
Racing Control Variable Genetic Programming for Symbolic Regression

Nan Jiang, Yexiang Xue
Department of Computer Science, Purdue University, USA

{jiang631, yexiang}@purdue.edu

Abstract

Symbolic regression, as one of the most crucial tasks in AI
for science, discovers governing equations from experimen-
tal data. Popular approaches based on genetic programming,
Monte Carlo tree search, or deep reinforcement learning learn
symbolic regression from a fixed dataset. These methods re-
quire massive datasets and long training time especially when
learning complex equations involving many variables. Re-
cently, Control Variable Genetic Programming (CVGP) has
been introduced which accelerates the regression process by
discovering equations from designed control variable exper-
iments. However, the set of experiments is fixed a-priori in
CVGP and we observe that sub-optimal selection of experi-
ment schedules delay the discovery process significantly. To
overcome this limitation, we propose Racing Control Vari-
able Genetic Programming (Racing-CVGP), which carries
out multiple experiment schedules simultaneously. A selec-
tion scheme similar to that used in selecting good symbolic
equations in genetic programming is implemented to ensure
that promising experiment schedules eventually win over the
average ones. The unfavorable schedules are terminated early
to save time for the promising ones. We evaluate Racing-
CVGP on several synthetic and real-world datasets corre-
sponding to true physics laws. We demonstrate that Racing-
CVGP outperforms CVGP and a series of symbolic regres-
sors which discover equations from fixed datasets.

1 Introduction
Automatically discovering scientific laws from experimental
data has been a long-standing aspiration of Artificial Intel-
ligence. Its success holds the promise of significantly accel-
erating scientific discovery. A crucial step towards achiev-
ing this ambitious goal is symbolic regression, which in-
volves learning explicit expressions from the experimental
data. Recent advancements in this field have shown exciting
progress, including works on genetic programming, Monte
Carlo tree search, deep reinforcement learning and their
combinations (Schmidt and Lipson 2009; Virgolin, Alderli-
esten, and Bosman 2019; Guimerà et al. 2020; Petersen et al.
2021; Mundhenk et al. 2021; Petersen et al. 2021; Razavi
and Gamazon 2022; He et al. 2022; Sun et al. 2023; Tohme,
Liu, and Youcef-Toumi 2023).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10−3 10−2 10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

default schedule⇒

⇐best alternative schedule

Figure 1: Impact of experiment schedules (noted as π) on
learning performance of control variable genetic program-
ming. For the discovery of expression with 4 variables,
there exists a better experiment schedule (i.e., π4) among
all schedules than the default one (i.e., π1), in terms of nor-
malized mean square error (more examples in Appendix D).

Despite remarkable achievements, the current state-of-
the-art approaches are still limited to learning relatively sim-
ple expressions, typically involving only a few independent
variables. The real challenge lies in symbolic regression in-
volving multiple independent variables. The aforementioned
approaches learn symbolic equations from a fixed dataset.
As a result, these methods require massive datasets and ex-
tensive training time to discover complex equations.

Recently, a novel approach called Control Variable Ge-
netic Programming (CVGP) (Jiang and Xue 2023) is intro-
duced to accelerate symbolic regression. Instead of learn-
ing from fixed datasets collected a-priori, CVGP carries out
symbolic regression using customized control variable ex-
periments. As a motivating example, to learn the ideal gas
law pV = nRT , one can hold n (gas amount) and T (tem-
perature) as constants. It is relatively easy to learn p (pres-
sure) is inversely proportional to V (volume). Indeed, CVGP

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12901

control variable x1 no control variablecontrol variables x1, x2

+
x3c1

+
x3×

x2c1

control variables x2, x3

×
cosc2

x1

+
c1

(b) Unfavorable Experiment Schedule πr

Control variables x1, x3

+

x3×

x2c1
control variable x1

+
x3×

x2cos
x1

control variable x3

+
c2×

x2cos
x1

… …

… …
cos

x1

x1

(a) Multi-steps of edits are
needed to obtain the tree in (b).

c2×
x2c1

+
×

cosc2
x1

×
cosc2

x1

+
c1

 (c) Favorable Experiment Schedule πg

Figure 2: The favorable experiment schedule πg is survived while the unfavorable schedule πr is early stopped under our racing
experiment schedule scheme. (a) Multiple steps of edits are needed to transform from a randomly initialized expression “x1” to
a complex expression “c1 + c2 cos(x1)”. The newly inserted parts (by genetic programming algorithm) are highlighted in blue.
(b) The red experiment schedule πr is unfavorable because it requires many edits to reach the expression tree in the red box
(shown in (a)). The red schedule is thus stopped early. (c) The green experiment schedule πg is promising since it is relatively
easy to discover, and every change in the expression tree is reasonable. Section 3 provides a detailed explanation.

discovers a chain of simple-to-complex symbolic expres-
sions; e.g., first an expression involving only p and V , then
involving p, V , T , etc. In each step, learning is carried out
on specially collected datasets where a set of variables held
constant. The major difference between CVGP and previ-
ous approaches is that CVGP actively explores the space of
all expressions via control variable experiments, instead of
learning passively from a pre-collected dataset.

However, the set of experiments is fixed a-priori in CVGP.
It first learns an equation involving only the first variable,
then involving the first two variables, etc. In particular,
CVGP works with a fixed experiment schedule (noted as
π), that is the sequences of controlled variables. We observe
that the sub-optimal selection of experiment schedules de-
lays the discovery process significantly. In Figure 1, we run
CVGP with all 24 possible experiment schedules and report
the quartiles of normalized mean squared errors (NMSE) of
the discovered top 20 expressions. We see that certain ex-
periment schedules (such as π4) are significantly better than
others including the default schedule π1.

