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Abstract

Explaining the decisions made by Graph Neural Networks
(GNNs) is vital for establishing trust and ensuring fairness
in critical applications such as medicine and science. The
prevalence of hierarchical structure in real-world graphs/net-
works raises an important question on GNN interpretability:
”On each level of the graph structure, which specific frac-
tion imposes the highest influence over the prediction?” Cur-
rently, the prevailing two categories of methods are incapable
of achieving multi-level GNN explanation due to their flat
or motif-centric nature. In this work, we formulate the prob-
lem of learning multi-level explanations out of GNN mod-
els and introduce a stratified explainer module, namely STF-
Explainer, that utilizes the concept of sufficient expansion to
generate explanations on each stratum. Specifically, we learn
a higher-level subgraph generator by leveraging both hier-
archical structure and GNN-encoded input features. Experi-
ment results on both synthetic and real-world datasets demon-
strate the superiority of our stratified explainer on standard
interpretability tasks and metrics such as fidelity and expla-
nation recall, with an average improvement of 11% and 8%
over the best alternative on each data type. The case study
on material domains also confirms the value of our approach
through detected multi-level graph patterns accurately recon-
structing the knowledge-based ground truth.

Introduction
Interpreting Graph Neural Networks (GNNs) (Dwivedi et al.
2020; Wu et al. 2020) is considered a key agenda for Ex-
plainable AI as GNNs grow flourishing in our machine
learning toolbox, yet still suffer greatly from the well-known
black box problem. Fortunately, the field has been witness-
ing a burst of literature in the recent few years (Yuan et al.
2022; Kakkad et al. 2023). These successful proposals build
a solid theoretical foundation for GNN explanation. Both
instance-level post-hoc explanation methods (notably the
seminal work of GNNExplainer (Ying et al. 2019)) and
mechanism for model-level explanation (e.g., XGNN (Yuan
et al. 2020)) are introduced. They help to establish trust
and ensure fairness in critical applications such as chem-
istry (Reiser et al. 2022), material science (Choudhary et al.
2022), and finance (Wu, Chao, and Li 2023).
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Despite the surge of this topic, there is currently lit-
tle work considering the hierarchically clustered structure
within the graph whilst explaining the GNN on top of these
graphs. In fact, such hierarchical structure arises naturally in
scientific or social contexts and can be central to their graph
characteristics and application-level properties. For exam-
ple, a popular class of compound in material science, namely
Metal-Organic Frameworks (MOFs), is composed of com-
plex molecular graphs built recursively from a variety of
Secondary Building Units (SBUs). As shown in Figure 1(a),
the catalytic performance of MOF in a chemical reaction is
influenced by both the local atomic structure of the underly-
ing SBU and the connectivity among high-level SBUs.

In this work, we consider the problem of explaining GNN
models at multiple levels aligning with the inherent hier-
archical structure of the input graph. Currently, the only
hierarchy-aware GNN explanation method, i.e. MotifEx-
plainer (Yu and Gao 2022), focuses on extracting influential
high-level clusters out of the graph data, but misses the op-
portunity to credit inter-cluster connectivity and high-level
subgraphs, of the pattern crucial to most classical GNN ex-
plainers at the input graph level. Meanwhile, the subgraph
explanation by classical methods (Ying et al. 2019; Luo et al.
2020; Wang et al. 2021) can also be hierarchically clustered
according to the prior knowledge on the graph and achieves
multi-level explanations. Yet, this mash-up approach does
not capture the importance of group-based features at mul-
tiple graph levels, imposing limitations on the essential pro-
cesses of candidate subgraph generation and optimization.

This paper studies explanation methods that natively sup-
port multi-level GNN interpretation. Though existing ap-
proaches have established a general pipeline for GNN expla-
nation and adapted effective optimization algorithms, there
are still several challenges in solving our recent problem.
First, the classical objective function based on mutual in-
formation is only defined at the input graph level. The hi-
erarchical graph structure vital to our work is yet to be in-
corporated. Second, the optimization framework adopted by
existing methods depends on the context that the individ-
ual features optimized have already been embedded by the
GNN explained, which can be trained altogether to optimize
the objective. In contrast, high-level graph features are not
necessarily embedded in the original GNN model. Finally,
evaluating multi-level GNN explanations is a new task that
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Figure 1: The framework of STFExplainer. (a) a case of the multi-level structure of MOF molecular graph and its influence
on catalytic performance; (b) an overview of our GNN explanation pipeline; (c) the first stage by learning high-level graph
feature embeddings through coarsening; (d) the second stage by computing important scores on high-level clustered edges for
explanatory subgraph sampling. (e) the final stage of explainer optimization through sufficient expansion.

requires examining the utility of existing benchmark data
and compiling performance metrics in a reasonable way.

