4 ± 1.4 63.9 ± 1.6 70.3 ± 1.2 69.4 ± 0.4

Table 3: Transfer leaning performance on protein function prediction in biology PPI-306K dataset.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE AVG.
w/o RR & DR 69.7 ± 0.7 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2 75.4 ± 1.4 70.8

w/o RR 69.7 ± 0.7 74.7 ± 0.4 63.6 ± 0.5 59.9 ± 0.4 75.6 ± 3.5 72.2 ± 1.6 76.9 ± 0.8 75.1 ± 0.8 71.0
w/o DR 70.6 ± 0.8 74.3 ± 0.5 63.8 ± 0.5 60.3 ± 0.5 77.4 ± 1.4 73.8 ± 1.1 78.3 ± 1.0 76.8 ± 0.9 71.9
DRGCL 71.2 ± 0.5 74.7 ± 0.5 64.0 ± 0.5 61.1 ± 0.8 78.2 ± 1.5 73.8 ± 1.1 78.6 ± 1.0 78.2 ± 1.0 72.5

Table 4: Ablation study for DRGCL on downstream transfer learning.

whereN (v) is a set of nodes adjacent to v, a(k)
v is an aggre-

gating representations of v’s neighbors, h(k)
v is the feature

vector of node v at the k-th layer. For graph classification,
the READOUT function aggregates node features from the
final iteration to obtain the entire graph’s representation h:

h = READOUT
({

h(k)
v | v ∈ G

})
, (13)

where READOUT can be a simple permutation invariant
function such as summation or a more sophisticated graph-
level pooling function.

Our DR applies a dimensional weight to the graph repre-
sentation while the SR concentrates the rationale in message
passing or node representation. Suppose the AGGREGATE,
COMBINE, and READOUT functions are injective, then
obviously the change of nodes is a degeneration or special
solution of the graph. For ease of discussion, performing at-
tribute masking on node embeddings is equivalent to setting
the weight of corresponding dimensions to zero in the graph
embeddings. In addition, as the dimensionality of the rep-
resentation increases, the representational space of the DR
method is expansible. In contrast, SR, being a degenerate
form of DR, exhibits a fixed representation space owing to
its dependence on the representation space of the underlying
graph. Thereby, DR methods can contain more information
entropy, which helps the model to acquire more fine-grained
and intrinsic rationales of graphs.

5.2 Theoretical Feasibility of the Innate
Mechanism of the DR

According to (Wright and Ma 2022), high-dimensional
problems can be solved with low dimensions. To under-
stand this, we can obtain inspiration from Figure 5, which
is a counter-intuitive high-dimensional phenomenon in the
problem of measuring concentration on a sphere (Matousek
2002). Figure 5 depicts an ϵ-strip surrounding the equatorial
great circle of the sphere Sn−1 in Rn. In this case, the great
circle corresponds to the equator, where xn = 0. To ensure
that the strip covers a significant portion, let’s say 99% of
the sphere’s area, we have:
Area{x ∈ Sn−1 : −ϵ ≤ xn ≤ ϵ} = 0.99 ·Area

(
Sn−1) . (14)

Empirical evidence from low-dimensional spheres suggests
that a large value of ϵ is necessary. However, a straightfor-
ward calculation reveals that as the dimension n increases,

ϵ decreases on the order of n−1/2. Consequently, as n be-
comes large, the width of the strip 2ϵ can become arbitrarily
small. Consequently, as illustrated in Figure 5, the majority
of the sphere’s area concentrates around the equator.

By the same token, obtaining discriminative information
from high-dimensional graph embeddings can be solved
with low dimensions. The process of obtaining the DR can
be regarded as detecting the point distribution of the sphere.
In extreme cases, only a few dimensions of graph embed-
dings contribute to the downstream task, i.e., many dimen-
sional weights are approaching 0. Then, our graph represen-
tation problem can be equivalent to the problem of measur-
ing concentration on a sphere in Figure 5.

5.3 Guarantees for DRGCL’s Effectiveness
Motivated by (Wang et al. 2022; Li et al. 2022a), we pro-
vide two Theorems as guarantees for DRGCL’s effectiveness
in the field of self-supervised graph representation learning.
Theorem 5.1 states that reducing the risk of GCL loss can
improve the performance on downstream tasks, supporting
our intuition to make the model focus on the acquisition of
discriminative information by learning a DR weight. Theo-
rem 5.2 states that given the label y, the DR-aware represen-
tation z̃ has smaller conditional variance than z in conven-
tional GCL. Two Theorems are formulated as follows:
Theorem 5.1. (Connecting Graph DR-aware Representa-
tions to Downstream Cross-Entropy Loss). Under the min-
imal assumption of GCL, i.e., the graph contrastive label
is invariant to the distributions, when R is optimal, for any
z̃ ∈ R, the cross-entropy loss Lµ

CE (z̃) for downstream clas-
sification can be bounded by LDRIN (z̃):

LDRIN (z̃)−
√
ψ
(
z̃
∣∣∣y)− 1

2
ψ
(
z̃
∣∣∣y)− Err

≤ Lµ
CE (z̃) + log (M/D) ≤ LDRIN (z̃) +

√
ψ
(
z̃
∣∣∣y)+ Err,

(15)
where M is negative samples’ quantity, D denotes the represen-
tation’s dimensionality, z̃ is the DR-aware representation, y is
the target label, ψ

(
z̃
∣∣∣y) is the conditional feature variance, and

Err = O
(
M−1/2

)
is the approximation error’s order.

