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Abstract
Neural networks with self-attention (a.k.a. Transformers) like
ViT and Swin have emerged as a better alternative to tra-
ditional convolutional neural networks (CNNs). However,
our understanding of how the new architecture works is
still limited. In this paper, we focus on the phenomenon
that Transformers show higher robustness against corruptions
than CNNs, while not being overconfident. This is contrary to
the intuition that robustness increases with confidence. We re-
solve this contradiction by empirically investigating how the
output of the penultimate layer moves in the representation
space as the input data moves linearly within a small area. In
particular, we show the following. (1) While CNNs exhibit
fairly linear relationship between the input and output move-
ments, Transformers show nonlinear relationship for some
data. For those data, the output of Transformers moves in a
curved trajectory as the input moves linearly. (2) When a data
is located in a curved region, it is hard to move it out of the
decision region since the output moves along a curved trajec-
tory instead of a straight line to the decision boundary, result-
ing in high robustness of Transformers. (3) If a data is slightly
modified to jump out of the curved region, the movements af-
terwards become linear and the output goes to the decision
boundary directly. In other words, there does exist a decision
boundary near the data, which is hard to find only because of
the curved representation space. This explains the undercon-
fident prediction of Transformers. Also, we examine mathe-
matical properties of the attention operation that induce non-
linear response to linear perturbation. Finally, we share our
additional findings, regarding what contributes to the curved
representation space of Transformers, and how the curved-
ness evolves during training.

Introduction
Self-attention-based neural network architectures, including
Vision Transformers (Dosovitskiy et al. 2021), Swin Trans-
formers (Liu et al. 2021), etc. (hereinafter referred to as
Transformers), have shown to outperform traditional convo-
lutional neural networks (CNNs) in various computer vision
tasks. The success of the new architecture has prompted a
question, how Transformers work, especially compared to
CNNs, which would also shed light on deeper understand-
ing of CNNs and eventually neural networks.
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(a) Input space
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Figure 1: 2D projected movements of (a) the data (black dot)
in the input space and corresponding output features in the
representation space for (b) ResNet50 and (c) Swin-T.

In addition to the improved task performance (e.g., clas-
sification accuracy) compared to CNNs, Transformers also
show desirable characteristics in other aspects. It has been
shown that Transformers are more robust to adversarial per-
turbations than CNNs (Bai et al. 2021; Naseer et al. 2021;
Paul and Chen 2022). Moreover, Transformers are reported
not overconfident in their predictions unlike CNNs (Min-
derer et al. 2021) (and we show that Transformers are ac-
tually underconfident in this paper).

The high robustness, however, does not comport with un-
derconfidence. Intuitively, a data that is correctly classified
by a model with lower confidence is likely to be located
closer to the decision boundary (see Appendix for detailed
discussion). Then, a smaller amount of perturbation would
move the data out of the decision region, which translates
into lower robustness of the model. However, the previous
results claim the opposite.

To mitigate the contradiction of robustness and undercon-
fidence, this paper presents our empirical study to explore
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the representation space of Transformers and CNNs. More
specifically, we focus on the linearity of the models, i.e., the
change of the output feature (which is simply referred to as
output in this paper) with respect to the linear change of the
input data. It is known that adversarial examples are a result
of models being too linear, based on which the fast gradient
sign method (FGSM) was introduced to show that deep neu-
ral networks can be easily fooled (Goodfellow, Shlens, and
Szegedy 2015). Motivated by this, we examine the input-
output relationship of Transformers through the course that
the input is gradually perturbed along the direction deter-
mined by FGSM.