To overcome this limitation, we propose Racing-CVGP,
which automatically discovers good experiment schedules
that lead to accurate symbolic regression. A selection
scheme over the experiment schedules is implemented, sim-
ilar to that used in selecting good symbolic equations in
genetic programming, to ensure that promising experiment
schedules eventually win over the average schedules. The
unfavorable schedules are terminated early to save time for
promising schedules. Racing-CVGP allows flexible control
variables experiments to be performed during the discovery
process. If a specific set of controlled variable experiments

fails to discover a good expression, it is ranked at the bottom
and is eventually removed by the selection scheme. Our idea
allows the algorithm to avoid spending excessive time on
unfavorable experiment schedules and to focus on exploring
promising experiment schedules.

In experiments, we compare Racing-CVGP against sev-
eral popular symbolic regression baselines using challeng-
ing datasets with multiple variables. On several datasets, we
observe that Racing-CVGP discovers higher quality expres-
sions in terms of the NMSE metric against several baselines.
Our Racing-CVGP also takes less computational time than
all the baselines. Our Racing-CVGP stops those unfavorable
schedules early, which commonly leads to a longer training
time. Notably, our method scales well to expressions with 8
variables while the GP, CVGP, and GPMeld methods take
more than 48 hours and thus are time-consuming. Our con-
tributions can be summarized as follows:

• We identify that a sub-optimal selection of the experiment
schedule greatly delays the discovery process of symbolic
regression. We propose Racing-CVGP to accelerate scien-
tific discovery by maintaining good experiment schedules
during learning challenging symbolic regression tasks.

• Under our racing schedule, a favorable schedule is sur-
vived while unfavorable schedules are stopped early. We
show the time complexity of our Racing-CVGP is approx-
imately close to that of the CVGP, under mild assumptions.

• In experiments, we showcase that our Racing-CVGP leads
to faster discovery of symbolic expressions with smaller
NMSE metrics, compared to current popular baselines over

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12902

several challenging datasets1.

2 Preliminaries
Symbolic Regression for Scientific Discovery
A symbolic expression ϕ is expressed as variables x =
{x1, . . . , xn} and constants c = {c1, . . . , cm}, connected
by a set of binary operators (like {+,−,×,÷}) and/or
unary operators (like {sin, cos, log, exp}). The operator set
is noted as Op. Each operand of an operator is either a vari-
able, a constant, or a self-contained sub-expression. For ex-
ample, “x1+x2” is a expression with 2 variables (x1 and x2)
and one binary operator (+). A symbolic expression can be
equivalently represented as a binary expression tree, where
the leaf nodes correspond to variables and constants and the
inner nodes correspond to those operators. Figure 3 presents
two example expression trees.

Given a dataset D = {(xi, yi)}Ni=1 and a loss function
ℓ(·, ·), the task of symbolic regression is to find the optimal
symbolic expression ϕ∗ with minimum loss over dataset D,
among the set of all candidate expressions (noted as Π):

ϕ∗ ← argmin
ϕ∈Π

1

N

N∑
i=1

ℓ(ϕ(xi, c), yi), (1)

where the values of the open constants c in ϕ are determined
by fitting the expression to the dataset D. The loss func-
tion ℓ(·, ·) measures the distance between the output from
the candidate expression ϕ(xi, c) ∈ R and the ground truth
yi ∈ R. A common choice of the loss function is Normal-
ized Mean Squared Error (NMSE). Symbolic regression is
shown to be NP-hard (Virgolin and Pissis 2022), due to the
exponentially large size of all the candidate expressions Π.
Genetic Programming for Symbolic Regression. Genetic
Programming (GP) has been a popular method for solving
symbolic regression. The core idea of GP involves manag-
ing a pool of candidate expressions, noted as P . In each
generation, these candidates undergo mutation and mating
steps with certain probabilities. The mutation operations
randomly replace, insert a node in the expression tree, or
delete a sub-tree. The mating operations pick a pair of par-
ent expression trees and exchange their two random sub-
trees. In the selection step, expressions with the highest fit-
ness scores, are chosen as candidates for the next generation.
Here the fitness scores (noted as o ∈ RN) indicate the close-
ness of the predicted outputs to the ground-truth outputs, like
the negative NMSE. Over several generations, the expres-
sions that fit the data well, exhibiting high fitness scores,
survive in the pool of candidate solutions. The best expres-
sions discovered throughout all generations are recorded as
hall-of-fame solutions, noted asH.

Control Variable Trials
In a regression problem, control variable trials study the re-
lationship between a few input variables and the output with
the remaining input variables fixed to be the same (Lehman,

1The code is at https://bitbucket.org/xlnxyx/racing cvgp. Please
refer to https://arxiv.org/abs/2309.07934 for the Appendix.

(b) controlled variable trials with .xc = {x1, x2}
Controlled to be the same

0.62 1.0 0.1 0.18
0.62 1.0 0.2 0.36
0.62 1.0 0.3 0.54

x1 x2 x3 y

(a) controlled variable trials with .xc = {x2, x3}

Controlled to be the same

Dataset D2

Dataset D1Reduced form expression tree

-1.0 0.5 0.16 0.20
0.92 0.5 0.16 0.21
0.72 0.5 0.16 0.22

x1 x2 x3 y

+
x3c1

×
cosc2

x1

+
c1

Reduced form expression tree

Figure 3: (a) When controlling variables x2 and x3, the
ground-truth expression ϕ = x2 cos(x1) + x3 reduces to
c1 cos(x1)+ c2. (b) Controlling variables x1 and x2 reduces
the ground-truth to c1x3.

