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Abstract

Self-supervised learning (SSL) has shown impressive results
in downstream classification tasks. However, there is limited
work in understanding their failure modes and interpreting
their learned representations. In this paper, we study the rep-
resentation space of state-of-the-art self-supervised models
including SimCLR, SwaV, MoCo, BYOL, DINO, SimSiam,
VICReg and Barlow Twins. Without the use of class label
information, we discover discriminative features that corre-
spond to unique physical attributes in images, present mostly
in correctly-classified representations. Using these features,
we can compress the representation space by up to 40% with-
out significantly affecting linear classification performance.
We then propose Self-Supervised Representation Quality
Score (or Q-Score), an unsupervised score that can reliably
predict if a given sample is likely to be mis-classified during
linear evaluation, achieving AUPRC of 91.45 on ImageNet-
100 and 78.78 on ImageNet-1K. Q-Score can also be used as
a regularization term on pre-trained encoders to remedy low-
quality representations. Fine-tuning with Q-Score regulariza-
tion can boost the linear probing accuracy of SSL models
by up to 5.8% on ImageNet-100 and 3.7% on ImageNet-1K
compared to their baselines. Finally, using gradient heatmaps
and Salient ImageNet masks, we define a metric to quantify
the interpretability of each representation. We show that dis-
criminative features are strongly correlated to core attributes
and, enhancing these features through Q-score regularization
makes SSL representations more interpretable.

Introduction
Self-supervised models (Chen et al. 2020a; Caron et al.
2020; Chen et al. 2020b; Grill et al. 2020; Chen and He
2021; Caron et al. 2018a; Khosla et al. 2020; Caron et al.
2021; Bardes, Ponce, and LeCun 2021; Zbontar et al. 2021)
learn to extract useful representations from data without re-
lying on human supervision, and perform comparably to
supervised models in downstream classification tasks. Pre-
training these models can be highly resource-intensive and
time-consuming. It is therefore crucial that the learned rep-
resentations are of high quality such that they are explain-
able and generalizable. However, in practice, these repre-
sentations are often quite noisy and un-interpretable, caus-
ing difficulties in understanding and debugging their failure
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modes (Jing et al. 2022; Huang, Yi, and Zhao 2021; Erics-
son, Gouk, and Hospedales 2021).
In this paper, our goal is to study the representation space

of pre-trained self-supervised encoders (SSL) such as Sim-
CLR (Chen et al. 2020a), SwaV (Caron et al. 2020), MoCo
(Chen et al. 2020b), BYOL (Grill et al. 2020), SimSiam
(Chen and He 2021), DINO (Caron et al. 2021), VICReg
(Bardes, Ponce, and LeCun 2021) and Barlow Twins (Zbon-
tar et al. 2021) and discover their informative features in an
unsupervised manner. We observe that representations are
mostly sparse, containing a small number of highly activat-
ing features. These features can strongly activate a small,
moderate or large number of samples in the population. We
refer to the moderate category of features as discriminative
features.
We observe some intriguing properties of discriminative

features: (i) Although discovered without any class label in-
formation, they can be strongly correlated to a particular
class or group of classes (See Figure 1); (ii) They highlight
informative concepts in the activating samples which are of-
ten related to the ground truth of those samples; (iii) They
activate strongly in correctly classified representations rather
than mis-classified representations (as shown in Figure 3)
and finally, iv) Representations can be compressed by up to
40% using discriminative features without significantly af-
fecting linear evaluation performance.
Building on these observations, we propose an unsuper-

vised, sample-wise Self-Supervised Representation Qual-
ity Score (Q-Score). A high Q-Score for a sample implies
that its representation contains highly activating discrimina-
tive coordinates which is a favorable representation prop-
erty. We empirically observe that Q-Score can be used as a
zero-shot predictor in distinguishing between correct and in-
correct classifications for any SSL model achieving AUPRC
of 91.45 on ImageNet-100 and 78.78 AUPRC on ImageNet-
1K.
We next apply Q-Score as a regularizer and further-train