Fig. 1 visualizes the representation spaces of CNNs and
Transformers comparatively (see Appendix for implementa-
tion details). An image data from ImageNet (Russakovsky
et al. 2015), marked with the black dot in Fig. 1a, is gradu-
ally modified by a fixed amount along two mutually orthog-
onal directions. The corresponding outputs of ResNet50 (He
et al. 2016) and Swin-T (Liu et al. 2021) are obtained, which
are shown after two-dimensional projection in Figs. 1b and
1c, respectively. While the gradual changes of the input pro-
duce almost linear changes in the output of ResNet50, the
output trajectory of Swin-T is nonlinear around the original
output (and then becomes linear when the change of the out-
put is large), i.e., the representation space is locally curved.
We empirically show that this curved representation space
results in the aforementioned contradiction.

Our main research questions and findings can be summa-
rized as follows.

1. How does the representation space of Transformers
look like? To answer this, we analyze the movement of the
penultimate layer’s output with respect to the linear move-
ment of the input. We use the adversarial gradient produced
by FGSM (Goodfellow, Shlens, and Szegedy 2015) as the
direction of movement in the input space, to investigate the
linearity of the feature space of the models. We find that
the directions of successive movements of the output sig-
nificantly change in the case of Transformers unlike CNNs,
indicating that the representation space of Transformers
is locally curved.

2. What makes Transformers robust to input perturbation?
We find that the curved regions in the representation
space account for the robustness of Transformers. When
a data is located in a curved region, a series of linear per-
turbations to the input move the output point along a curved
trajectory. This makes it hard to move the data out of its de-
cision region along a short and straight line, which explains
high robustness of Transformers for the data.

3. Then, why is the prediction of Transformers undercon-
fident? Although it takes many steps to escape from a curved
decision region and reach a decision boundary, we find that
a decision boundary is actually located closely to the origi-
nal output. We demonstrate a simple trick to reach the deci-
sion boundary quickly. I.e., when a small amount of random
noise is added to the input data, its output can jump out of
the locally curved region and arrive at a linear region, from
which a closely located decision boundary can be reached by
adding only a small amount of perturbation. This reveals that
the decision boundary exists near the original data in the

representation space, which explains the underconfident
predictions of Transformers.

We also present additional observations examining what
contributes to the curved representation space of Transform-
ers and when the curvedness is formed during training.

The Appendix of this paper can be found in the following
link: https://arxiv.org/abs/2210.05742.

Related Work
Since the first application of the self-attention mechanism
to vision tasks (Dosovitskiy et al. 2021), a number of stud-
ies have shown that the models built with traditional con-
volutional layers are outperformed by Transformers utiliz-
ing self-attention layers in terms of task performance (Liu
et al. 2021; Chu et al. 2021; Huang et al. 2021; Li et al.
2021; Touvron et al. 2021; Wang et al. 2021; Xiao et al.
2021; Yang et al. 2021; Yuan et al. 2021; Liu et al. 2022a).
There have been efforts to compare CNNs and Transformers
in various aspects. Empirical studies show that Transform-
ers have higher adversarial robustness than CNNs (Paul and
Chen 2022; Naseer et al. 2021; Aldahdooh, Hamidouche,
and Deforges 2021; Bhojanapalli et al. 2021), which seems
to be due to the reliance of Transformers on lower frequency
information than CNNs (Park and Kim 2022; Benz et al.
2021). Other studies conclude that Transformers are cali-
brated better than CNNs yielding overconfident predictions
(Guo et al. 2017; Thulasidasan et al. 2019; Wen et al. 2021;
Minderer et al. 2021). However, there has been no clear ex-
planation encompassing both higher robustness and lower
confidence of Transformers.

Understanding how neural networks work has been an im-
portant research topic. A useful way for this is to investigate
the input-output mapping formed by a model. Since mod-
els with piecewise linear activation functions (e.g., ReLU)
implement piecewise linear mappings, several studies inves-
tigate the characteristics of linear regions, e.g., counting the
number of linear regions as a measure of model expressiv-
ity (or complexity) (Montufar et al. 2014; Hanin and Rol-
nick 2019a,b; Telgarsky 2015; Serra, Tjandraatmadja, and
Ramalingam 2018; Raghu et al. 2017) and examining lo-
cal properties of linear regions (Zhang and Wu 2020). Some
studies examine the length of the output curve for a given
unit-length input (Raghu et al. 2017; Price and Tanner 2021;
Hanin, Jeong, and Rolnick 2022). There also exist some
works that relate the norm of the input-output Jacobian ma-
trix to generalization performance (Sokolić et al. 2017; No-
vak et al. 2018). However, the input-output relationship of
Transformers has not been explored previously, which is fo-
cused in this paper.