Santner, and Notz 2004). The control variable idea was his-
torically proposed to discover natural physical law, known
as the BACON system (Langley 1977, 1979; Langley, Brad-
shaw, and Simon 1981). Recently, this idea has been ex-
plored for solving multivariable symbolic regression prob-
lems (Jiang and Xue 2023), i.e., CVGP.

Let xc ⊆ x denote those control variables, and the rest are
free variables. The values of controlled variables are fixed in
each trial, which behaves exactly the same as constants for
the learning method. In the controlled setting, the ground-
truth expression behaves the same after setting those con-
trolled variables as constants, which is noted as the reduced
form expression. See Figure 3 for two reduced form expres-
sions with different control variable settings.

For a single control variable trial in symbolic regression,
the corresponding dataset D = {(xi, yi)}mi=1 is first gener-
ated, where the controlled variables are fixed to one value
and the remaining variables are randomly assigned. That is
xi,k = xj,k for the control variable xk (xk ∈ xc) and 1 ≤
i, j ≤ N . Figure 3 gives two example datasets generated
from different control variable trials. Given a reduced form
expression and corresponding dataset, the values of open
constants in the expression are determined by gradient-based
optimizers, like the BFGS algorithm. In Figure 3(a), the op-
timal values of open constants are c1 = 0.5, c2 = 0.16. Sim-
ilarly in Figure 3(b), we have c1 = 1.8. The loss values (de-
fined in Equation (1)) of these two controlled variable trails
over the dataset D1 and dataset D2 are equal to 0, indicating
the optimal fitness scores.

The CVGP is built on top of the above control variable tri-
als and the GP algorithm. To fit an expression of n variables,
CVGP initially only allows variable x1 to vary and controls
the values of all n − 1 variables (i.e., xc = x\{x1}). Us-
ing GP as a subroutine, CVGP finds a pool of expressions
{ϕ1, . . . , ϕNp

} which best fit the data from this controlled
experiment. Notice {ϕ1, . . . , ϕNp

} are restricted to contain

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12903

only one free variable x1 and Np is the pool size. This fact
renders fitting them a lot easier than directly fitting the ex-
pressions involving all n variables. A small error implies that
ϕi is close to the ground truth reduced to the one free vari-
able. In the 2nd round, CVGP adds a second free variable x2

and starts fitting {ϕ′
1, . . . , ϕ

′
Np
} using the data from control

variable experiments involving the two free variables x1, x2.
After n rounds, the expressions in the CVGP pool consider
all n variables. Note that CVGP assumes the existence of a
DataOracle that allows for query a batch data with spec-
ified control variables.

3 Methodology
We first brief the issue with a fixed experiment schedule for
the existing CVGP method in discovering symbolic regres-
sion. Then we present our racing experiment schedule for
control variable genetic programming (Racing-CVGP).

Motivation
We define an experiment schedule, noted as π, as a se-
quence of variables controlled over all the rounds in CVGP.
We use Figure 2 to demonstrate different experiment sched-
ules for the discovery of the ground-truth expression ϕ =
cos(x1)x2 + x3. In Figure 2(c), CVGP runs an experiment
schedule with control variables {x1, x2} in the first round
and runs with control variables {x1} in the second round and
with no variable control ∅ in the last round. The correspond-
ing experiment schedule is π = ({x1, x2}, {x1}, ∅). Simi-
larly, Figure 2(b) shows the default experiment schedule of
CVGP that control variables {x2, x3} initially and then con-
trol variable {x3}, finally control no variable ∅, which is de-
noted as π = ({x2, x3}, {x3}, ∅).

Our key observations are as follows: (1) The ex-
periment schedule plays a vital impact on the perfor-
mance of CVGP than other components in the algo-
rithm. (2) Some expressions are much easier to detect
for specific experiment schedules. The existing CVGP
method only considers a fixed experiment schedule π =
({x2, . . . , xn}, {x3, . . . , xn}, . . . , {xn}, ∅) for discovering
expression involving n variables. This fixed experiment
schedule leads to sub-optimal performance of CVGP over
some expressions, requiring more training data and compu-
tational time than other alternative schedules. See Figure 1
for an empirical evaluation of different experiment sched-
ules over the final identified expressions by the same CVGP
method. See more examples in Appendix D.

In Figure 2, we use the discovery of an expression ϕ =
cos(x1)x2 + x3 from the Feynman dataset as an exam-
ple. The alternative (green) experiment schedule πg in Fig-
ure 2(c) is favorable while the default (red) schedule πr

in Figure 2(b) is not. In Figure 2(a), we visualize 3 neces-
sary steps to reach from randomly initialized expression tree
“x1” to the final tree “c1+ c2 cos(x1)” in Figure 2(b). Every
step of editing is conducted by the GP and requires draw-
ing batches of training data to fit every intermediate expres-
sion. The edited subtrees are highlighted in blue. In compar-
ison, it takes 1 step of edits in the tree to reach the first ex-
pression “c1 + x3” in the green experiment schedule, which

leads to faster discovery using less training data. Following
the green experiment schedule πg , it takes 1 step of edits to
reach the expression at the second round “c1x2+x3” and the
last round “cos(x1)x2 + x3”. Therefore, CVGP needs much
more data and time in the 1st round following the default
(red) experiment schedule πr. The alternative (green) exper-
iment schedule πg is easier for the GP algorithm to discover
the ground-truth expression using less data and time.