pre-trained SSL models at a low rate to improve low-quality
representations. This improves the linear probing perfor-
mance across all our baselines, highest on BYOL (5.8% on
ImageNet-100 and 3.7% on ImageNet-1K). The represen-
tations, after regularization, show increased activation for
discriminative features (Figure 3) due to which several pre-
viously mis-classified samples get correctly classified with
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higher confidence.
Finally, we define a metric for quantifying representation

interpretability using Salient ImageNet (Singla and Feizi
2021) masks as ground truth. Discriminative features are
strongly correlated to core features of Salient ImageNet. We
can potentially explain these features by correlating their
meanings with the feature annotations provided for core fea-
tures in Salient ImageNet. We also observe that discrimina-
tive features in mis-classified representations are less corre-
lated with core features compared to correct classifications.
Q-score regularization improves this correlation for both
correct and mis-classified representations, thereby making
representations more explainable.

Related Work
Unsupervised methods for classification has been a long-
standing area of research, traditionally involving the use of
clustering techniques (Bojanowski and Joulin 2017; Doso-
vitskiy et al. 2014; YM., C., and A. 2020; Bautista et al.
2016; Caron et al. 2018b, 2019; Huang et al. 2019). Self-
supervised learning, is a powerful approach that enables
learning by preparing own labels for every sample (Bo-
janowski and Joulin 2017; Dosovitskiy et al. 2014; Wu et al.
2018; Dosovitskiy et al. 2016) usually with the help of a con-
trastive loss (Arora et al. 2019; Tosh, Krishnamurthy, and
Hsu 2021; Bachman, Hjelm, and Buchwalter 2019). Posi-
tive views in SSL losses are multiple transformations (Tian
et al. 2020) of a given sample using stochastic data aug-
mentation. Through this approach, several state-of-the-art
SSL techniques (Chen et al. 2020a; Caron et al. 2020; Chen
and He 2021; Grill et al. 2020; Chen et al. 2020b; Khosla
et al. 2020) have produced representations that show com-
petitive linear classification accuracy to that of supervised
approaches.
Understanding these learned representations is relatively

less explored. Several feature interpretability techniques ex-
ist (Bau et al. 2017; Kalibhat et al. 2023; Hernandez et al.
2022), that aim to explain individual neurons with natu-
ral language. However, our goal is to study representations
through the lens of failure modes and generalization. (Jing
et al. 2022), observes that self-supervised representations
collapse to a lower dimensional space instead of the en-
tire embedding space. Other methods (von Kügelgen* et al.
2021; Xiao et al. 2021), propose to separate the representa-
tion space into variant and invariant information so that aug-
mentations are not task-specific. (Grigg et al. 2021) observes
representations across layers of the encoder and compare it
to supervised setups. Clustering-based or prototypical-based
methods have also been proposed where the representation
space is collapsed into a low-rank space (Dwibedi et al.
2021; Koohpayegani, Tejankar, and Pirsiavash 2021). (Bor-
des, Balestriero, and Vincent 2021) uses an RCDM model
to understand representation invariance to augmentations.
(Garrido et al. 2022; Li, Efros, and Pathak 2022) propose a
score based on the rank of all post-projector embeddings that
can be used to judge and compare various self-supervised
models.
In this work, we focus more on studying the proper-

ties of representations across correct and incorrect classi-
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Figure 1: Discriminative Features in Self-Supervised (SSL)
Models: We plot the percentage of highly activating sam-
ples for each feature in the SimCLR (ResNet-50) represen-
tation space. The features that show very low or very high
percentage activations are non-discriminative as they likely
correspond to very uncommon (lower tail) or very general
attributes (upper tail). The features that activate a moder-
ate number of samples (middle portion) are called discrim-
inative features. As shown in the gradient heatmaps, these
features encode important physical attributes shared among
specific classes. These features play a key role in assess-
ing the quality of SSL representations for downstream linear
classification tasks.

fications in downstream linear probing (without using any
labels). We investigate the connection between these un-
supervised properties in the representation space and mis-
classifications. Unlike (Garrido et al. 2022; Li, Efros, and
Pathak 2022) which requires computing rank over the entire
dataset, our analysis leads to the development of an unsu-
pervised sample-wise quality score which can be used as a
regularizer and effectively improve downstream classifica-
tion performance.