We make several contributions to tackle these challenges.

• We formally define the objective function for multi-level
GNN explanations, compatible with the widely accepted
measure of mutual information. To link between high-
level and input-stage graph features, a new concept of
sufficient expansion is introduced;

• We propose an improved optimization framework to
solve the objective function. By augmenting the original
learning pipeline with additional graph coarsening and
attributing modules, high-level graph features can be ap-
propriately aggregated, represented, and optimized;

• We develop an evaluation methodology using existing
benchmarks, real-world material graphs, and synthetic
instances with hierarchical structures. We carefully se-
lect relevant and available metrics for the evaluation.

Experimental results on both classification and regres-
sion tasks demonstrate the superiority of our method. The
fidelity/recall (i.e., key metrics for GNN explanation) is con-
stantly ranked in top-2, with an average improvement of
11% and 8% over the best alternative in real-world and syn-
thetic datasets respectively. A chemical case study also con-
firms the usefulness of extracted multi-level explanations.

Related Work
We consider two classes of most relevant work, more litera-
ture on GNN explanation methods can be found in the latest
survey (Yuan et al. 2022; Kakkad et al. 2023).

Hierarchy-Aware GNN Explanations
GNN explanation methods considering hierarchical struc-
ture are limited. MotifExplainer (Yu and Gao 2022) uses
clustered graph structures as motifs and ranks their represen-
tations through an attention-based method, providing more
intuitive and understandable explanations. However, it can-
not explain the relationship between clustered structures.

On the other hand, GLGExplainer (Azzolin et al. 2022)
explains high-level relationships between local graph pat-
terns by projecting them onto learned prototypes form-
ing concept vectors. These vectors are used to train an
entropy-based logic explainable network (Barbiero et al.
2022; Ciravegna et al. 2023) for class prediction alignment.
However, it does not explain the structural relationships be-
tween clusters as the explanation is a logical formula of the
prototypes. Previous work in (Ying et al. 2018; Tang et al.
2021) customizes a layered model in a priori manner for
hierarchy-aware GNN explanation. (Kengkanna and Ohue
2023) explores the impact of multi-level graph representa-
tion on model learning, but achieving model-agnostic multi-
level explanations is infeasible as priori methods require em-
bedding each form of knowledge into the model structure.

Post-hoc GNN Explanations
Traditional GNN explanation methods combined with hi-
erarchical structure can generate multi-level explanations.
Parametric explanation methods (Ying et al. 2019; Yuan
et al. 2020; Luo et al. 2020; Vu and Thai 2020; Wang et al.
2021) additionally train parametrized models. For instance,
GNNExplainer learns soft masks for every graph and applies
them to recover predictions. XGNN trains a graph genera-
tor that outputs class-wise patterns for the explained GNN.
PGExplainer employs a probabilistic generative model to
collectively explain GNN on multiple graphs. PGMEx-
plainer introduces a Bayesian network to model pairs of
perturbed graphs and prediction changes. Refine provides
a global explanation by pre-training a class-aware attribu-
tor and achieves local explanation by fine-tuning. Parametric
explainers focus on the fidelity of input groups but become
suboptimal when the high-level structure is considered.

In the second class, non-parametric GNN explanation
methods (Baldassarre and Azizpour 2019; Schnake et al.
2021) compute feature contribution without the need for
end-to-end training. They use heuristics such as gradient-
like scores that backpropagate model prediction loss to input
features (Pope et al. 2019). However, non-parametric meth-
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Notations Descriptions
G, V , E the input graph, with its node and edge set
A, X, Z adjacent matrix, node features & embedding of G

f , femb, fcls GNN, its node embedding & classification layers
Y , Ŷ output variable and distribution of GNN models

G(l), V(l), E(l) the level-l graph, with its node and edge set
S(l), A(l) cluster assignment & adjacency matrix in level-l
Gs, G(l)

s explanatory subgraph of input and level-l graph

Table 1: Notations used throughout this work.

ods are generally less preferred due to their inability to in-
corporate fidelity constraints in deriving GNN explanations,
especially when high-level graph fidelity is considered.

