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Abstract

We study the distributed gradient aggregation problem where
individual clients contribute to learning a central model by
sharing parameter gradients constructed from local losses.
However, errors in some gradients, caused by low-quality data
or adversaries, can degrade the learning process when naively
combined. Existing robust gradient aggregation approaches
assume that local data represent the global data-generating
distribution, which may not always apply to heterogeneous
(non-i.i.d.) client data. We propose a new algorithm that can
robustly aggregate gradients from potentially heterogeneous
clients. Our approach leverages the manifold structure inher-
ent in heterogeneous client gradients and evaluates gradient
anomaly degrees by projecting them onto this manifold. This
algorithm is implemented as a simple and efficient method that
accumulates random projections within the subspace defined
by the nearest neighbors within a gradient cloud. Our experi-
ments demonstrate consistent performance improvements over
state-of-the-art robust aggregation algorithms.

1 Introduction
The effectiveness of deep learning depends on diverse and
rich data that accurately represent diverse facets of real-world
applications. However, collecting and maintaining such large
datasets centrally can be prohibitively expensive. To address
this, in distributed collaborative learning, such as federated
learning, local clients (devices or sites that participate in
the learning process) individually manage data. Often, such
client datasets are kept undisclosed. For instance, medical or
healthcare organizations would want to contribute to building
a neural network model while ensuring the privacy of patients
and experimental participants.

Training a model in such privacy-preserving environments
is coordinated by a centralized server that stores only the
model parameters. During each training step, the server dis-
tributes the parameters to participating clients who then use
their respective local data to calculate their updates, i.e., the
loss gradients with respect to the parameters. These local
updates are then sent back to the server to be combined and
update the global model.

Existing collaborative learning approaches typically as-
sume that all clients possess clean and high-quality data.
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However, in real-world applications, data quality can vary
significantly. For example, some clients have highly noisy la-
bels due to the limited availability of experienced annotators,
while other clients may be compromised by adversaries. Ad-
ditionally, some clients might attempt to free-ride, i.e., they
wish to use the trained model without contributing adequate
data (Fang and Ye 2022). Such affected clients can trans-
fer arbitrarily erroneous or nonsensical gradients, which can
severely degrade the final model’s performance if combined
straightforwardly.

Robustness against noisy examples and adversarial attacks
has been extensively studied in traditional centralized learn-
ing environments. However, existing techniques typically re-
quire access to the training data, e.g., to build a noise model or
design noise-robust losses; therefore, they are not directly ap-
plicable to privacy-preserving distributed learning (see Sec. 2
for examples). For collaborative learning, (Turan et al. 2022)
presented a robust gradient aggregation scheme assuming a
known number of affected clients, while (Fang and Ye 2022)
proposed to store a separate dataset in the server to identify
outliers. Recently, (Kim 2022) formulated the gradient ag-
gregation problem into an iteratively reweighted averaging
process. The resulting algorithm does not require separate
datasets or information on affected clients but is limited to
cases where client data are roughly homogeneous (Sec. 3.2).

In this paper, we present a novel gradient aggregation al-
gorithm that can handle situations where there is no known
information on the client data or the types of noise or attacks,
and it can be applied to both heterogeneous and homoge-
neous clients. Our algorithm leverages the manifold structure
of client gradients and assesses the degrees of anomaly of
the gradients by projecting them onto this manifold. This is
achieved through an intuitive and computationally efficient
algorithm that accumulates random projections onto the near-
est neighbors in the point cloud of sample gradients. In the
experiments with six benchmarks, our algorithm consistently
outperformed both the existing robust gradient aggregation al-
gorithm and a baseline uniform gradient averaging approach.