Understanding Representations and Their
Failure Modes

Let us consider a pre-trained self-supervised model with a
ResNet (He et al. 2016) backbone encoder f(.). Given an
input sample, xi 2 Rn its representation is denoted by,
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Figure 2: Linear probing discriminative features: We train
linear classifiers after selecting subsets of discriminative
features of various sizes (middle portion of Figure 1) and
plot their top-1 accuracy for various SSL baselines. Classi-
fiers trained using discriminative features consistently out-
perform those of randomly selected features (averaged over
4 random seeds). We can achieve up to 40% reduction in rep-
resentations size using discriminative features without sig-
nificantly affecting the top-1 accuracy.

f(xi) = hi 2 Rr, where r is the size of the representation
space.
Upon visual analysis (See Appendix for more details), we

observe that each representation is nearly sparse, i.e., most
feature activations are close to zero (Jing et al. 2022). There
exists a select few features that are strongly deviated from
the remaining features in that representation. For any given
representation hi 2 Rr, we formally define the set of highly
activating features (Li) as Li := {j : hij > µi + ✏�i},
where µi and �i denote the mean and standard deviation
of hi respectively and ✏ is a hyperparameter that is empir-
ically selected. We use ✏ = 4 in our experiments. In all
our analysis, we perform L2 normalization over every h

to ensure fair comparison of features. For every feature j,
the percentage of highly activating samples is denoted by,
Aj = 100

N

PN
i=1 1j2Li where N is the size of the popula-

tion. In the top panel of Figure 1, we plot Aj for all features
j in the SimCLR representation space of the ImageNet-1K
train set. The x-axis is ordered in ascending order of Aj . In
the next section, we dissect this plot to group features based
on Aj .

Our observations do not directly extend to ViT-based SSL
encoders since, unlike ResNet encoders, their representa-
tions can also contain negatively activated features. They
need not be sparse in nature (no ReLU before representa-
tion layer), rather, features can be both positively (highly
activating) or negatively (lowly activating) correlated to im-
portant class-specific concepts. In our work, we observe sev-
eral unique properties of highly activating features in ResNet
representations which are beneficial to detect failures. We
see ViT encoders as an important direction for future work
and focus on ResNet-based encoders for our study.

Discriminative Features
Based on Figure 1, we can define three broad categories of
highly activating features: (i) Features that are highly acti-

vating across a very small fraction of the population, cor-
responding to the lower tail features in Figure 1. We take
the example of features 621, 251 and 1021 and visualize
their highly activating samples and gradient heatmaps (us-
ing GradCAM (Selvaraju et al. 2019)). Since these features
activate very few samples, they likely correspond to image-
specific or uncommon concepts. Such features would also
not be useful in classification tasks as these are not shared,
class-relevant attributes. (ii) Features that highly activate a
very large number of samples in the population i.e, the up-
per tail features in Figure 1. Like feature 2021 and 401, such
features are likely to encode very broad and general char-
acteristics (like texture, color etc.) common to most sam-
ples (spanning various classes) and therefore, are not class-
discriminative. The third category includes, (iii) Features
that highly activate a moderate number of samples in the
population (i.e. the middle part in Figure 1). These features
are most likely to encode unique physical attributes associ-
ated with particular classes. For example, feature 98 corre-
sponds to the ”stripe” pattern which is an important property
of the zebra class. Similarly, feature 970 corresponds to the
style of the daisy class, and feature 1392 corresponds to lion-
fish in different scenes. We refer to this subset of highly ac-
tivating features as discriminative features. Note that we did
not use any label information for this analysis. We can iden-
tify discriminative and non-discriminative features in a fully
unsupervised manner by simply observing their percentage
activations (A). The bar plots in Figure 1, show that these
features activate more than 80% of particular classes which
confirms that these features are strongly class-correlated.
Discriminative features can be regarded as a summariza-