Problem Definition
Table 1 lists notations related to GNN, its explanations,
and graph’s hierarchical structure. We then formally define
multi-level GNN explanation problem focused in this work.

Notations for GNN Explanation
Denote input graph as G = (V, E) with node set V and edge
set E , and its adjacency matrix as A ∈ {0, 1}|V|×|V|, where
Aij = 1 means an edge from node vi to vj , and Aij = 0 oth-
erwise. The node feature matrix is denoted by X ∈ R|V|×d.

Without loss of generality, we consider the classification
task where GNN works as a graph classifier f . The f learns
the output distribution Ŷ for each input graph by the condi-
tional distribution Ŷ ∼ Pf (Y |G,X), where Y denotes the
output variable with a class set of 1, ..., C . Inside the GNN
model, the key is to learn the final node embeddings through
convolution layers, holistically denoted by Z = femb(G,X)
where Zi is the embedding for each node vi. For the down-
stream classification task, these node embeddings are read-
out and then classified, normally via a Multi-Layer Percep-
tron (MLP). The readout and MLP layers are defined to-
gether as Ŷ ∼ fcls(Z). Notice that f(·) = fcls(femb(·)).
Explaining GNNs. Mainstream GNN explanation methods
extract a subgraph Gs ∈ G out of each input graph, as well
as a set of contributing node features Xs ∈ X. To make
sure the subgraph encompasses salient features of the GNN
model, a representative objective function is introduced in
the work of (Ying et al. 2019) and has been widely adopted:

min
Gs

−MI(Ŷ , Gs) + L(Gs) (1)

where MI(Ŷ , Gs) denotes the mutual information between
the explanatory subgraph and the outcome variable. L(·) de-
notes the regularizer imposing sparsity constraints on the
subgraph explanation. The mutual information can be seen
as a relevance score of the extracted subgraph w.r.t the out-
come, indicating the importance of the subgraph feature.
Hierarchical structure of graph data. In many science/so-
cial scenarios, graphs are formed with clustered structures,
where some groups of nodes become closer/similar to each
other than to the nodes outside the group. More often than

not, this clustered structure happens recursively at all lev-
els of graph and collectively determines the graph’s nature,
as well as the performance of various downstream tasks. As
shown in Figure 1(b), we represent the graph’s hierarchi-
cal structure by a clustering tree. The tree is defined by a
list of cluster assignment matrices S(l) ∈ {0, 1}|V|×|V(l)|

(l = 1, · · ·), where V(l) denotes the node set of the level-l
clustered graph G(l) and S(l)

ij = 1 indicates that the original

node vi belongs to the level-l cluster node v(l)j and 0 other-
wise. We omit that some ambiguous nodes can have mixed
upper-level membership, which requires minor changes.

Multi-Level GNN Explanation
As mentioned, the graph structure at multiple levels collec-
tively determines downstream performance. For example, in
the material design process of MOFs (Figure 1(a)), scien-
tists decompose their crystal structure into SBUs and SBUs-
links. Crucial SBUs and links are identified based on their
co-occurrence with desired MOF properties, e.g., strong cat-
alytic performance. Scientists can drill down to the internal
structure of each SBU and study the functionality of low-
level composition of metal and organic molecules to design
new SBUs for high performance. Understanding GNN ex-
planations at multiple graph levels becomes vital.

It is straightforward to define the objective for multi-level
GNN explanations according to the heuristics of Eq. (1):

min
G

(l)
s

−MI(Ŷ , G(l)
s ) + L(G(l)

s ), ∀l ≥ 1 (2)

where G(l)
s ⊆ G(l) denotes level-l explanatory subgraph.

The mutual information between G(l)
s and GNN’s output Ŷ

is still used as the relevance score of high-level subgraph.
The mutual information is normally computed by decom-

posing into the conditional entropy. For example, in Eq. (1),
the conditional entropy H(Ŷ |Gs) can be empirically esti-
mated by feeding the extracted subgraph Gs into the trained
GNN and obtaining the output distribution. However, the
new objective in Eq. (2) cannot be treated in the same man-
ner. H(Ŷ |G(l)

s ) is intractable as the GNN does not directly
take a high-level clustered graph as input. To make the ob-
jective traceable, we need to introduce an expansion func-
tion E(l)(·) that translates the clustered graph at level l into
a particular low-level subgraph of the original full graph G.

min
G

(l)
s , G

(0)
s =E(l)(G

(l)
s )

−MI(Ŷ , G(0)
s ) + L(G(l)

s ) (3)

where G(0)
s denotes the expanded subgraph used for mutual

information computation. As a result, to solve Eq. (3), we
need to not only optimize the objective similar to Eq. (1),
but also determine a reasonable expansion function.