2 Related Work
Robust (Centralized) Learning. State-of-the-art ap-
proaches include the use of robust losses (Xu et al. 2019; van
Rooyen, Menon, and Williamson 2015; Brooks 2011), regu-
larizers (Liu et al. 2020), filtering out noisy examples (Huang
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et al. 2019), and learning noise models (Li et al. 2022b; Yao
et al. 2020; van Rooyen and Williamson 2018). For example,
(van Rooyen, Menon, and Williamson 2015) eliminated the
negative bound of the hinge loss to achieve robustness against
symmetric label noise. (Brooks 2011) designed robust losses
and training algorithms for support vector machines: The
ramp loss bounds the upper limit of individual loss values
while hard margin loss counts the number of mistakes and
the points that lie on the decision margin. (Xu et al. 2019)
generalized these results for neural networks and proved that
their determinant based mutual information loss is robust to
instance-independent label noise. Other robust losses include
mean absolute error (Ghosh, Kumar, and Sastry 2017) and
weighted mean absolute error (Wang et al. 2019).

A simple approach to filter out noisy examples is to iden-
tify those with significant losses (Shen and Sanghavi 2019).
However, this strategy may not be effective for large-scale
neural networks, as have sufficient capacity to memorize
all data, resulting in small loss values even for noisy ex-
amples. (Huang et al. 2019) addressed this by scheduling
the learning rate to cycle between two modes of overfitting
and underfitting, preventing the model from memorizing the
noise. Alternatively, (Zhu, Dong, and Liu 2022) proposed a
method that evaluates the training losses and the consistency
of spatially adjacent labels to detect noisy examples.

(Yao et al. 2020) proposed a method to learn a noise tran-
sition matrix that represents the probability of changing a
ground-truth label to a noisy observation. They demonstrated
that adjusting the loss function based on the learned transi-
tion matrix and accordingly training on noisy examples has a
similar effect to training on clean examples with the original
loss. To achieve this, they employed a Dirichlet prior on the
transition matrix and formulated the problem of jointly learn-
ing the model parameters and transition matrix into Bayesian
inference. (Li et al. 2022b) built on this idea by using the es-
timated transition matrix to select data instances to examine
the correctness of their labels.

Robust Gradient Aggregation. In privacy-preserving col-
laborative learning, the learning algorithm has access only
to the client gradients, and thus, existing centralized robust
learning algorithms that require direct access to training data
are not applicable. Gradient clipping was initially proposed as
an acceleration method for stochastic gradient descent (Chen,
Wu, and Hong 2020). Recent studies in distributed learn-
ing have observed that the magnitudes of gradients from
affected clients tend to be significant. In such cases, gradi-
ent clipping can help identify or suppress the effect of these
gradients. For example, (Sun et al. 2019) proposed a feder-
ated learning scheme that employs a predetermined threshold
to clip the client gradients explicitly. Similarly, (Hu et al.
2020) designed an algorithm that normalizes all gradients
to reduce the influence of the affected clients. However, our
preliminary experiments indicated that the affected gradients’
magnitudes are often smaller than those of the clean ones,
making it challenging to determine an appropriate thresh-
old value. Our experiments further demonstrate that gradient
clipping is only comparable to the baseline uniform gradient
aggregation when the clients are heterogeneous (Sec. 4).

The task of aggregating gradients can be viewed as a ro-
bust averaging problem, where the objective is to estimate
the mean of a set of observations in the presence of outliers.
Various robust mean estimators have been proposed as alter-
natives to the conventional uniform average. For example,
one can use the median, which is less sensitive to outliers, as
the mean estimator (Pillutla, Kakade, and Harchaoui 2019).
(Turan et al. 2022) introduced a method that identifies clean
gradients by selecting the nearest neighbors of the median
gradient. (Kim 2022)’s algorithm performs iterative weighted
averaging of the local client gradients, gradually suppressing
outliers. However, in our experiments, we demonstrate that
these algorithms are competitive only when clients are ho-
mogeneous, and they can perform significantly worse than
uniform averaging when clients are heterogeneous (with non-
i.i.d. data) in general.

The strategy of filtering examples based on their training
losses, originally used in centralized learning (Zhu, Dong,
and Liu 2022; Huang et al. 2019; Shen and Sanghavi 2019),
can also be applied in collaborative learning by detecting
affected clients based on the model’s losses averaged on their
respective client data, assuming that each client faithfully
communicates their average loss (which may not always
be the case). (Fang and Ye 2022) proposed a framework
that learns multiple local models for heterogeneous clients,
where their client re-weighting algorithm monitors the aver-
age losses and their temporal differences to weigh the local
learning objectives. We performed experiments with an adap-
tation of this algorithm for our problem setting, showing that
our algorithm provides a more robust alternative.