tion of the top concepts related to each class of the dataset
the encoder is trained on. We justify the described method
of selection in Figure 2, where we plot the top-1 accuracy of
a linear classifier trained on ImageNet-1K using subsets of
discriminative features of varying sizes as chosen from Fig-
ure 1 (middle portion). We compute the percentile for each
point in the distribution A and gradually increase the lower
limits (from 0th percentile), and decreasing the upper limits
(from 100th percentile) to get multiple sets of discrimina-
tive features of varying sizes. We also plot the top-1 accu-
racy when random subsets of features are selected. We ob-
serve that discriminative features perform significantly bet-
ter compared to randomly selected features. We also observe
that we can reduce the representation size up to 40% using
the discriminative features, with minimal reduction in per-
formance. In practice, we select the discriminative features
between the 50th and the 95th percentile of A (as shown
in Figure 1). This range can be discovered empirically and
can be further tuned for each model-dataset pair. In the Ap-
pendix, we also show that selecting features from either the
lower or upper tail ofA also under-perform compared to dis-
criminative features from the middle portion.
While we analyze features independently in our work, it

has been shown (Kalibhat et al. 2023; Elhage et al. 2022)
that not all neural features are axis-aligned. Meaningful
class-related concepts can also be encoded by multiple fea-
tures (See Appendix for examples). In such cases, the whole
group of features can be considered as discriminative. These
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Figure 3: Comparing correct and mis-classified represen-
tations: In these heatmaps, we visualize the discrimina-
tive features of average SimCLR representations of several
ImageNet-1K classes - correct (left) and incorrect (right)
classifications. In the baseline, we observe that discrimina-
tive features are strongly activated only in correctly clas-
sified representations. Q-Score regularization improves dis-
criminative features’ activations, even in mis-classified rep-
resentations.

Model AUROC AUPRC

SimCLR 73.26 91.11
SwaV 62.30 81.18
MoCo 63.09 84.59
BYOL 72.78 91.45
SimSiam 66.97 86.05
DINO 62.57 83.03
VICReg 69.68 89.06
Barlow 69.57 90.06

Table 1: AUPRC and AUROC scores of Q-Score: We mea-
sure the effectiveness of Q-Score when used as a predictor in
distinguishing between correct and mis-classified represen-
tations on ImageNet-100 and ImageNet-1K (See Appendix)
on each SSL model. Q-Score shows an AUPRC of up to
91.45 on ImageNet-100, 78.78 on ImageNet-1K and AU-
ROC of 73.26 on ImageNet-100, 65.44 on ImageNet-1K.

groups can be highly activating for specific classes and lie in
the middle portion ofA. We also perform a PCA analysis on
the representation space (see Appendix) to partially validate
our selection method.

Mis-classified Representations
We now study how discriminative features play a key role
in detecting potential mis-classifications in a fully unsu-
pervised manner. In Figure 3, we take SimCLR ImageNet-
1K representations and visualize the discriminative features.
On the left, we show the average representations of cor-
rectly classified samples (after linear probing) in a subset
of classes, while on the right, we show the same for the mis-
classified samples in those classes. The subset of features we
display is the same for correct and incorrect classifications.
As we can see, in Figure 3, in the first panel, there

is a clear difference between representations of correctly
and incorrectly classified examples. Both correct and mis-
classified representations are nearly sparse, however, the
discriminative features are significantly more activated in
correct classifications. This is especially interesting because
we can visually distinguish between correct and incorrect
classifications, just by observing the discriminative features,
without using any label information. Note that this observa-

tion does not depend on the actual ground truths or predicted
labels of the linear classifier rather, just a binary outcome or
whether or not a sample was correctly classified.
The correlation of discriminative features to unique physi-

cal attributes as studied in the previous section, suggests that
their presence may be useful in correctly classifying repre-
sentations. In Figure 3, our claim is confirmed as we observe
that mis-classified representations do not show high activa-
tions on these features. Therefore, for any given sample, we
can consider discriminative features as strong signals indi-
cating classification outcome without requiring to train a lin-
ear classification head. We would like to emphasize that our
results only indicate an association between these structural
properties and classification accuracy and we do not claim
any causal relationship between the two.