Stratified GNN Explanation
We introduce a stratified GNN explainer, or STFExplainer
for short, to fulfill the objective of the above problem and
achieve multi-level GNN explanations.
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STFExplainer Using Sufficient Expansion
The keys to solving Eq. (3) lie in first determining the ex-
pansion function E(l)(·) and then minimizing the objective
in the form of Eq. (1), where the optimization method pro-
posed in the literature can be applied. To appropriately se-
lect the expansion function, we need to gain a deeper under-
standing of the objective. Take a closer look at both Eq. (1)
and Eq. (2), though in the same form, the two objectives
have subtle differences. The default objective of Eq. (1)
elects the subgraph having the largest mutual information
with the outcome variable while enforcing the sparsity con-
straint. The subgraph is defined on the original graph such
that node/edge features with negative relevance to the out-
come are all removed. On the other hand, the new objective
of Eq. (2) selects a subgraph from the level-l graph. It is im-
plied that, at each graph level, the features work in a group
manner according to the cluster boundary. Though the final
objective of Eq. (3) can be minimized by expanding each
cluster to all the underlying nodes/edges with positive rele-
vance, the optimization results diverge from our goal of un-
covering high-level features that collectively exert influence.

Our analysis is supported by the representation theory of
(Wang et al. 2022). They define the sufficient representation
of a random variable X as containing all relevant informa-
tion needed for inferences about the underlying distribution.
Definition 4.1 (Sufficient Representation). The represen-
tation zsuff1 of random variable v1 is sufficient for random
variable v2 if and only if:

MI(zsuff1 , v2) =MI(v1, v2) (4)

According to the theory of sufficient representation, when
mapped to the original graph, the extracted level-l subgraph
G

(l)
s should have the same mutual information with the re-

sulting subgraph at the lowest/original graph level, w.r.t the
outcome variable. The only candidate of such mapping turns
out to be the full expansion of G(l)

s to every lowest-level
node/edge belonging to clusters/edges in G(l)

s , which is de-
fined as the sufficient expansion function SE(·). The ap-
proach of sufficient expansion is validated through experi-
ments in Section 5. It is reported that, whenever a sampling
function is used instead of the sufficient expansion regard-
less of the sampling rate, the resulting mutual information
will quickly deviate from the original value by the sufficient
expansion, i.e., from the mutual information of the extracted
high-level subgraph. Formally, the sufficient expansion of a
level-l subgraph G(l)

s to the input graph can be defined by:

SE(A(l)
s ) = A⊙ (S(l) · A(l)

s · S(l)⊤) (5)

where SE(A(l)
s ) and A(l)

s are adjacent matrix of SE(G
(l)
s )

and G(l)
s , respectively. The multiplication of A ensures that

the explanatory subgraphs exclude non-existent edges. In
this way, we replace expansion E(·) with sufficient expan-
sion SE(·) and rewrite the objective function of Eq. (3) as:

min
G

(l)
s

−MI(Ŷ , SE(G(l)
s )) + L(G(l)

s ) (6)

Algorithm 1: Training for explaining GNN at level-l

Input: {(G(0)
o , G

(l)
o , S(l),X,Z, Ŷo)}, fcls(femb(·))

for each epoch do
for each graph G(0)

o do
Z(l) ← get level-l embedding with Eq. (7)
ω(l) ← saliency value calculated with Eq. (8)
Ĝ

(l)
s ← subgraph sampling from Eq. (9)

SE(Ĝ
(l)
s )← sufficient expansion with Eq. (5)

Ŷs ← fcls(femb(SE(Ĝ
(l)
s ),X))

end for
Compute loss with Eq. (6) & Update ψ1 and ψ2

end for

Optimization Framework
We first consider the representative optimization method
proposed by (Luo et al. 2020), which solves Eq. (1) in three
steps. First, they apply feature attribution algorithms to com-
pute a relevance score for each embedding of the input graph
G. Second, feature selection is performed to pick important
edges based on these scores and form the candidate subgraph
for explanation. Finally, the subgraph is substituted into the
objective function and optimized iteratively.