Several existing algorithms rely on certain assumptions,
such as additional clean datasets (Regatti, Chen, and Gupta
2021; Pan et al. 2020; Han and Zhang 2019) or access to local
client datasets from the server (Cao and Lai 2018), or the
knowledge of the number of affected clients (Mhamdi, Guer-
raoui, and Rouault 2018; Blanchard et al. 2017). Since these
assumptions do not align with our problem, these algorithms
are not directly applicable in our context

3 Robust Gradient Aggregation Algorithm
3.1 Distributed Gradient Aggregation Scheme
The primary objective of training neural networks is to
minimize the sum of losses L with respect to the model
parameters w on a dataset P = {(xi,yi)}Li=1: F(w) =
1
L

∑L
i=1 L(xi,yi;w). Following (McMahan et al. 2017)’s

learning framework, we assume that P is distributed across
K clients. In this case, F can be rewritten as

F(w) =
K∑

k=1

Lk

L
Fk(w), where (1)

Fk(w) =
1

Lk

∑
(xi,yi)∈Pk

L(xi,yi;w),

Pk is the subset of P corresponding to client k, and Lk =
|Pk|. Since the client data {Pk} may be privacy-sensitive,
they are kept hidden in individual clients. Generally, the local
datasets {Pk} can be non-i.i.d. and they can differ substan-
tially from one another (McMahan et al. 2017). Training
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in this scenario can be facilitated by exploiting the additive
property of the gradient operator: A single step of gradient
descent-based minimization of F can be stated as

wt+1 = wt − η
K∑

k=1

Lk

L
gt
k, where gt

k = ∇wFk(w
t) (2)

and η is the learning rate. A server can coordinate these
updates by only maintaining the model parameters w: At
step t, it broadcasts wt to individual clients, and collects and
aggregates the resulting gradients {gt

k} to compute wt+1.
Collaborative learning can enhance privacy and reduce se-

curity risks by limiting access to the entire dataset (McMahan
et al. 2017). However, this approach can also increase the risk
of attacks or data corruption at local clients, especially for
those with limited security resources. Such attacks could alter
the data or gradients of affected clients, leading to misleading
updates if these gradients are naively aggregated in Eq. 2. In
practice, the identities and numbers of affected clients may
not be known in advance, making it challenging to detect and
mitigate such attacks.

3.2 Estimating Gradient Aggregation Weights
Inspired by recent progress in robust collaborative learn-
ing (Fang and Ye 2022; Turan et al. 2022; Kim 2022), we
introduce a method to regulate the contribution of individual
gradients using convex combination weights {αt

k}Kk=1:

wt+1 = wt − ηKgt, where (3)

gt =
K∑

k=1

αt
k

Lk

L
gt
k, αt

k ≥ 0, and
K∑

k=1

αt
k = 1.

When {αt
k} are identical (i.e. αt

k = 1
K ), Eq. 3 simplifies

to the standard uniform update (Eq. 2) while in the ideal
case, αt

k = 0 for the affected clients k’s. Between these two
extremes, various robust learning algorithms are created by
specifying how {αt

k} are determined. For instance, (Turan
et al. 2022) proposed constructing the median g̃t of {gt

k} as a
robust alternative to the average. Subsequently, clients that do
not belong to the nearest neighbors of g̃t are assigned zero α-
values. On the other hand, (Kim 2022) proposed an algorithm
involving iteratively reweighted averaging of {gt

k}: Initially
(at t = 1), {αt

k} are uniform. From step t = 2 onwards, αt+1
k

is inversely proportional to the distance between gt
k and gt.

These algorithms have demonstrated state-of-the-art per-
formance when the distributions of local data {Pk} are homo-
geneous (i.e., i.i.d.). In this case, if a client k is not affected,
Pk provides a good approximation of P , and the correspond-
ing client gradient gt

k should be similar to the (weighted)
average gt or median g̃t calculated based on P . However,
when the client datasets are sampled from heterogeneous
distributions, even clean gradients may exhibit significant
differences from each other. Therefore, the affected gradients
may not be adequately characterized by their weak similari-
ties to their average or median, as illustrated in Fig. 1.