Self-Supervised Representation Q-Score
Our study of learned representation patterns helps us dis-
cover discriminative features in an unsupervised manner.
These features encode class-specific attributes and help us
visually distinguish between correct and incorrect classifi-
cations. We combine these observations to design a sample-
wise quality score for SSL representations. Let us define D,
such that |D| < r, as the set of discriminative features for
a given SSL model trained on a given dataset. For the ith

sample, we have hi (representation), µi (mean of hi), �i

(standard deviation of hi) and the set of highly activating
features Li = {j : hij > µi + ✏�i}, |Li| < r. We define our
Self-Supervised Quality Score for sample i as,

Qi :=
1

|Li \D|
X

j2Li\D

(hij � µi) (1)

where, Li\D is the set of discriminative features specific
to the ith sample. Intuitively, higher Qi implies that the rep-
resentation contains highly activated discriminative features
which are strongly deviated from the mean. Our objective
with this metric is to compute a sample-specific score in an
unsupervised manner indicating the quality of its represen-
tations. Ideally, we would like to argue that samples with
higher Q-score have improved representations and thus are
more likely to be classified correctly in the downstream task.
This is a general score that can be applied to any ResNet-
based SSL model trained on any dataset. See Appendix for
a discussion on Q-Score in supervised models.
Next, we measure how effective our score is in differenti-

ating between correctly and incorrectly classified represen-
tations in an unsupervised manner. We plot the Precision-
Recall (PR) curve and the Receiver Operating Characteris-
tic (ROC) curve (See Appendix) of Q-Score when used as
a predictor of classification outcome (correct or incorrect).
We show this for SimCLR, SwaV, MoCo, BYOL, DINO
and SimSiam for ImageNet-100 and ImageNet-1K. We also
compute the AUROC (area under receiver operating char-
acteristic curve) and AUPRC (area under precision-recall
curve) of these curves in Table 1. We observe AUPRC up
to 91.45 on ImageNet-100 and 78.78 on ImageNet-1K on
BYOL. On SimCLR, we observe AUROC up to 73.26 on
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ImageNet-100 and 65.44 on ImageNet-1K. Based on these
results we can conclude that, Q-Score is a reliable metric in
assessing the quality of representations, meaning that repre-
sentations with lower Q-Score (quality), are more likely to
be mis-classified.
We now check if promoting Q-Score on pre-trained repre-

sentations is helpful. To do so, we take state-of-the-art pre-
trained SSL models and further train them for a small num-
ber of iterations with Q-Score as a regularizer. For example,
we can apply this regularizer to the SimCLR optimization as
follows,

max
✓

1

2N

2NX

i=1

h
log

sim(zi, z̃i)P2N
j=1 1j 6=isim(zi, zj)

+ �11Qi<↵(Qi)
i

(2)

where z is the latent vector computed by passing h

through a projector network and sim(.) denotes the expo-
nentiated cosine similarity of the normalized latent vector. ↵
is a threshold with which we select the low-score samples
whose Q-Scores should be maximized and �1 is the regular-
ization coefficient. In other words the goal of this regulariza-
tion is to improve low-quality representations, similar to the
ones shown in Figure 3, by maximizing their discriminative
features for downstream classification.
In practice, directly applying this regularization could

lead to a trivial solution where a small set of features get
activated for all samples. This is not a favorable situation be-
cause these representations become harder to classify accu-
rately and more importantly, the discriminative features are
no longer informative because they are activated for all sam-
ples (similar to the upper tail in Figure 1). Such features have
significantly large L1 norms across samples compared to the
remaining features. Therefore, in our revised optimization,
we penalize features that have large L1 norms across sam-
ples. Let us denote the representation matrix of a given batch
by H 2 R2N⇥r and kH⇤,kk1 represents the L1 norm of the
kth column (corresponding to the kth feature). Our regular-
ized objective would then be,

max
✓

1

2N

2NX

i=1

h
log

sim(zi, z̃i)P2N
j=1 1j 6=isim(zi, zj)

+ �11Qi<↵(Qi)
i

� �2

rX

k=1

1kH⇤,kk1>�(kH⇤,kk1) (3)

where the threshold � helps us select the uninformative fea-
tures whose L1 norms should be minimized. In practice, we
choose ↵ and � for each batch as the mean values of Qi and
kH⇤,kk1 respectively.