Directly applying the above method to Eq. (6) is pro-
hibitive as the original GNN does not generate embeddings
for high-level clusters inherently. Then relevance scores can-
not be computed for cluster-level edges as those for origi-
nal graph edges. Our STFExplainer introduces an improved
framework: 1) learns high-level group-based embedding via
coarsening module; 2) assigns relevant scores to the cluster-
level edges using updated attribution module; 3) extracts ex-
planatory subgraph using SE(·), evaluated and optimized in
the context of Eq. (6). For clarity, refer to Algorithm 1.
Hierarchy-aware coarsening module. On top of the node
embeddings Z = femb(G,X) by the GNN model, we first
learn a coarsening module H that aggregates the represen-
tation of each high-level cluster and obtain its feature em-
bedding Z(l) ∈ R|V(l)|×h∗

, where |V(l)| is the number of
clusters in the l-th graph level, and h∗ denotes the output em-
bedding size of the coarsening module. Formally, we have:

Z(l)
j = H(S(l),Zj) = AGG({DNNψ1(Zi)|S

(l)
i = j}) (7)

where DNNψ1
is a deep neural network parameterized with

ψ1, AGG(·) is the pooling operation.
Multi-level attribution module. We then design an attribu-
tion module T , which computes saliency value ω(l)

ij , aka the
relevance score, for each level-l edge among clusters.

ω
(l)
ij = MLPψ2

([Z(l)
i ;Z(l)

j ]) (8)

where MLPψ2
is a MLP parameterized with ψ2, and [·; ·] is

the concatenation operation.
Subgraph generation and optimization. Our third step
largely follows (Luo et al. 2020). Reparameterization trick is
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Figure 2: Generation of a synthetic dataset over BA model.

applied to enable a continuous relaxation of edge sampling:

ê
(l)
ij = σ((log

ϵ

1− ϵ
+ ω

(l)
ij )/β) (9)

where ϵ ∼ Uniform(0, 1) is the random number for sam-
pling, and the sigmoid function σ with a temperature hyper-
parameter β is used to translate the relevance score ω(l)

ij to

the edge weight ê(l)ij , which is binarized with β → 0. The

edge weights are used to generate a candidate subgraph Ĝ(l)
s

in level-l. Finally, the mutual information between the suffi-
cient expansion of the candidate graph Ĝ(l)

s and the predic-
tion outcome is maximized. The objective becomes:

min
ψ1,ψ2

−EϵEc[Pf (Y = c|G) logPf (Y = c|SE(Ĝ(l)
s ))]

(10)

Theoretical Analysis on STFExplainer
Computational complexity. Close to the work of (Luo et al.
2020) with a similar optimizer design, our method only ex-
tracts subgraph from a coarse-grained graph with a size of
|V(l)|× |V(l)|, smaller than the input graph of size |V|× |V|.
Additionally, the coarsening moduleH can be shared across
all high-level graphs, which further reduces the complexity.
Comparison of explanatory subgraphs in different lev-
els. Domain experts often need to compare the explanation
patterns at multiple graph levels, asking: “Which seman-
tic level on the knowledge hierarchy is more important for
graph inference?” STFExplainer introduces a saliency vec-
tor FS ∈ RL×2 to rank the utility of all graph levels up to L,
by comparing the intra- and inter-cluster graph structure:

P(l)
intra =MI(Ŷ , G(l) = A(l) ⊙ I(l)) (11)

P(l)
inter =MI(Ŷ , G(l) = A(l) − A(l) ⊙ I(l)) (12)

FS [l]l≤L = softmax(P(l)
intra,P

(l)
inter) (13)

where I(l) is an identity matrix.

Experiment
We evaluate STFExplainer with a variety of data and tasks
relevant to the multi-level explanation problem, including a
few benchmark data for generic GNN explanation and more
settings tailored to our special requirement.

Figure 3: Average ranks of fidelity metric (varying ρ).