Directly evoking CVGP as a subroutine with multiple ex-
periment schedules will not solve the problem. The expres-
sion in Figure 1 has 24 different experiment schedules. The
total running time is summarized in Figure 6. In general, for
an expression involving n variables, there are n! many ex-
periment schedules. It is time-intractable to run CVGP with
all the experiment schedules for real-world scale problems.

To tackle the above issue, we propose a racing scheme
over the experiment schedules. Our main principles are (1)
maintaining multiple experiment schedules rather than one,
and (2) allowing promising experiment schedules to survive
while letting unfavorable schedules early stop. Our Racing-
CVGP has a much higher chance of detecting high-quality
expression using less training data and computational time
than the existing CVGP.

Specifically, we implement a schedule selection proce-
dure. Every expression in the population pool ϕ ∈ P is
attached with its own experiment schedule. In each round,
we execute GP over all the expressions in the population
pool for several generations. At the end of every round, the
racing selection scheme removes (resp. preserves) those ex-
pressions with bad (resp. good) experiment schedules, based
on their fitness scores. So those schedules that lead to higher
fitness scores have a higher probability of survival.

We use Figure 2 to visualize the process of our Racing-
CVGP. We first initialize the population pool P in GP with
several expressions for each control variable setting. We
randomly generate simple expressions involving only x1

with the control variables being {x2, x3}, where every ex-
pression is attached with a (partial) experiment schedule
π = ({x2, x3}). We repeat this random expression gen-
eration for all the rest n − 1 control variable settings. For
the 1st round, the GP algorithm is evoked over the popula-
tion pool for several generations. Then we rank the expres-
sions in the pool by the fitness score of the expression, where
those expressions with higher fitness scores rank at the top
of the pool. We only preserve top Np expressions in pop-
ulation pool P . Since it is much easier to detect c1 + x3

under control variable {x1, x2} setting, the preserved ma-
jority expressions are attached with the experiment schedule
π1 = {x1, x2}. This ensures that we early stop the unfavor-
able experiment schedule π = {x2, x3} in Figure 2(b). Prior
to the 2nd round, we randomly set free one variable from π1.
Figure 2(c) set the free variable x2 and only variable x1 is
controlled in the 2nd round. In the 3rd round, the majority
of the expressions in the population is attached to the experi-
ment schedule πg = ({x1, x2}, {x1}, ∅), since every change
over the expression tree is reasonable. The total computa-
tional resources are saved from spending time searching for
the expression tree in Figure 2(b) to explore expressions with
experiment schedule π = ({x1, x2}, {x1}) in Figure 2(c).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12904

Racing Control Variable Genetic Programming
The high-level idea of Racing-CVGP is building simple to
complex symbolic expressions involving increasingly more
variables following those promising experiment schedules.
Notations. Denote K multiple control variable trials as a
tuple ⟨ϕ,o, c,xc, π, {Dk}Kk=1⟩. Here ϕ stands for the sym-
bolic expression; the fitness scores o ∈ RK for expres-
sion ϕ indicates the closeness of predicted outputs to the
ground-truth outputs; c ∈ RK×L are the best-fitted val-
ues (by gradient-based optimizers) to open constants. Here
L is the number of open constants in the expression ϕ;
xc ⊆ x is the set of control variables; π is the (partial)
experiment schedule that leads to the current expression ϕ.
Dk = {(xi, yi)}mi=1 (1 ≤ k ≤ K) is a randomly sampled
batch of data from DataOracle with control variables xc.
m denotes the batch size of the data.
Initialization. For single variable xi ∈ x, we create a set
of candidate expressions that only contain variable xi and
save them into the population pool P . Then we apply a GP-
based algorithm to find the best-fitted expressions, which is
referred to as the BuildGPPool function. The initializa-
tion step corresponds to Lines 2-6 in Algorithm 1.
Execution Pipeline. Given the current control variables xc,
we first evoke the DataOracle to generate data batches
{Dk}Kk=1. This corresponds to changing experimental con-
ditions in real science experiments. We then fit open con-
stants in the candidate expression ϕnew with the data batches
by gradient-based optimizers like BFGS (Fletcher 2000).
This step is noted as the Optimize function. Then we ob-
tain the fitness score vector o and solutions to open constants
c. We save the tuple ⟨ϕ,o, c, π,xc⟩ into new population pool
Pnew. This step corresponds to Lines 8-11 in Algorithm 1.

Then GP algorithm is applied for #Gen generations to
search for optimal structures of the expression trees in the
population pool Pnew. The function GP is a minimally mod-
ified genetic programming algorithm for symbolic regres-
sion, which is detailed in Appendix B. The key differences
between classic GP and our Racing-CVGP are
1. During mutation, our Racing-CVGP only alters the muta-

ble nodes of the candidate expression trees. In classic GP,
all the tree nodes are mutable, while in Racing-CVGP,
the mutable nodes of the expression trees and set of op-
erators Op are preset by the FreezeEquation.

2. Mating is only applied over a pair of expressions with
the same set of controlled variables in our Racing-CVGP.
Classic GP, a random pair of expressions is selected for
the mating operation.

3. Optimize operation in Racing-CVGP dynamically
samples data with oracleDo under control variable setup,
whereas classic GP uses data with no variable controlled.

We preserve Np best equations in the population P . Ev-
ery expression is evaluated with the different data from its
own control variables. An unfavorable (partial) experiment
schedule will be removed at this step when the correspond-
ing expression ϕ has a low fitness score. The schedules in the
pruned population pool P indicate that they are favorable.