Experimental Setup
Our setup consists of state-of-the-art self-supervised ResNet
encoders (f(.)) - SimCLR, SwaV, MoCo, BYOL, DINO

Model ImageNet-100 ImageNet-1K
Base Q-Score Base Q-Score

SimCLR 78.64 80.79 63.80 66.18
SwaV 74.36 78.90 69.95 71.05
MoCo 79.62 85.16 67.03 69.31
BYOL 80.88 86.72 69.14 72.81
DINO 75.41 76.39 75.52 75.78

SimSiam 78.80 81.41 68.62 70.47
VICReg 79.77 81.56 73.63 74.72
Barlow 80.63 81.03 67.85 69.58

Table 2: Boosting linear classification performance with Q-
Score regularization: We tabulate the top-1 accuracy of lin-
ear evaluation on SimCLR, SwaV, MoCo, BYOL, DINO,
SimSiam, VICReg and Barlow Twins with and without
Q-Score regularized fine-tuning. We observe that Q-Score
regularization consistently improves each SSL state-of-the-
art baseline achieving up to 5.8% relative improvement on
ImageNet-100 and 3.7% on ImageNet-1K.

(ResNet-based), SimSiam, VICReg and Barlow Twins that
are pre-trained on datasets - ImageNet-1K, ImageNet-100
(Russakovsky et al. 2015). We use a ResNet-50 encoder for
our ImageNet-1K experiments and ResNet-18 encoder for
all other datasets. We discover discriminative features for
each pre-trained model using the train set of each dataset.
For Q-Score regularization, maintaining the same encoder
architecture as the respective papers, we use the LARS (You,
Gitman, and Ginsburg 2017) optimizer with warmup-anneal
scheduling. We further-train each pre-trained model with
and without Q-Score regularization (controlled by �1 and
�2) using a low learning rate of 10�5 for 50 epochs. We find
that �1 = �2 = 10�4 generally works well for fine tuning.
We use a maximum of 4 NVIDIA RTX A4000 GPUs (16GB
memory) for all our experiments. Using the implementations
from solo-learn (da Costa et al. 2022), we have tried to match
our baseline numbers as much as possible within the error
bars reported in the papers using the available resources. We
follow the standard evaluation by training a linear classifier
on frozen pre-trained representations for 100 epochs. For all
our gradient heatmap visualizations, we utilize GradCAM
(Selvaraju et al. 2019).

Q-Score Regularization
We tabulate our linear evaluation results of various SSL
baselines before and after Q-Score regularization in Table
2. We also include results on lasso (L1) regularization (Tib-
shirani 1996) on pre-trained models (See Appendix). Lasso
promotes sparsity by minimizing the L1 norm of represen-
tations. Q-Score regularization improves the linear prob-
ing top-1 accuracy on all of the SSL state-of-the-art mod-
els. We observe the most improvement on BYOL showing
5.8% increase in accuracy on ImageNet-100 and 3.7% on
ImageNet-1K. Lasso regularization shows degraded perfor-
mance across most models since naively sparsifying rep-
resentations can lead to loss of information. In contrast,
Q-Score regularization promotes highly activating discrim-
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Figure 4: Discriminative features in mis-classified sam-
ples The discriminative features’ heatmaps on the Sim-
CLR (baseline) activate portions that may not be relevant
to the image ground truth, leading to incorrect predictions.
After Q-Score regularization on these representations, the
heatmaps become more localized and less noisy, whilst im-
proving predictions and confidence.