Our algorithm leverages the manifold structure M of client
gradients and evaluates the (degree of) anomaly of a gradient
based on its projection distance onto M .

Figure 1: Two approaches to assessing client anomaly. Each
data point in the plots represents a client gradient. In the
case of relatively i.i.d. client data (Left), the corresponding
client gradients tend to be closely clustered around their
weighted average (black points) or median (green points).
Here, detecting outlier clients (orange points) can be achieved
by measuring their distance from the average or median.
Alternatively, when clients are heterogeneous in nature, a
client may be similar to only a small subset of other clients
while significantly differing from the remaining ones (Right).
In this scenario, even outlier clients may be closer to the
average or median, and therefore client distances to their
projections onto the underlying manifold could provide more
reliable estimates of anomalies.

Projection Onto Gradient Manifold M . Let M be a
smooth Riemannian manifold that is embedded in an am-
bient inner-product space X by the mapping I. A tangent
space TpM at a point p ∈ M is the best linear approximation
of M around p.1 We will use the distance between a point
z ∈ X and its orthogonal projection onto M to indicate
its anomaly. To construct this projection, we first identify
a point p ∈ M with x = I(p) which lie in X , using the
embedding I. Based on the corresponding differential dI,
we can also identify v ∈ TpM with dI(v) ∈ TxX = X
where due to the vector space structure of X , the tangent
space TxX can be naturally identified with X (Jost 2011).
An orthogonal projection P [z] of z onto M is defined by
using the inner-product ⟨·, ·⟩X of X such that

⟨P [z]− z,v⟩X = 0, ∀v ∈ dI(TI−1(P [z])M). (4)

This implies that the vector P [z]−z ∈ TX lies in the normal
bundle NM of M (Jost 2011). See (Jost 2011) for a rigorous
and general construction of (local) orthogonal projections via
normal bundles. In general, P cannot be uniquely defined:
There can be multiple p ∈ M that satisfy the orthogonality
condition in Eq. 4. For example, when M is a sphere centered
at the origin of the Euclidean space X and z is at the origin,
all points in M satisfy the orthogonality condition. Since
our goal is to evaluate the projection distance, these points
can be considered equivalent: We take an arbitrary point
p ∈ M that minimizes the projection distance ∥P [z] − z∥
as I−1(P [z]). If we assume that the clean gradient vectors
form a manifold M , we can assess the anomaly of a given

1More generally, TpM is a vector space of derivative operators
on smooth functions around p ∈ M (Jost 2011).
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gradient vector z ∈ X by checking whether z ∈ dI(TpM)
for some p ∈ M , or equivalently, whether |P [z]− z| ≈ 0.

Projection Onto a Gradient Cloud G as a Sample of M .
We consider normalized gradient vectors G = {gk}Kk=1 that
are not directly given as elements of an underlying mani-
fold M but rather presented as a potentially noisy sample in
the ambient space X ⊂ RR: ∥gk∥ = 1 and

∑
j(gk)

j = 0

where (gk)
j is the j-th component of gk. Since we do not

have direct access to M , we estimate the projection P from
G: Given a gradient vector z ∈ X , we first find its near-
est neighbors N(z) in G. Arranging the elements of N(z)
column-wise in a matrix, we obtain a local design matrix
Gz = [gq(1), . . . ,gq(H)] where q assigns the global indices
of G from the local indices of N(z). The span of vectors in
Gz can be considered as an estimate of the tangent space
dI(TpM) at the point I(p) closest to z. Our empirical pro-
jection is then defined as the orthogonal projection onto this
dI(TpM)-estimate as a proxy geometry of M around p:

PN(z)[z] = Gz(G
⊤
z Gz)

−1G⊤
z z. (5)

While PN(z)[z] is usually well-defined, in the unlikely case
that Gz is not full rank, we can perform column selection
using the F -statistic (Mood, Graybill, and Boes 1974) in Gz

before constructing PN(z). Once PN(z)[z] is calculated, the
anomaly of z is obtained as A(z) = ∥PN(z)[z]− z∥2.