Key information is obtained by examining the outcomes
of K-trials control variable experiments: (1) Consistent

Algorithm 1: Racing Control Variable Genetic Programming

Input: #input variables n; operator set Op; DataOracle.
Parameters: #genetic operations per rounds #Gen; Size of

population pool Np; #experiment trials K.
1: P = {};H = {}.
2: for i← 1 to n do ▷ initialize
3: xc = {x1, . . . , xn} \ {xi}.
4: P ← P ∪ BuildGPPool(xc, Op ∪ {const, xi})).
5: for i← 1 to n do
6: for ⟨ϕnew, π,xc⟩ ∈ P do ▷ control variable trials
7: {Dk}Kk=1 ← DataOracle(xc,K).
8: o, c← Optimize(ϕnew, {Dk}Kk=1).
9: P ← P ∪ {⟨ϕ,o, c, π,xc⟩}.

10: P,H ← GP(P,H,DataOracle, Op ∪ {const, xi}).
11: for ⟨ϕ, π,xc⟩ ∈ P do ▷ racing schedule
12: ϕ←FreezeEquation(ϕ).
13: randomly drop a variable in xc.
14: save xc into π.

return the set of hall-of-fame equationsH.

close-to-zero fitness value, implies that the fitted expression
is close to the ground-truth equation in the reduced form.
That is

∑K
k=1 I(ok ≤ ε) should equal to K, where I(·) is

an indicator function and ε is the threshold for the fitness
scores. (2) Given that the equation is close to the ground
truth, an open constant having similar best-fitted values
across K trials suggests that the open constants are stand-
alone. Otherwise, that open constant is a summary constant,
that corresponds to a sub-expression involving those control
variables xc. The j-th open constant is a standalone con-
stant when the empirical variance of its fitted values across
K trials is less than a threshold ε′. The above steps are noted
as FreezeEquation function. This freezing operation re-
duces the search space and accelerates the discovery.

Finally, we randomly drop a control variable in xc and
update the schedule π for each equation ϕ in the population
pool P . After n rounds, we return the equations in hall-of-
fameH with best fitness values over all the schedules. Equa-
tions inH are evaluated on data with no variable controlled.
Running Time Analysis. The major hyper-parameters that
impact the running time of Racing-CVGP are 1) the num-
ber of genetic operations per round M ; 2) total rounds n; 3)
the maximum size of population pool Np. A rough estima-
tion of the time complexity of the proposed Racing-CVGP
is O(nMNp), which is the same as the CVGP algorithm.
Another implicit factor of running time is the number of
open constants |c| for every expression ϕ(x, c). An expres-
sion with more open constants needs more time for optimiz-
ers (like BFGS and CG) or more advanced optimizers (like
Basin Hopping (Wales and Doye 1997)) to find the solutions.
We leave it to the empirical time evaluation in Figure 6.
Connection to Existing Methods. Our work is relevant to a
line of work (Langley 1977, 1979; Langley, Bradshaw, and
Simon 1981; King et al. 2004, 2009; Cerrato et al. 2023)
that implemented human scientific discovery using AI, pio-
neered by the BACON systems (Langley 1977, 1979; Lang-
ley, Bradshaw, and Simon 1981). While BACON’s discovery

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12905

(3, 2, 2) (4, 4, 6) (5, 5, 5) (6, 6, 10) (8, 8, 12)
50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

Racing-CVGP (ours) < 1E-6 < 1E-6 0.016 0.021 0.043 0.098 0.069 0.104 0.095 0.286
CVGP 0.039 0.083 0.028 0.132 0.086 0.402 0.104 0.177 T.O. T.O.

GP 0.043 0.551 0.044 0.106 0.063 0.232 0.159 0.230 T.O. T.O.
Eureqa < 1E-6 < 1E-6 0.024 0.122 0.158 0.377 0.910 1.927 0.162 2.223

DSR 0.227 7.856 2.815 9.958 2.558 3.313 6.121 16.32 0.335 0.410
PQT 0.855 2.885 2.381 13.84 2.168 2.679 5.750 16.29 0.232 0.313
VPG 0.233 0.400 2.990 11.32 1.903 2.780 3.857 19.82 0.451 0.529

GPMeld 0.944 1.263 1.670 2.697 1.501 2.295 7.393 21.71 T.O. T.O.
SPL 0.010 0.011 0.144 0.231 0.147 0.280 0.472 0.627 0.599 0.746

Table 1: On Trigonometric datasets, median (50%) and 75%-quantile NMSE values of the expressions found by all the algo-
rithms. Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. “T.O.” implies the algorithm is timed out for
48 hours. The 3-tuples at the top (·, ·, ·) indicate the number of input variables, singular terms, and cross terms in the expression.

was driven by rule-based engines, our Racing-CVGP uses
modern learning approaches such as genetic programming.

4 Related Work
Early works in symbolic regression (Langley 1981; Lenat
1977) use heuristic search. Genetic programming is effec-
tive in searching for good candidates (Udrescu and Tegmark
2020; Virgolin, Alderliesten, and Bosman 2019; He et al.
2022). Reinforcement learning-based methods use a risk-
seeking policy gradient to find the expressions (Petersen
et al. 2021; Mundhenk et al. 2021). Other works use RL to
adjust the probabilities of genetic operations (Chen, Wang,
and Gao 2020). Some works reduce the search space by
considering the composition of base functions (McConaghy
2011; Chen, Luo, and Jiang 2017).

Current research efforts are devoted to searching for
polynomials with a few variables (Uy et al. 2011), time
series equations (Balcan et al. 2018), and equations in
physics (Udrescu and Tegmark 2020). Multivariable sym-
bolic regression is challenging since the search space in-
creases exponentially w.r.t. the number of input variables.
Existing works for multi-variable regression are based on
pre-trained encoder-decoder methods with a massive train-
ing dataset (e.g., millions of data points (Biggio et al. 2021)),
and even larger generative models (e.g., millions of parame-
ters (Kamienny et al. 2022)). Our Racing-CVGP is a tailored
algorithm to solve multi-variable symbolic regression.