On the Ostensible Contradiction of High
Robustness and Underconfidence

Model Calibration
It is desirable that a trained classifier is well-calibrated by
making prediction with reasonable certainty, e.g., for data
that a classifier predicts with confidence (i.e., probability
of the predicted class) of 80%, its accuracy should also be
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80% in average. A common measure to evaluate model cal-
ibration is the expected calibration error (ECE) defined as
(Naeini, Cooper, and Hauskrecht 2015)

ECE =
K∑
i=1

P (i) · |oi − ei|, (1)

where K is the number of bins of confidence, P (i) is the
fraction of data falling into bin i, oi is the accuracy of the
data in bin i, and ei is the average confidence of the data
in bin i. One limitation of ECE is that it does not distin-
guish between overconfidence and underconfidence because
the sign of the difference between the accuracy and the con-
fidence is ignored. Therefore, we define signed ECE (sECE)
to augment ECE, as follows.

sECE =
K∑
i=1

P (i) · (oi − ei). (2)

An overconfident model will have higher confidence than
accuracy, resulting in a negative sECE value. An undercon-
fident model, in contrast, will show a positive value of sECE.

We compare the calibration of CNNs, including ResNet50
(He et al. 2016) and MobileNetV2 (Sandler et al. 2018;
Howard et al. 2019), and Transformers, including ViT-B/16
(Dosovitskiy et al. 2021) and Swin-T (Liu et al. 2021), on
the ImageNet validation set using ECE and sECE in Fig. 2
(see Fig. 11 in Appendix for the results of other models).
CNNs show negative ECE values and bar plots below the
45◦ line, indicating overconfidence in prediction, which is
consistent with the previous studies (Guo et al. 2017). On
the other hand, Transformers are underconfident, showing
positive sECE and bar plots over the 45◦ line. This com-
parison result is interesting: Transformers reportedly show
higher classification accuracy than CNNs, but in fact with
lower confidence.

Passage to Decision Boundary
It is a common intuition that if a model classifies a data with
low confidence, the data is likely to be located near a deci-
sion boundary (see Appendix for detailed discussion). Based
on the above results, therefore, the decision boundaries of
Transformers are assumed to be formed near the data com-
pared to CNNs. To validate this, we formulate a procedure
to examine the distance to a decision boundary from a data
through a linear travel. Concretely, we aim to solve the fol-
lowing optimization problem:

argmin
ϵ

C(x′) ̸= y, x′ = x+ ϵ · d, (3)

where x is the input data, y is the true class label of x, C
is the classifier, d is the travel direction, ϵ is a positive real
number indicating the travel length, and x′ is the traveled
result of x. We set the travel direction d as the adversarial
gradient produced by FGSM, i.e.,

d = sign(∇xJ(C(x), y)), (4)
where J is the classification loss function (i.e., cross-
entropy). Note that ∥d∥2 =

√
D, where D is the dimen-

sion of x. Refer to Algorithm 1 in Appendix for the detailed
procedure to solve the optimization problem in Eq. 3.
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Figure 2: Reliability diagrams of CNNs and Transformers.
Transparency of bars represent the ratio of the number of
data in each confidence bin. ECE and sECE values are also
shown in each case.

(a) ResNet50 (b) MobileNetV2

(c) ViT-B/16 (d) Swin-T

Figure 3: Lengths (ϵ) of the travel to decision boundaries
with respect to the confidence for the ImageNet validation
data. Black lines represent average values.