Data and Task
Real-world molecular graphs from chemistry/material sci-
ence and a synthetic graph dataset with injected hierarchical
explanations are considered. Both classification and regres-
sion tasks are investigated, with the top-level hierarchy used
as the explanation level. The MUTAG and BA-motif datasets
have 2 levels of hierarchy, while the QMOFs dataset has
3. The hierarchical structure is extracted based on domain
knowledge or ground truth, without any supernode cutoff.
MUTAG classification. We select the widely used Muta-
genicity dataset (MUTAG) (Kazius, McGuire, and Bursi
2005; Riesen and Bunke 2008; Ying et al. 2019), which con-
tains 4,337 molecular graphs labeled with two classes based
on mutagenic effect. The mutagenicity of a molecular graph
is correlated with its structure, such as the presence of cer-
tain local compounds like rings. We use the clustering al-
gorithm from MotifExplainer (Yu and Gao 2022) to extract
hierarchical structure from MUTAG graphs and apply a stan-
dard GCN model (Kipf and Welling 2016) for classification.
Catalytic performance regression of MOFs graphs. We
consider the molecular graph of MOFs from the material do-
main due to its structure-performance relationship which is
key to MOF design. MOFs graphs exhibit an unambiguous
hierarchical structure with SBUs and Links, corresponding
to clusters. In a typical setting, the QMOFs dataset (Rosen
et al. 2021, 2022) is used to infer the bandgap value of
each MOF, critical for catalytic performance. The Schnet
model (Schütt et al. 2017), customized for MOFs inference,
achieves a mean absolute error (MAE) of 0.298 in bandgap
regression and is explained in our experiment.
Motif graph classification. Similar to previous approaches
in (Luo et al. 2020), we generate a synthetic dataset with
10,000 candidate graphs, namely BA-Hierarchy-motif, by
incorporating a 2-level structure into the Barabasi-Albert
(BA) graphs. As shown in Figure 2, each graph has a BA
component as a base, which is appended with a square struc-
ture. On the square, each of the four nodes is randomly sub-
stituted with either a house or wheel motif. In addition,
house and wheel motifs are also randomly appended to the
BA base as noise. The classification task is to infer whether
house or wheel motifs are more frequent in the square of
each graph. Again, the standard GCN model is applied.

Alternative Methods
STFExplainer is compared with three types of alternatives.
Hierarchical-aware GNN explanations. We modified Mo-
tifExplainer to detect high-level explanatory subgraphs by
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MUTAG QMOFs
Fidelity (ACC) Fidelity (CE) Spar@0.1% Fidelity (R2) Fidelity (MAE) Spar@5%

Motif-mul (-36%) 0.814± 0.002 0.662± 0.023 0.896± 0.004 0.259± 0.006 0.887± 0.001 0.259± 0.001
Motif-add (-36%) 0.817± 0.004 0.654 ± 0.020 0.905 ± 0.006 0.247± 0.001 0.894± 0.003 0.255± 0.001
Motif-max (-38%) 0.812± 0.008 0.686± 0.029 0.898 ± 0.003 0.246± 0.002 0.894± 0.002 0.256± 0.004
SA (-11%) 0.943 ± 0.000 0.779± 0.000 0.866± 0.000 0.513± 0.002 0.588± 0.000 0.459± 0.000
DeepLift (-11%) 0.943 ± 0.000 0.779± 0.000 0.866± 0.000 0.517± 0.002 0.591± 0.001 0.204± 0.001
CXPlain (-50%) 0.845± 0.011 1.183± 0.001 0.782± 0.009 0.317± 0.025 0.840± 0.021 0.235± 0.023
GNNExplainer (-23%) 0.923± 0.001 1.054± 0.001 0.859± 0.000 0.481± 0.003 0.580± 0.001 0.446± 0.001
PGExplainer (-44%) 0.905± 0.000 0.820± 0.001 0.852± 0.000 0.506± 0.001 0.537± 0.002 0.489 ± 0.001
Refine-CT (-28%) 0.850± 0.124 0.964± 0.640 0.794± 0.134 0.449± 0.011 0.688± 0.008 0.518 ± 0.006
PGMExplainer (-51%) 0.572± 0.004 1.802± 0.004 0.031± 0.001 0.581 ± 0.005 0.480 ± 0.003 0.449± 0.003
STFExplainer 0.951 ± 0.016 0.657 ± 0.207 0.820 ± 0.021 0.556 ± 0.013 0.511 ± 0.015 0.407± 0.008

Table 2: The comparison of GNN explanation metrics on two real-world datasets. Percentage (%) beside compared methods
shows avg. deviation from STFExplainer on Fidelity/Recall, which is raised to compensate for large variations among datasets.