The choice of variables is an important topic in AI,
including variable ordering in decision diagrams (Cap-
part et al. 2022), variable selection in tree search (Song
et al. 2022a), variable elimination in probabilistic infer-
ence (Dechter 2019; Derkinderen et al. 2020) and backtrack-
ing search in constraint satisfaction problems (Ortiz-Bayliss
et al. 2018; Li, Feng, and Yin 2020; Song et al. 2022b). Our
method is one variant of variable ordering in symbolic re-
gression.

Our work is also relevant to experiment design, which
considers drawing a minimum amount of data for determin-
ing coefficients in linear regression models (Dette and Röder
1997; Yang and Stufken 2012; Attia and Ahmed 2023). Our
work considers reducing the amount of total data needed to
uncover the ground truth expression.

5 Experiments
This section demonstrates that Racing-CVGP finds the ex-
pressions with the smallest Normalized Mean-Square Errors
(NMSE) (in Table 1 and Table 2) and takes less computa-
tional time (in Figure 4), among all competing approaches
on several noiseless datasets. In the ablation studies, we
show our Racing-CVGP is consistently better than the base-
lines when evaluated in different metrics (in Figure 5). Also,
our Racing-CVGP methods save a great portion of time than
evoke CVGP with all the possible schedules.

Experimental Settings
Datasets. We consider several publicly available and multi-
variable datasets, including 1) Trigonometric datasets (Jiang
and Xue 2023), 2) Livermore2 datasets (Petersen et al.
2021), and 3) Feynamn datasets (Matsubara et al. 2022).
Evaluation Metrics. We consider two evaluation criteria
for the learning algorithms: 1) The goodness-of-fit mea-
sure (NMSE), indicates how well the learning algorithms
perform in discovering symbolic expressions. The medians
(50%) and 75%-percentiles of the NMSE are reported. We
report median values instead of means due to outliers (see
Ablation Studies). This is a common practice for combina-
torial optimization problems. 2) The total running time of
each learning algorithm.
Baselines. We consider the following baselines based
on evolutionary algorithms: 1) Genetic Programming
(GP) (Fortin et al. 2012). 2) Eureqa (Dubcáková 2011). We
also consider a series of baselines using reinforcement learn-
ing: 3) Priority queue training (PQT) (Abolafia, Norouzi,
and Le 2018). 4) Vanilla Policy Gradient (VPG) (Williams
1992). 5) Deep Symbolic Regression (DSR) (Petersen et al.
2021). 6) Neural-Guided Genetic Programming Population
Seeding (GPMeld) (Mundhenk et al. 2021). 7) Symbolic
Physics Learner (SPL) (Sun et al. 2023). The remaining de-
tails are provided in Appendix C.

Experimental Result Analysis
Goodness-of-fit Benchmark. Our Racing-CVGP attains the
smallest median (50%) and 75%-quantile NMSE values
among all the baselines when evaluated on selected Trigono-
metric, Livermore2, and Feynman datasets (Table 1). This

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12906

Livermore2 (n = 4) Livermore2 (n = 5) Livermore2 (n = 6) Feynman (n = 4) Feynman (n = 5)
50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

Racing-CVGP (ours) < 1E-6 2.03E-3 0.004 0.047 0.001 0.073 0.015 0.195 0.577 0.790
CVGP 0.052 0.810 0.275 1.007 0.328 1.012 1.002 1.010 1.001 1.002

GP 0.059 0.962 0.331 1.003 1.001 1.026 1.003 1.010 1.002 1.011
Eureqa 0.508 0.980 0.083 0.249 0.026 0.302 0.026 0.397 0.434 0.943

DSR 0.030 0.048 0.050 0.284 0.230 0.486 0.216 0.920 0.976 1.001
PQT 0.042 0.063 0.074 0.227 0.170 0.410 0.172 0.765 1.003 1.027
VPG 0.037 0.074 0.093 0.322 0.206 0.535 0.188 0.971 1.006 1.025

GPMeld 0.029 0.061 0.049 0.259 0.144 0.504 0.177 0.708 0.940 1.002
SPL 0.035 0.463 0.181 0.201 0.229 1.005 0.143 0.542 0.632 1.002

Table 2: On Livermore2 and Feynman datasets, median (50%) and 75%-quantile NMSE values of the symbolic expressions
found by all the algorithms. Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. n is the number of
independent variables in the expression.

102 104

Time Usage (Mins)

Racing-CVGP(ours)

CVGP

GP

GPMeld

PQT

DSR

VPG

sin cos (4, 4, 6)

102 104

Time Usage (Mins)

sin cos (5, 5, 5)

Figure 4: On selected Trigonometric datasets, quartiles of
the total running time of all the methods. Our Racing-CVGP
method takes less time than CVGP by early stopping those
unfavorable experiment schedules.

shows that our method can better handle multivariable sym-
bolic regression problems than the current best algorithms
in this area. For the Trigonometric dataset with n = 8 vari-
ables, both the GP and CVGP take more than 2 days to find
the optimal expression. The reason is that there are too many
open constants in the expressions in the population pool,
making the optimization problem itself time-consuming to
find the solution. This behavior is another indication that
CVGP is stuck at some unfavorable experiment schedule.
Empirical Running Time Analysis. We summarize the
running time analysis in Figure 4. Our Racing-CVGP
method takes less time than CVGP as well as the rest base-
lines. The main reason is early stop those unfavorable exper-
iment schedules. See Appendix D for more figures.
Ablation Studies We collect the benchmark of different
evaluation metrics in Figure 5, i.e., MSE and NMSE, dur-
ing testing over the selected Trigonometric datasets. The
RMSE and NRMSE evaluation metrics are available in Ap-
pendix D.