Fig. 3 shows the obtained values of ϵ with respect to
the confidence values for the ImageNet validation data (see
Fig. 12 in Appendix for the results of other models). On the
contrary to our expectation, decision boundaries seem to be
located farther from the data in the input space for Trans-
formers than CNNs. This contradiction is resolved in the
following section.

Resolving the Contradiction
Shape of Representation Space
As mentioned in the Introduction, the FGSM attack was
first introduced to show that the linearity of a model causes
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(a) Input space (b) Representation space

Figure 4: Illustration of the input-output relationship of Transformers in terms of the trajectories in the input space and the
representation space.

its vulnerability to adversarial perturbations (Goodfellow,
Shlens, and Szegedy 2015). To resolve the contradiction
between high robustness (a large distance to the decision
boundary) and underconfidence (a small distance to the de-
cision boundary) of Transformers in the previous section,
therefore, we examine the degree of linearity of the input-
output relationship, i.e., how linear movements in the input
space appear in the representation space of Transformers.

We divide the travel into N steps as

x(n) = x(0) + n · ϵ

N
d, (n = 0, 1, · · · , N) (5)

where x(0) = x and x(N) are the initial and final data points,
respectively. For each x(n), we obtain its output feature at
the penultimate layer, which is denoted as z(n). Unlike the
travel in the input space, the magnitude and direction of the
travel appearing in the representation space may change at
each step. Thus, the movement at step n is defined as

d(n)
z = z(n) − z(n−1), (6)

from which the magnitude (ω(n)) and relative direction
(θ(n)) are obtained as

ω(n) = ∥d(n)
z ∥, θ(n) = cos−1

(
d
(n)
z · d(n+1)

z

∥d(n)
z ∥∥d(n+1)

z ∥

)
.

(7)
We consider three different ways to determine d:

• dFGSM (blue-colored trajectory in Fig. 4): FGSM direc-
tion for x(0) (as in Eq. 4).

• dr+FGSM (yellow-colored trajectory in Fig. 4): FGSM di-
rection determined for the randomly perturbed data x(0)

r =
x(0) + ϵr · r, where r is a random vector (∥r∥2 =

√
D)

and ϵr controls the amount of this “random jump.”
• drFGSM+FGSM (red-colored trajectory in Fig. 4): FGSM

direction determined for the data perturbed in the direction
of dr+FGSM, i.e., x(0)

rFGSM = x(0)+ ϵr+FGSM ·dr+FGSM,
where ϵr+FGSM controls the amount of this jump.

ResNet50 MobileNetV2 ViT-B/16 Swin-T
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Figure 5: Direction changes of output features with respect
to the travel step (n). Light-gray regions: Range between the
minimum and maximum values. Dark-gray regions: Range
between the first quartile (Q1) and the third quartile (Q3).
Black lines: Medians (Q2). Red dots: Mean values.

Figs. 5a-5d show the direction changes in travel for
ResNet50, MobileNetV2, ViT-B/16 and Swin-T when d =
dFGSM, ϵ = .05, and N = 50. See Fig. 13 in Appendix
for the results of other travel directions, which shows a
similar trend. For ResNet50 and MobileNetV2, the direc-
tion does not change much (Figs. 5a and 5b), which in fact
holds regardless of the travel direction in the input space
(see Figs. 13a and 13b in Appendix). This indicates that
the input-output relationship of CNNs is fairly linear
around the data. In contrast, ViT-B/16 and Swin-T shows
locally nonlinear input-output relationship; θ(n) is signifi-
cantly large in early steps of travel (Figs. 5c and 5d), even
for other travel directions in the input space (see Figs. 13c
and 13d in Appendix). I.e., Transformers generate nonlin-
ear response to linear perturbation and the representa-
tion space of Transformers is curved around the data.

Figs. 5e-5h show the direction changes in travel when
d = dr+FGSM, with ϵr = .05 except for ViT-B/16 using
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Figure 6: Distribution of distance from the original output to
the decision boundary (DB) in the representation space.