Theorem 5.2. (Guarantees for Reduced Conditional Vari-
ance of Graph DR-aware Representations). WhenR is opti-
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Fixed R BBBP Tox21 ToxCast SIDER ClinTox BACE AVG.
0.1 69.2 ± 1.0 75.3 ± 0.3 63.3 ± 0.3 60.6 ± 0.7 79.1 ± 1.4 75.3 ± 1.2 70.5
0.3 69.7 ± 0.9 74.1 ± 0.4 63.7 ± 0.4 61.6 ± 0.7 80.8 ± 1.2 76.3 ± 0.9 71.0
0.7 69.7 ± 0.5 75.0 ± 0.4 63.7 ± 0.5 60.0 ± 0.3 79.0 ± 1.9 73.7 ± 1.1 70.2
1.0 70.6 ± 0.8 74.3 ± 0.5 63.8 ± 0.5 60.3 ± 0.5 77.4 ± 1.4 76.8 ± 0.9 70.5

DRGCL 71.2 ± 0.5 74.7 ± 0.5 64.0 ± 0.5 61.1 ± 0.8 78.2 ± 1.5 78.2 ± 1.0 71.2

Table 5: Transfer learning in ZNIC-2M with different fixedR.

mal, for any coupled z, z̃ ∈ R, given label y, the conditional
variance of z̃ is reduced:

ψ
(
z̃
∣∣∣y) ≤ ψ

(
z
∣∣∣y) , yet ψ (

(z̃)k
∣∣∣y) ∼= ψ

(
(z)k

∣∣∣y) , (16)

where (·)k is a function acquiring k-th dimension vector.

Proof. Suppose our redundancy reduction part can best
decorrelate the dimensions in graph embeddings, we have

ψ
(
z̃
∣∣∣y) (1)

=
D∑

k=1

ψ
(
(z̃)

k
∣∣∣y) (17)

(2)
=

D∑
k=1

ψ
(
ωk (z)

k
∣∣∣y) (18)

(3)
=

D∑
k=1

ω2
kψ

(
(z)

k
∣∣∣y) (19)

(4)

≤
D∑

k=1

ψ
(
(z)

k
∣∣∣y) (5)

= ψ
(
z
∣∣∣y) , (20)

where (1) holds because each dimension is independent of
the others; (2) is derived by Equation 3 and Equation 4; (3) is
acquired by the property of variance that ψ(Ax) = A2ψ(x)
if A is a random variable; (4) holds because ωk ≤ 1; (5)
holds due to Equation 14 in (Wang et al. 2022).

(Li et al. 2022a) has already proved the equality part of
Equation 16. Thus, we further provide the proof for the in-
equality part in Equation 16 as above. We incorporate The-
orem 5.2 into Theorem 5.1 in order to infer an outcome:
our methodology can more effectively limit the downstream
classification risk. This means the upper and lower limits
of supervised cross-entropy loss established by DRGCL are
more constrained compared to those obtained through con-
ventional GCL techniques.

6 Experiments
6.1 Experimental Setup
For unsupervised learning, we benchmark DRGCL on eight
established datasets in TU datasets (Morris et al. 2020). The
baselines include Graphlet Kernel (GL) (Shervashidze et al.
2009), Weisfeiler-Lehman Sub-tree Kernel (WL) (Sher-
vashidze et al. 2011), Deep Graph Kernels (DGK) (Ya-
nardag and Vishwanathan 2015), Node2Vec (Grover and
Leskovec 2016), Sub2Vec (Adhikari et al. 2018), Graph2Vec
(Narayanan et al. 2017), InfoGraph (Sun et al. 2020),

Experiment Unsupervised Transfer
learning learning

Backbone GNN type GIN GIN
Backbone neuron [32,32,32] [300,300,300,300,300]
D. R. Gen. neuron 96 300
Projection neuron [512,512,512] [300,300]

Pooing type Global add pool Global mean pool
Pre-train lr 0.01 0.001
Finetune lr - {0.01,0.001,0.0001}

Temperature τ 0.1 0.1
Traning epochs 20 {60,80,100}

Trade-off parameter λ 0.001 0.001
Trade-off parameter α 10 10

Table 6: Model architectures and hyper-parameters.