BA-Hierarchy-motif
Recall Fidelity (ACC) Spar

Motif-mul (-8%) 0.557± 0.001 1.000 0.597
Motif-add (-8%) 0.560 ± 0.002 1.000 0.595
Motif-max (-8%) 0.557± 0.001 1.000 0.596
SA (-18%) 0.428± 0.000 1.000 0.568
DeepLift (-18%) 0.428± 0.000 1.000 0.568
CXPlain (-14%) 0.481± 0.001 1.000 0.556
GNNExplainer (-15%) 0.467± 0.005 1.000 0.580
PGExplainer (-9%) 0.553± 0.003 1.000 0.464
Refine-CT (-20%) 0.401± 0.202 1.000 0.656
PGMExplainer (-11%) 0.529± 0.000 1.000 0.493
STFExplainer 0.666 ± 0.002 1.000 0.561

Table 3: The comparison on a synthetic dataset. Motif-mul’s
recall is 84% of STFExplainer (-16%), while Fidelity re-
mains 100% (-0%), resulting in an average deviation of -8%.

aggregating the saliency values of underlying motifs. Three
extensions, -add, -mul, and -max, were introduced to com-
pare with STFExplainer, using the addition, product, and
maximum operation in generating the importance score, re-
spectively. Though GLGExplainer can also detect motifs, it
does not quantify the saliency of each motif, and cannot be
directly compared wrt. multi-level explanations.
Classical GNN explanations. Typical methods in this class,
i.e., GNNExplainer, PGExplanier, PGMExplanier, and Re-
fine are evaluated. Their explanations at the input graph level
are further hierarchically clustered by the assignment matri-
ces to obtain the multi-level explanations for comparison.
Note that Refine exploits class-aware knowledge in an ad-
ditional pre-training stage using contrastive learning (CL).
CL can not be universally integrated into other GNN expla-
nation methods, also it does not work for regression tasks.
Thus, we use a version of Refine without CL instead, namely
Refine-CT, which still retains the pre-training module.
Genetic explanation of machine learning models. The ex-
planation methods not specialized for GNNs are also in-
cluded. SA (Pope et al. 2019) uses model gradients w.r.t.
the input graph as explanatory edge importance. DeepLIFT
(Shrikumar, Greenside, and Kundaje 2017) decomposes the
prediction of a neural network onto each specific input

by a backpropagating-like operation. CXPlain (Schwab and
Karlen 2019) applies a causal objective to explain models.

Evaluation Metrics

We repeat our experiment 10 times, use grid search to find
the best hyperparameters for all methods and evaluate vari-
ous DNN designs compatible with our coarsening module.
Fidelity. The fidelity (Chen et al. 2018; Liang et al. 2020;
Covert, Lundberg, and Lee 2020) is a widely accepted mea-
sure for GNN explanation, quantifying how well an explana-
tion recovers original model predictions. We report the aver-
age fidelity@ρ following the practice of Refine(Wang et al.
2021). The extra parameter ρ specifies the ratio of selected
edges in the explanation, ranging from {0.1, 0.2, . . . , 1.0}
for data without ground truth. Full results can be found in
Figure 3. For classification tasks, overall accuracy ACC@ρ
(larger is better) and cross-entropy (CE) loss (smaller is bet-
ter) are commonly used. For regression tasks, MAE (smaller
is better) and R2 (larger is better) are normally applied.
Recall. Per the successful practice previously (Ying et al.
2019), on datasets with ground truth for the explanation, e.g.
the synthetic data, the recall metric can be more accurate
for evaluation (larger is better). The metric is calculated by
Recall = EG(|Gs ∩G∗s |/|G∗s |), where G∗s is the ground-truth
explanatory subgraph, Gs is the subgraph extracted by ex-
planation methods, | · | denotes the number of edges in a
graph, E denotes the expectation across all graph data. Nor-
mally, Gs is composed of top-N edges recommended by the
method where N is set to the edge size of G∗s for calibration.
Sparsity. As an auxiliary metric, sparsity reports the re-
quired subgraph size for GNN explanations, defined as
Spar = EG(1 − |Gs|

|G| ). When no ground truth is available,
|Gs| is required to have the smallest number of edges for
an error rate below α. The error rate measures the deviation
from the original prediction when the explanatory subgraph
is used as input. The metric then becomes Spar@α, with
lower α indicating higher fidelity. For classification and re-
gression tasks, we set α to be 0.1% and 5%, respectively, un-
der high fidelity. While high sparsity is desirable, it is not as
important as fidelity or recall metrics for explanation tasks.
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Figure 4: The variation of MI upon incomplete expansions.