(a) ViT-B/16 (b) Swin-T

Figure 7: Distance from the original output to the decision
boundary (DB) in the representation space with respect to
confidence. Colors indicate θ(1). Black lines represent aver-
age values.

ϵr = .20 (see Appendix for discussion). It can be observed
that the direction does not change much after the random
jump. I.e., the curvedness of the representation space is
localized around the data. Therefore, by making x(0) jump
a certain distance in a random direction r, z(0) can pass over
the curved region without meandering in the early steps and
make linear movements afterwards (zr(n) in Fig. 4b).

Robustness and Underconfidence of Transformers
Fig. 6 shows the distribution of the Euclidean distance from
the original output to the decision boundary in the represen-
tation space (i.e., ||z(N)−z(0)||). Note that the distance scale
is different between the models. Interestingly, the distance
distributions for ViT-B/16 and Swin-T are bimodal, i.e., the
data are grouped into those having small distances and those
having large distances.

We examine this phenomenon further in Fig. 7, which
shows scatter plots between the confidence and the dis-
tance, where the colors represent θ(1) of the corresponding
data. Note that θ(1) is highly correlated to the total direc-
tion change (

∑N−1
n=1 θ(n)), and thus is used as a measure of
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Figure 8: Accuracy after the I-FGSM attack with respect
to θ(1). Transparency of the bars represents the ratio of the
number of samples in each bin of θ(1). Red dashed lines in-
dicate the overall accuracy after the attack.

curvedness of the representation space around the data (see
Appendix). It is clear that the curvedness dichotomizes the
data: those associated with small values of θ(1) are located
in linear regions (marked with yellowish colors), while those
associated with large values of θ(1) are located in curved re-
gions (marked with greenish colors). In particular, the data in
the latter group show larger distances to the decision bound-
aries, and thus become more robust against adversarial at-
tacks. In other words, since they are located in curved re-
gions, an attack on them becomes challenging.

To validate this, we apply the iterative FGSM attack (I-
FGSM) (Kurakin, Goodfellow, and Bengio 2017), which is
one of the strong attacks, to the correctly classified Ima-
geNet validation data. We set the maximum amount of per-
turbation to ϵIFGSM=.001 or .002, the number of iterations to
T=10, and the step size to ϵIFGSM/T . Fig. 8 shows the clas-
sification accuracy after the attack with respect to θ(1). We
can observe that the data having large values of θ(1) show
high robustness (i.e., high accuracy even after the attack),
which makes the overall robustness of Transformers higher
than that of CNNs.

We hypothesize that the curved representation space also
causes the underconfident prediction of Transformers. That
is, as shown in Fig. 4b, the decision boundary is actually
close to the data point (on the left side of the data), but the
curved travel (blue-colored trajectory in Fig. 4b) reaches the
decision boundary at a farther location. To validate this hy-
pothesis, we add a small amount of noise to the input data in
order to check if the decision boundary at a closer location
can be found if the data jumps out of the curved region (i.e.,
reaching zr

(N) from zr
(0) in Fig. 4b).

Figs. 9a and 9b show the relationship of the distance to
decision boundaries for original outputs (x-axis) and jumped
images (y-axis) for Swin-T. The direction for travel is indi-
cated in the axis. It can be observed that when the FGSM
direction is computed and used after random jump (d =
dr+FGSM; yellow-colored trajectory in Fig. 4), the distance
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(a) ViT-B/16

(b) Swin-T

Figure 9: Relationship of the length of travel (ϵ) to decision
boundaries (DB) for original images (x-axis) and jumped
images (y-axis). Colors indicate θ(1).

is significantly reduced (left figures in Figs. 9a and 9b; most
data points under the 45◦ line). As shown in Figs. 5g and 5h,
the travel becomes less curved and thus the decision bound-
ary can be reached effectively. The 2D projected movements
after the jump in Fig. 16 in Appendix also supports this.
Furthermore, the random jump can be made even more ef-
fective by setting the jump direction to the FGSM direc-
tion that would have been found if random jump was ap-
plied (d = drFGSM+FGSM; red-colored trajectory in Fig. 4),
resulting in further reduction in distance (right figures in
Figs. 9a and 9b).