inative coordinates which we have shown to be essential
for downstream classification. We include more results on
CIFAR-10 (Krizhevsky, Nair, and Hinton 2009a), STL-10
(Coates, Lee, and Ng 2011) and CIFAR-100 (Krizhevsky,
Nair, and Hinton 2009b) in the Appendix. We also include
the results on the transfer performance of discriminative fea-
tures and Q-Score regularized ImageNet-1K models on un-
seen datasets in the Appendix. Q-Score is therefore a pow-
erful regularizer that can boost the performance of state-of-
the-art SSL baselines.
In addition to top-1 accuracy, Q-Score also shows signifi-

cant improvement in representation quality. In Figure 3, we
compare the discriminative features of representations be-
fore and after Q-Score regularization. We observe that the
magnitude of discriminative features and consequently the
Q-Score, increases for both correct and mis-classified rep-
resentations after regularization, making it harder to differ-
entiate between them. For example on SimCLR ImageNet-
1K, the AUROC reduces to 59.81 and AUPRC to 71.28.
We also observe improved classification confidence as rep-
resentations become more disentangled (see Appendix for a
discussion on this). Our regularization produces better qual-
ity representations with clear discriminative features mak-
ing them more distinguishable across classes and therefore,
easier to classify. Due to this, we can attribute the improve-
ment in performance to improved representation quality. Al-
though Q-Score improves accuracy, it does not entirely pre-
vent mis-classifications as mis-classifications may occur due
to a variety of reasons such as, training augmentations, hard-
ness of samples, encoder complexity, dataset imbalance etc.
Our motivation for using discriminative features as dis-

cussed in Section is because - a) they are at clear contrast be-
tween correct and incorrect classifications, and b) they show
strong correlation to ground truth. We observed in Figure 3
in the baseline, that the discriminative features in correctly
classified samples are not strongly activated in mis-classified
samples. We now study some mis-classified samples and ob-
serve how their features may improve with Q-Score regular-
ization. In Figure 4, we visualize the gradient heatmaps of

the discriminative features of some mis-classified examples
in SimCLR. In the baseline, we observe that discriminative
features do highlight portions of the image relevant to the
ground truth, however, they may also activate other portions
that are not necessarily important (see rock crab and green
mamba). These heatmaps reflect low quality representations
where the discriminative features are not strongly deviated
from the mean. After Q-Score regularization, the maximiza-
tion of discriminative features also leads to better gradient
heatmaps that are more localized and cover almost all im-
portant portions of the image relevant to the ground truth.
Therefore, these samples get classified correctly with higher
confidence after regularization.
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Figure 5: Comparing discriminative features with Salient
ImageNet core and spurious features: We compare the gra-
dient heatmaps of discriminative features correct and incor-
rect classifications of SimCLR on ImageNet-1K with the
core and spurious masks of the same images in Salient Im-
ageNet. We observe that discriminative features generally
overlap more with core features in Salient ImageNet.

Quantifying Representation Interpretability
with Salient ImageNet

We have observed that discriminative features in representa-
tions correspond to meaningful physical attributes through
gradient heatmaps and they play a key role in deciding
the downstream classification outcome. In this section, we
quantify the interpretability of these features between cor-
rect and incorrect classifications. We utilize Salient Ima-
geNet (Singla and Feizi 2021) as the ground truth baseline to
compare our gradient heatmaps with. The Salient ImageNet
dataset contains annotated masks for both core and spuri-
ous features extracted from a supervised robust ResNet-50
model for 6858 images spanning 327 ImageNet classes. It
also contains some natural language keywords, provided by
workers to explain each feature. Core features are those that
are highly correlated with the ground truth of the image,
whereas, spurious features are those that activate portions
irrelevant to the ground truth. In Figure 5, we study some
correct and mis-classified samples in the SimCLR baseline.
We plot the gradient heatmaps of the discriminative fea-
tures (combining each individual feature heatmap) of Sim-
CLR for each respective image. We also plot the core and
spurious masks of the same images from the Salient Ima-
geNet dataset. We observe that discriminative SimCLR fea-
tures mostly capture relevant and defining characteristics of
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the images, therefore are highly correlated with the ground-
truth. Moreover, for every correctly classified image, these
heatmaps overlap more with core features than spurious fea-
tures in Salient ImageNet. Discriminative features in mis-
classified images also overlap with core features in most
cases. Since discriminative features are very closely related
(in terms of overlap) to core features, we can potentially ex-
plain these features better with the help of worker annota-
tions in Salient ImageNet. Therefore, these features can be
considered as interpretable.
We quantitatively measure the interpretability of a given