Result
STFExplainer outperforms alternatives in nearly all fidelity
and recall (key metrics) in both real-world/synthetic data and
classification/regression tasks (Tables 2 and 3). It ranks top-
2 in 6 fidelity/recall metrics (highlighted in bold) among 11
methods, with an average deviation of 11% and 8% (percent-
age beside compared methods) from the best alternative on
real-world and synthetic datasets, respectively. Figure 3 de-
tails the average rank of 4 fidelities of real-world data. STF-
Explainer becomes the top after ρ ≤ 60%, a common setting
for the explanation. In synthetic data, all methods achieve
ACC=1 but vary in explanation recall due to the inherent dif-
ference in balancing explanation fidelity and classification
accuracy. Our approach prioritizes high-level interpretabil-
ity, excelling in the reconstruction of motif ground truth in
high-level graphs. On QMOFs data, STFExplainer slightly
lags behind PGMExplainer in fidelity but is much better than
other alternatives, due to the PGMExplainer’s comprehen-
sive observations through discrete perturbations.

The two-sided Wilcoxon rank sum test is also applied to
compare our proposal with the leading baseline. On the MU-
TAG dataset, the best baseline (SA) of the real-world dataset
shows no difference from ours (Fidelity (ACC): p = 0.4,
Fidelity (CE): p = 1.0). However, the QMOFs task shows
significant differences (p<8e-6 for Fidelity (MAE/R2) and
Fidelity (R2)). Regarding the synthetic dataset, our method
shows a noteworthy difference in recall compared to the
best-performing baseline (Motif-add), with (p = 0.00794).

Experiments also validate the rationale of sufficient ex-
pansion. Figure 4, shows mutual information (confounding
estimation) of low-level subgraphs with and w/o sufficient
expansion. In detail, over the high-level explanatory sub-
graph extracted, we first obtain their full expansion in the
input graph level. Then these full subgraphs are sampled us-
ing the PageRank. MI of the sampled subgraphs are calcu-
lated w.r.t the outcome variable and then compared with that
of the full expansion subgraph. The absolute log is applied to
the normalized MI as the sampling can either increase or de-
crease MI. Figure 4 shows that the MI often quickly deviates
from that of the sufficient expansion result on the real-world
MOFs dataset and three settings of high-level explanatory
subgraph (60%∼100% of the full graph). In 2 of 3 settings,
the MI changes above 2 times from the original MI when
a sampling rate of 80% is applied. Therefore, to accurately
represent the explanation power of high-level subgraphs, it
is highly recommended to use sufficient expansion.

Figure 5: A case on MUTAG molecular graph explanation.

Case Study
The case study on the MUTAG shows the effectiveness of
STFExplainer in locating explanatory patterns. Figure 5 vi-
sualizes the high-level representative explanation extracted
by our method. Thin edges indicate the structure excluded
while bold edges in distinct colors indicate various clusters
detected. The bold red edges are rank-1 structures corre-
sponding to the NO2 cluster. Bold gold edges are rank-2
structures pertaining to the carbon ring cluster. Bold black
edges are rank-3 structures linking NO2 and ring together.
This discovery aligns with the structure-activity relationship
highlighted in MUTAG. We also calculate the saliency vec-
tor FS for level-1: [0.294, 0.706]. It implies that the structure
between knowledge-based clusters provides a shortcut to the
mutagenic prediction than those within individual clusters.

Discussion
Model optimization. Our proposal outperforms the second-
best method in only 2 out of 5 metrics, as it is built upon
PGExplainer’s assumption of linear independence of ex-
plained features. However, STFExplainer significantly sur-
passes PGE./GNNE./Refine (a class of methods) in all 3×5
metrics, which cover a wide range of applications. While
it is possible to build STFExplainer over other baselines to
show its universality, we have not done that due to high cost.
Synergy among multi-level explanations. As the first al-
gorithm of its kind, we extract GNN explanations layer by
layer, enabling post-processing to detect hotspots/anomalies
by exploiting the commonality and discrepancy of explana-
tions. Cross-layer optimization may complicate the solution.
Non-hierarchical adaptation. Eq. (6) will be Eq. (1) when
only one layer is present, which is the objective function
used by most methods. As our optimization framework is
based on that of PGExplainer, the performance will also be
close to PGExplainer over non-hierarchical graphs.

Conclusion
The challenge of explaining GNN decisions in real-world
graphs requires multi-level explanations. Existing methods
fall short due to their flat or motif-centric design. In this
work, we introduce STFExplainer, which leverages suffi-
cient expansion to generate multi-level explanations. Exper-
imental results for both classification and regression tasks
demonstrate the superiority of our approach. A case study
in the context of chemical compound scenarios further con-
firms the utility of the multi-level explanations we extracted.
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