Estimating Gradient Aggregation Weights. Our algo-
rithm generates aggregation weights {αk}Kk=1 by first sam-
pling random network parameters ws at the server and shar-
ing them with each client. The corresponding client gradients
{gs

k}Kk=1 form a data cloud Gs. For each gradient gs
k ∈ Gs,

we evaluate its anomaly A(gs
k) by projecting it to Gs

k, formed
by the nearest neighbors Ns

k of gs
k in Gs \{gs

k}. The gradient
aggregation weights at s are then determined as

αs
k =

αs
k∑K

k=1 α
s
k

, where αs
k = exp

(
−A(gs

k)

σs
α

)
. (6)

Here, the scale parameter σs
α is set to the mean of

{A(gs
k)}Kk=1. We repeat this process S = 20 times with

different random parameters ws, and determine the final ag-
gregation weights {αk} as the average of their corresponding
counterparts {αs

k}.
The time complexity of each step (out of S steps) in our

algorithm is O(RKH +RK2 +H3), where R is the size of
the gradient vector, K is the number of clients, and H is the
local neighborhood size. The calculation of the projection
in our algorithm, which involves solving the linear system
in Eq. (5), results in negligible computational costs due to
the small size of the system (H × H with H = 10; see
Sec. 4). The primary bottleneck is twofold: 1) evaluating
client gradients from each set of random parameters ws as
our algorithm requires gradient evaluations before the main
network training occurs and 2) finding the neighborhood
Nk of each gradient k. For a large number K of clients, we
can improve the complexity by employing an approximate
nearest neighbor search. For CIFAR100 dataset (see Sec. 4),
the initial gradient evaluation took around one minute. Our
algorithm incurs O(RK) memory complexity to store the

Algorithm 1: Robust collaborative learning algorithm. Train-
ing data is distributed across K clients. An unknown number
out of K clients will provide erroneous gradients.
Input: Gradient neighborhood size H = 10 and the number of

random projection steps S = 20.
for s = 1, . . . , S do

Randomly construct ws and send it to clients.
Fetch gradients Gs = {gs

k}Kk=1 from clients.
for k = 1, . . . ,K do

Build global indices {q} for the neighborhood Ns
k of gs

k

and Gs
k = [gs

q(1), . . . ,g
s
q(H)].

Calculate gs
k-projection:

PNs
k
[gs

k] = Gs
k(G

s
k
⊤Gs

k)
−1Gs

kg
s
k.

Calculate anomaly degree A(gs
k) = ∥PNs

k
[gs

k]− gs
k∥2.

end for
σs
α =

∑K
k=1 A(gs

k)/K.
for k = 1, . . . ,K do
αs
k = exp (−A(gs

k)/σ
s
α); αs

k = αs
k/

∑K
k=1 α

s
k.

end for
end for
for k = 1, . . . ,K do

αk =
∑S

s=1 α
s
k/S; αk = αk/

∑K
l=1 αl.

end for
Perform network training steps in Eq. 3 using {αk}Kk=1.

Output: Model parameters w and aggregation weights {αk}Kk=1.

client gradients. The resulting robust collaborative learning
process is summarized in Algorithm 1.

3.3 Robustness of the Anomaly Estimates
Our method for estimating the tangent space TpM differs
from common approaches: Typically, principal component
analysis (PCA) is first performed on Nk to reduce the di-
mensionality to that of TpM (Singer and Wu 2016). This
provides a rigorous convergence guarantee of the resulting
tangent space estimate as |G| → ∞ even under noise. How-
ever, this method requires a known manifold dimensionality,
which can be challenging to estimate from a sampled point
cloud. Another significant limitation of this local PCA-based
approach applied to our gradient aggregation setting is that
G \ {gk} may contain outliers as more than one client can
be affected in G. Since PCA is susceptible to outliers, the re-
sulting tangent space estimates can be erroneous. The supple-
mental document shows that our method offers more reliable
anomaly estimates compared to the PCA-based alternative.