GraphCL (You et al. 2020), ADGCL (Suresh et al. 2021),
JOAO (You et al. 2021), RGCL (Li et al. 2022c) and Sim-
GRACE (Xia et al. 2022). For transfer learning, we perform
pre-training on ZNIC-2M (Sterling and Irwin 2015) and
finetune on eight multi-task binary classification datasets
(Wu et al. 2017). The baselines include six of nine meth-
ods the same as the ones in unsupervised learning and two
different pre-train strategies in (Hu et al. 2020), i.e., attribute
masking and context prediction. Furthermore, we evaluated
the transferability of our approach on the PPI-306k (Zitnik
and Leskovec 2017) dataset. The evaluation protocols for
unsupervised and transfer learning follow (Sun et al. 2020;
You et al. 2020). The details of our model architectures and
corresponding hyper-parameters are summarized in Table 6.

6.2 Unsupervised Learning
The results of unsupervised graph-level representations for
downstream graph classification tasks are shown in Table 1.
Our method consistently ranks among the top 3 and achieves
the lowest average rank of 2.8, outperforming the SR-based
method RGCL and other methods without rationalizations.
The findings demonstrate the capability of our method to
learn discriminative representations.

6.3 Transfer Learning
The results of transfer learning on ZNIC-2M are pre-
sented in Table 2. By utilizing DR to construct embeddings
that preserve semantic information, our DRGCL framework
achieves top-3 performance on six out of eight datasets and
exhibits the highest average accuracy compared to existing
baselines. Our method demonstrates superior transferability
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RDT-B
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DRGCL SimGRACE JOAOv2 GraphCLRGCL
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Figure 6: Visualization of unsupervised learning results on
six data sets for the top-5 methods. “with DR” denotes our
method with DR, “with SR” denotes the SR method RGCL,
and “without R” denotes the other methods without using
rationale.

Figure 7: T-SNE visualization of four methods on MUTAG.

compared to other baselines, providing empirical evidence
that it can learn more essential rationales in graphs.

The transfer learning results on PPI-306K are shown in
Table 3, where our method shows competitive or better
transferability than other pre-training schemes.

6.4 Ablation Studies

We conducted ablation studies in transfer learning, shown
in Table 4. Our method experiences a decrease of 0.6 in the
average score when the DR weight is removed (w/o DR),
highlighting the significance of DR. And the decrease of 1.5
in the average score when eliminating the redundancy part
(w/o RR) reveals the importance and functionality of RR.
It is important to note that the framework GraphCL repre-
sents the absence of DR and RR. Notably, both the results of
w/o DR and w/o RR outperform GraphCL, emphasizing the
positive impact of the two components.

6.5 Transfer Learning with Different FixedR
In ablation studies, the setting without DR is equivalent to
pre-training our model with a fixed dimensional weight, i.e.,
R, where the meta-learning module is not applied to keep
the fixed R and each dimension of R is set to 1. In this
experiment, we further explore the results of different fixed
dimensional weightsRwhen the DR is not applied. We con-
ducted experiments in transfer learning on ZNIC-2M with
fixed R in [0.1, 0.3, 0.7, 1.0], where each dimension ofR is
set the same value. The results of transfer learning on ZNIC-
2M with different fixed R are shown in Table 5. We notice
a consistent phenomenon that our DRGCL method with the
DR module which updatesR in a meta-learning manner out-
performs the other four methods with different fixed dimen-
sional weights. This experiment further proves the signifi-
cance of the DR.

6.6 Visualization Results
In Figure 6, we visualize the experimental results of the un-
supervised learning comparisons. We plot a radar chart with
each direction denoting a dataset, the vertexes of the lines
denoting the downstream classification results, and the dif-
ferent colors denoting the top-5 methods of unsupervised
learning. Note the scale of each direction is different. The
visualization results significantly show the performance su-
periority of the proposed DRGCL over benchmarks. This
observation further proves the validity of our findings, i.e.,
compared with the conventional SR and methods without R,
the DR is relatively intrinsic to graphs.

In Figure 7, we utilize T-SNE to visualize four GCL meth-
ods on MUTAG in unsupervised learning. In the first three
methods, the scatter plots of two different classes exhibit sig-
nificant overlap, while our proposed method demonstrates
reduced overlap, facilitating the identification of a more in-
tuitive hyperplane for their separation. This observation sub-
stantiates the superior discriminability of DRGCL.

7 Conclusion
In this paper, we elucidate the causal association among
graph embeddings, contrastive labels, and graph DRs, sub-
sequently formulating it through the application of a rigor-
ous SCM. To eliminate the task-agnostic information during
pre-training, we propose DRGCL as an intuitive approach
to adaptively capture DRs in graph embeddings, which in-
troduces a learnable DR weight updated by a bi-level opti-
mization and a graph DR redundancy reduction regulariza-
tion term implemented. Benefiting from acquiring DR and
reducing the redundancy in graph embeddings, our method
achieves new state-of-the-art performance compared to var-
ious GCL methods on multiple benchmarks.

Limitations and broader impacts. Due to the needing
for a bi-level optimization, it will cost more time to train a
model with the ability to capture DR-aware representations.
Besides, our method can be seen as a plug-and-play layer
that can be used with any GCL method on any feature-based
dataset. Thus, it’s worth exploring the combinations of the
rationales during different procedures of GCL, which may
be a good research direction next.
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