representation of a given model by computing the Intersec-
tion over Union (mIoU) between the heatmap of discrimina-
tive features and the core or spurious mask of that image in
Salient ImageNet. We can extend this to measure the over-
all interpretability of a given model by computing the mean
Intersection over Union (mIoU) over the population. For the
ith image , we define Ari as the area of the heatmap of its
discriminative features. Let Arcorei and Arspi be the area of
the core and spurious masks respectively. The mIoU scores
are defined as follows,

mIoUcore =
1

N

X

i

s(Ari \Arcorei )

s(Ari [Arcorei )

mIoUsp =
1

N

X

i

s(Ari \Arspi )

s(Ari [Arspi )

where s(.) calculates the sum of the pixel values of the
discriminative features’ heatmap in the given area. Higher
mIoUcore% indicates that, on an average higher percent-
age of the feature heatmap overlaps with the annotated core
region, meaning that the model features are more inter-
pretable.
In Figure 6, we show that for all SSL baselines,

mIoUcore > mIoUsp for both correct and incorrect clas-
sifications which confirms that discriminative features gen-
erally encode important and core attributes over the whole
population. Among correct and mis-classified samples in the
baselines, we observe that the mIoUcore of correct classifi-
cations is higher than mis-classifications. This aligns with
our observations in Figure 4, which shows that discrimina-
tive features in mis-classified samples may not be strongly
deviated from the mean and therefore, may correspond to
less important portions of the image. After Q-Score regular-
ization, we observe an increase in mIoUcore for both correct
and mis-classified samples compared to the baseline. This
shows that our regularization which enhances discriminative
features produces better gradient heatmaps which are more
overlapped with core portions of images and therefore, im-
proves the overall model interpretability. Note that, spurious
feature heatmaps (Figure 5) cover almost all the image con-
tent. As shown in Figure 4, discriminative feature heatmaps,
after regularization, become larger or smaller to capture all
core characteristics of the image. This can cause mIoUsp to
be higher or lower after regularization. We therefore only
use mIoUsp to compare with mIoUcore and not to analyze
the regularization effect.

Figure 6: mIoU scores with Salient ImageNet features: We
compute the mean mIoUcore and mIoUsp scores of SSL
baselines (using their discriminative features) before and af-
ter Q-Score regularization. We observe that discriminative
features for all models generally show higher % IoU with
core features than spurious features. Mis-classified represen-
tations show relatively lower % IoUwith core features. After
Q-score regularization, we observe that mIoUcore generally
improves for both correct and mis-classified representations.

Conclusion
We studied the representation space of SSL models to iden-
tify discriminative features in a fully unsupervised manner.
Using discriminative features, we compress the representa-
tion space by up to 40% without largely affecting the down-
stream performance. We defined an unsupervised sample-
wise score, Q-Score, that uses discriminative features and
is effective in determining how likely samples are to be
correctly or incorrectly classified. We regularized with Q-
Score and remedied low-quality samples, thereby, improv-
ing the overall accuracy of state-of-the-art SSL models on
ImageNet-1K by up to 3.7%, also producing more explain-
able representations. Our work poses several questions and
directions for future work: (i) What are other causes for fail-
ures and poor generalization in SSL models apart from rep-
resentation quality?; (ii) Studying properties for ViT-based
representations in a similar fashion is a crucial next step to
our work as ViT is a widely used SSL encoder; (iii) How can
representations be better structured for non-classification-
based downstream tasks such as object detection and seman-
tic segmentation, where discriminative features should cor-
relate to the object/segment categories (which can be several
per-image).
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