We further collect the time comparison between our
Racing-CVGP and the CVGP with all the experiment sched-
ules in Figure 6. The quartiles of time distribution over 10
random expressions with 4 variables show that Our Racing-
CVGP saves a great portion of the time compared with
CVGP with all the schedules.

100 101

MSE

Racing-CVGP(ours)

CVGP

GP

VPG

PQT

DSR

GPMeld

sin, cos (4, 4, 6)

100 101

NMSE

sin, cos (4, 4, 6)

Figure 5: On selected Trigonometric datasets, MSE and
NMSE evaluation metrics of the expressions found by dif-
ferent algorithms.

103 104 105

Time Usage (Mins)

Racing-CVGP (ours)

CVGP (all schedules)

CVGP

sin cos (4, 4, 6)

Figure 6: On a selected Trigonometric dataset, quartiles of
the total running time of Racing-CVGP, CVGP, and CVGP
with all the experiment schedules. Our Racing-CVGP saves
a great portion of time compared with CVGP with all the
schedules for expressions with n = 4 variables.

6 Conclusion
In this research, we propose Racing Control Variable Ge-
netic Programming (Racing-CVGP) for symbolic regression
with many independent variables. Our Racing-CVGP can
accelerate the regression process by discovering equations
from promising experiment schedules and early stop those
unfavorable experiment schedules. We evaluate Racing-
CVGP on several synthetic and real-world datasets corre-
sponding to true physics laws. We demonstrate that Racing-
CVGP outperforms CVGP and a series of symbolic regres-
sors that discover equations from fixed datasets.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12907

Acknowledgments
We thank all the reviewers for their constructive comments.
This research was supported by NSF grant CCF-1918327
and DOE – Fusion Energy Science grant: DE-SC0024583.

References
Abolafia, D. A.; Norouzi, M.; and Le, Q. V. 2018. Neu-
ral Program Synthesis with Priority Queue Training. CoRR,
abs/1801.03526.
Attia, A.; and Ahmed, S. E. 2023. PyOED: An Extensible
Suite for Data Assimilation and Model-Constrained Optimal
Design of Experiments. CoRR, abs/2301.08336.
Balcan, M.; Dick, T.; Sandholm, T.; and Vitercik, E. 2018.
Learning to Branch. In ICML, volume 80 of Proceedings of
Machine Learning Research, 353–362. PMLR.
Biggio, L.; Bendinelli, T.; Neitz, A.; Lucchi, A.; and Paras-
candolo, G. 2021. Neural Symbolic Regression that scales.
In ICML, volume 139 of Proceedings of Machine Learning
Research, 936–945. PMLR.
Cappart, Q.; Bergman, D.; Rousseau, L.; Prémont-Schwarz,
I.; and Parjadis, A. 2022. Improving Variable Orderings
of Approximate Decision Diagrams Using Reinforcement
Learning. INFORMS J. Comput., 34(5): 2552–2570.
Cerrato, M.; Brugger, J.; Schmitt, N.; and Kramer, S. 2023.
Reinforcement Learning for Automated Scientific Discov-
ery. In AAAI Spring Symposium on Computational Ap-
proaches to Scientific Discovery.
Chen, C.; Luo, C.; and Jiang, Z. 2017. Elite bases regression:
A real-time algorithm for symbolic regression. In ICNC-
FSKD, 529–535. IEEE.
Chen, D.; Wang, Y.; and Gao, W. 2020. Combining a
gradient-based method and an evolution strategy for multi-
objective reinforcement learning. Appl. Intell., 50(10):
3301–3317.
Dechter, R. 2019. Reasoning with Probabilistic and Deter-
ministic Graphical Models: Exact Algorithms, Second Edi-
tion. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers.
Derkinderen, V.; Heylen, E.; Martires, P. Z. D.; Kolb, S.; and
Raedt, L. D. 2020. Ordering Variables for Weighted Model
Integration. In UAI, volume 124 of Proceedings of Machine
Learning Research, 879–888. AUAI Press.
Dette, H.; and Röder, I. 1997. Optimal discrimination de-
signs for multifactor experiments. The Annals of Statistics,
25(3): 1161 – 1175.
Dubcáková, R. 2011. Eureqa: software review. Genet. Pro-
gram. Evolvable Mach., 12(2): 173–178.
Fletcher, R. 2000. Practical methods of optimization. John
Wiley & Sons.
Fortin, F.-A.; De Rainville, F.-M.; Gardner, M.-A.; Parizeau,
M.; and Gagné, C. 2012. DEAP: Evolutionary Algorithms
Made Easy. Journal of Machine Learning Research, 13:
2171–2175.
Guimerà, R.; Reichardt, I.; Aguilar-Mogas, A.; Massucci,
F. A.; Miranda, M.; Pallarès, J.; and Sales-Pardo, M. 2020. A