The reduced distance to the boundary by random jump
implies that the jumped input data can be made misclassified
by adding a smaller amount of perturbation than the origi-
nal input data. Fig. 10 demonstrates that this actually works.
The figure shows example images perturbed linearly in the
FGSM direction (i.e., x(N)) and those first undergone ran-
dom jump (ϵr=.05) and then perturbed linearly in the FGSM
direction (i.e., xr

(N)) for Swin-T. It is clear that the images
are easily misclassified with significantly reduced amounts
of perturbation (smaller ϵ and higher PSNR) after the ran-
dom jump passing over curved regions.

Nonlinearity of Attention Operation
Why do curves tend to appear in the representation space
of Transformers only, and not in CNNs? In this section, we
explain this theoretically by revisiting convolution and self-
attention operations. Note that we use matrices to denote in-
puts and outputs instead of vectors for better explanation of
the operations. Empirical results of this section can be found
in the next section and Table 1 in Appendix.

Deep neural networks transform data points through con-
tiguous blocks that perform similar operations. CNNs, for
instance, comprise layers of a convolution operation and ac-

tivation. As well known, a convolution is a linear operation
(Hayes 1996), i.e., an increment P to the input X converts
into the addition of separate responses:

Conv(X +P) = Conv(X) + Conv(P). (8)
Activation functions may imbue the transformation with
nonlinearity in theory, which is very limited in reality. Re-
LUs are linear until the input data travels to the negative re-
gion. In the case of sigmoid functions, the input data is sup-
posed to linger in the non-saturated region, which is pseudo-
linear. Therefore, the main building block of CNNs is a lin-
ear transformation.

At the heart of Transformers, an attention block trans-
forms an input query into the weighted sum of neighbor val-
ues, which is a linear projection of input tokens. The weights
are calculated as softmax of attention scores A, which is an
inner product of query and key:

A(X) = XWqW
⊤
k X

⊤, (9)

Attn(X) = softmax(A/
√
Dk)XWv, (10)

where Wq, Wk, and Wv are the projection heads for query,
key, and value, respectively, and Dk is the column dimen-
sion of Wk. If X is moved by P, A will change as follows:

A(X+P) =(X+P)WqW
⊤
k (X

⊤ +P⊤) (11)

=XWqW
⊤
k X

⊤ +PWqW
⊤
k P

⊤+

XWqW
⊤
k P

⊤ + PWqW
⊤
k X

⊤ (12)
=A(X) +A(P)+

XWqW
⊤
k P

⊤ +PWqW
⊤
k X

⊤︸ ︷︷ ︸
residual

. (13)

As shown in Eq. 13, the attention score is not linear and the
deviation from the linear response is the combination of the
projection heads and input data. During the inference oper-
ation, the projection heads are fixed and the linear pertur-
bation to the input data will generate a varying degree of
nonlinearity depending on the magnitude of the input and
the angle between the projection head and the input (see
Fig. 17 in Appendix for detailed discussion). Additionally,
the softmax function in Eq. 10 augments the nonlinearity of
the attention operation.

Additional Intriguing Observations
In this section, in addition to the aforementioned main dis-
coveries, we share our additional intriguing observations, for
which we leave further detailed analysis as future work.

Contribution of Components to Curvedness
Which component in Transformers fortifies the curvedness
of the representation space? When ResNet50 and Swin-T
are compared (Table 1 in Appendix), we find that in both
models the activation functions contribute the most to the
increase of θ(1). GELU causes curvedness more than ReLU
because the former is more nonlinear than the latter. In the
case of ResNet50, the convolutional layers and batch nor-
malization (BatchNorm) do not cause curvedness of the rep-
resentation space. In contrast, for Swin-T, the layer normal-
ization (LayerNorm) and self-attention layers intensify the
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Figure 10: Example images that are perturbed by FGSM so as to reach decision boundaries and become misclassified. The total
amount of perturbation (ϵ) and the peak signal-to-noise ratio (PSNR) in dB are also shown. Top: Perturbed images. Bottom:
Images perturbed after random jump (ϵr = .05).

curvedness. The result of these compound contributions of
different components appears as the curvedness of the rep-
resentation space of Transformers.