Bayesian machine scientist to aid in the solution of challeng-
ing scientific problems. Science advances, 6(5): eaav6971.
He, B.; Lu, Q.; Yang, Q.; Luo, J.; and Wang, Z. 2022. Taylor
genetic programming for symbolic regression. In GECCO,
946–954. ACM.
Jiang, N.; and Xue, Y. 2023. Symbolic Regression via Con-
trol Variable Genetic Programming. In ECML/PKDD, Lec-
ture Notes in Computer Science. Springer.
Kamienny, P.; d’Ascoli, S.; Lample, G.; and Charton, F.
2022. End-to-end Symbolic Regression with Transformers.
In NeurIPS.
King, R. D.; Rowland, J.; Oliver, S. G.; Young, M.; Aubrey,
W.; Byrne, E.; Liakata, M.; Markham, M.; Pir, P.; Soldatova,
L. N.; Sparkes, A.; Whelan, K. E.; and Clare, A. 2009. The
Automation of Science. Science, 324(5923): 85–89.
King, R. D.; Whelan, K. E.; Jones, F. M.; Reiser, P. G.;
Bryant, C. H.; Muggleton, S. H.; Kell, D. B.; and Oliver,
S. G. 2004. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427(6971):
247–252.
Langley, P. 1977. BACON: A Production System That Dis-
covers Empirical Laws. In IJCAI, 344. William Kaufmann.
Langley, P. 1979. Rediscovering Physics with BACON.3. In
IJCAI, 505–507. William Kaufmann.
Langley, P. 1981. Data-driven discovery of physical laws.
Cognitive Science, 5(1): 31–54.
Langley, P.; Bradshaw, G. L.; and Simon, H. A. 1981. BA-
CON.5: The Discovery of Conservation Laws. In IJCAI,
121–126. William Kaufmann.
Lehman, J. S.; Santner, T. J.; and Notz, W. I. 2004. De-
signing computer experiments to determine robust control
variables. Statistica Sinica, 571–590.
Lenat, D. B. 1977. The ubiquity of discovery. Artificial
Intelligence, 9(3): 257–285.
Li, H.; Feng, G.; and Yin, M. 2020. On combining variable
ordering heuristics for constraint satisfaction problems. J.
Heuristics, 26(4): 453–474.
Matsubara, Y.; Chiba, N.; Igarashi, R.; and Ushiku, Y. 2022.
SRSD: Rethinking Datasets of Symbolic Regression for Sci-
entific Discovery. In NeurIPS 2022 AI for Science: Progress
and Promises.
McConaghy, T. 2011. FFX: Fast, scalable, deterministic
symbolic regression technology. In Genetic Programming
Theory and Practice IX, 235–260. Springer.
Mundhenk, T. N.; Landajuela, M.; Glatt, R.; Santiago, C. P.;
Faissol, D. M.; and Petersen, B. K. 2021. Symbolic Regres-
sion via Deep Reinforcement Learning Enhanced Genetic
Programming Seeding. In NeurIPS, 24912–24923.
Ortiz-Bayliss, J. C.; Amaya, I.; Conant-Pablos, S. E.; and
Terashima-Marı́n, H. 2018. Exploring the Impact of Early
Decisions in Variable Ordering for Constraint Satisfaction
Problems. Comput. Intell. Neurosci., 2018: 6103726:1–
6103726:14.
Petersen, B. K.; Landajuela, M.; Mundhenk, T. N.; Santi-
ago, C. P.; Kim, S.; and Kim, J. T. 2021. Deep symbolic

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12908

regression: Recovering mathematical expressions from data
via risk-seeking policy gradients. In ICLR. OpenReview.net.
Razavi, S.; and Gamazon, E. R. 2022. Neural-Network-
Directed Genetic Programmer for Discovery of Governing
Equations. CoRR, abs/2203.08808.
Schmidt, M.; and Lipson, H. 2009. Distilling Free-Form
Natural Laws from Experimental Data. Science, 324(5923):
81–85.
Song, L.; Xue, K.; Huang, X.; and Qian, C. 2022a. Monte
Carlo Tree Search based Variable Selection for High Dimen-
sional Bayesian Optimization. In NeurIPS.
Song, W.; Cao, Z.; Zhang, J.; Xu, C.; and Lim, A. 2022b.
Learning variable ordering heuristics for solving Constraint
Satisfaction Problems. Eng. Appl. Artif. Intell., 109: 104603.
Sun, F.; Liu, Y.; Wang, J.; and Sun, H. 2023. Sym-
bolic Physics Learner: Discovering governing equations via
Monte Carlo tree search. In ICLR. OpenReview.net.
Tohme, T.; Liu, D.; and Youcef-Toumi, K. 2023. GSR: A
Generalized Symbolic Regression Approach. Trans. Mach.
Learn. Res., 2023.
Udrescu, S.-M.; and Tegmark, M. 2020. AI Feynman: A
physics-inspired method for symbolic regression. Science
Advances, 6(16).
Uy, N. Q.; Hoai, N. X.; O’Neill, M.; McKay, R. I.; and
López, E. G. 2011. Semantically-based crossover in ge-
netic programming: application to real-valued symbolic re-
gression. Genet. Program. Evolvable Mach., 12(2): 91–119.
Virgolin, M.; Alderliesten, T.; and Bosman, P. A. N. 2019.
Linear scaling with and within semantic backpropagation-
based genetic programming for symbolic regression. In
GECCO, 1084–1092. ACM.
Virgolin, M.; and Pissis, S. P. 2022. Symbolic Regression is
NP-hard. Transactions on Machine Learning Research.
Wales, D. J.; and Doye, J. P. 1997. Global optimization by
basin-hopping and the lowest energy structures of Lennard-
Jones clusters containing up to 110 atoms. The Journal of
Physical Chemistry A, 101(28): 5111–5116.
Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.
Mach. Learn., 8: 229–256.
Yang, M.; and Stufken, J. 2012. Identifying locally optimal
designs for nonlinear models: A simple extension with pro-
found consequences. The Annals of Statistics, 40(3): 1665 –
1681.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12909