This observation raises an interesting question about Con-
vNeXt (Liu et al. 2022b), which is a CNN but uses GELU
and LayerNorm instead of ReLU and BatchNorm, respec-
tively: Which trend will it follow, CNNs or Transform-
ers? Surprisingly, we observe that ConvNeXt-Tiny follows
the trend of Transformers, rather than CNNs (Table 1 and
Figs. 18a and 19a in Appendix). This indicates that the
curvedness in the representation space highly depends on
the particular components used in models, and is not just a
problem of models being CNNs or Transformers.

Knowledge Distillation and Curvedness
Another interesting model we find is DeiT-Ti (Touvron et al.
2021), a convolution-free Transformer, and its distilled ver-
sion, which we refer to as DeiT-Ti-Distilled. We observe
that as expected, DeiT-Ti follows the trend of Transformers,
i.e., underconfidence with high robustness (Figs. 18b and
19b in Appendix). However, DeiT-Ti-Distilled, knowledge-
distilled DeiT-Ti with a CNN teacher, tends to follow the
trend of CNNs, i.e., overconfidence with low robustness
(Figs. 18c and 19c in Appendix). The results in Table 1 also
coincides with this observation, where the values of θ(1) are
reduced for DeiT-Ti-Distilled compared to DeiT-Ti. This in-
dicates that knowledge distillation can also affect the non-
linearity of Transformers.

Curved Space During Training
For deeper understanding of the curved regions in the repre-
sentation space, we look into the training process of Trans-
formers. We observe that for the data located in curved re-
gions, the loss does not change much from the early train-
ing stage (Fig. 20 in Appendix; no change in loss for bot-
tom rows in the figure, which show large values of θ(1)).
This phenomenon can also be observed from another view,
in terms of the relationship between the loss at a certain
epoch and the loss change from the epoch until the end of
training (Fig. 21 in Appendix; loss values for the data re-
siding in curved regions - dark-colored points in the figure -

are hardly reduced already from 30 epochs). In other words,
certain training data seem to be trapped in curved regions,
which obstructs the training of the network.

When do curved regions start to form? When we check the
relationship of θ(1) at a certain training stage and θ(1) after
training, we observe that once a data is trapped in a curved
region, it hardly escapes the region and θ(1) becomes larger
during training, i.e., the curvedness gets severer (Fig. 22 in
Appendix; data points mostly above the 45◦ line).

Conclusion
We studied the input-output relationship of Transformers by
examining the trajectory of the output in the representation
space with respect to linear movements in the input space.
The experimental results indicated that the representation
space of Transformers is curved around some data, which
explains high robustness and underconfident prediction of
Transformers.

Future Work
In general, understanding the behavior of a certain neural
network model, either analytically or empirically, is a dif-
ficult task, which cannot be accomplished by a single pa-
per but requires a lot of research efforts. We have focused
on the input-output relationship along the adversarial direc-
tion generated by FGSM, which revealed the existence of
curvedness in the representation space of Transformers. We
believe that we have opened a new perspective of under-
standing Transformers, and many derivative research ques-
tions will naturally follow, e.g., consideration of different
travel directions, input-output relationship of various build-
ing blocks of neural networks, effects of different training
recipes, effects of training datasets, etc., which we leave as
future works. It is also our hope that our work promotes fur-
ther interesting research topics (e.g., ways to reduce/inten-
sify curvedness during or after training, measures of local/-
global curvedness, theoretical analysis of curvedness, etc.)
and applications (e.g., effective adversarial attacks consider-
ing curvedness, robust model architectures, robust training
methods, etc.).
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