A deeper insight into the robustness of our approach
against outliers in G \gk can be gained by noting that all gra-
dients in G are normalized. In this case, the anomaly degree
can be restated as

A(gk) =
R∑

j=1

(
hk((Gk)

j,∗)− (gk)
j
)2

, where (7)

hk(s) = a⊤k s, ak = (G⊤
k Gk)

−1G⊤
k gk,

and (Gk)
j,∗ is the j-th row of Gk. This suggests that the

quantity A(gk) can be interpreted as the error incurred when
attempting to reconstruct the elements of gk using linear
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least-squares estimator h. In this method, the rows of Gk are
used as training inputs, and the resulting reconstruction is a
weighted combination of the columns of Gk as features, each
corresponding to a client gradient in Nk. Outlier gradients
that do not contribute to constructing gk can be ignored by
assigning low-magnitude weight values {(ak)j} to them. For
instance, on the CIFAR10 dataset (see Sec. 4), the average
magnitudes of the elements of ak corresponding to clean and
affected clients were 0.147 and 0.009, respectively.

The above highlights two main factors that contribute to
the robustness of the projection operator PN : (1) the assumed
manifold structure of clean gradients and (2) considerably
smaller neighborhood size H = |Nk| than the size R of
the gradient vector. When a clean gradient gk is present,
both gk and its spatial neighborhood Nk lie within a low-
dimensional subspace (tangent space TpM ) of X = RR

(1); therefore combinations of columns in Gk can effectively
reconstruct gk (Eq. 7). When Nk contains outliers, if H ≪ R
(2), these gradients are unlikely to be coincidentally strongly
correlated with gk (and hence contribute to reconstructing
gk), resulting in small ak weights in the estimator hk. On
the other hand, if gk is an outlier lying outside TpM and
H ≪ R (2), both clean and outlier gradients in Nk are likely
to deviate significantly from gk. As a result, Gk is likely to
fail to reproduce gk.

The robustness of the projection operator PN is specific
to the gradient aggregation setting and should not be con-
sidered a general indicator of the robustness of least-squares
estimation. It also points out a simple failure case where the
number of features, H , becomes equal to the number of data
instances, R, in Gk and those features are in general position.
In this case, Gk becomes invertible, leading to constant zero
estimation error (Eq. 7). The abnormalities of outliers gk

were substantially reduced when Nk was augmented with
10,000 random vectors. This suggests that as the value of
K increases, it is advisable to keep the neighborhood size
H small. Accordingly, in all experiments conducted, a fixed
neighborhood size of 10 was used (see our supplemental doc-
ument). While optimizing this parameter for each problem
and dataset may enhance performance, it may not be feasible
in certain scenarios as it would necessitate separate clean
validation sets at the server.

Explicit Robustification. Considering the least-square es-
timation interpretation of PN and its empirical robustness
against outlier features,2 it is enticing to explore the pos-
sibility of further enhancing its robustness through feature
selection approaches. We conducted preliminary experiments
with two robust feature selection methods. We conducted
preliminary experiments with LASSO as an implicit feature
selector. This replaces A by calculating the coefficients ak of
hk (Eq. 7) as the minimizer of

A′(gk) =
R∑

j=1

(
a⊤k (Gk)

j,∗ − (gk)
j
)2

+ γ∥ak∥1. (8)

2This should not be confused with the well-known high-
sensitivity of least-squares estimation to outlier output instances
(rows of gk; see Eq. 7).

We consistently observed that the best gradient aggregation
performance was achieved when γ = 0, resulting in A′ being
equal to A. LASSO promotes sparsity in a, helping suppress
the contribution of outlier gradients. However, this has an
adversarial effect of suppressing potentially beneficial cor-
related clean gradients since, in this way, it can enhance a’s
sparsity while only moderately sacrificing the reconstruction
error (the first term in Eq. 8). Consequently, this can lead to
increased abnormalities A′ for clean clients (see supplemen-
tal document for an example).

4 Experiments
To evaluate the effectiveness of our robust gradient aggrega-
tion algorithm, we conducted experiments with six bench-
mark datasets.

Datasets. The CIFAR10 and CIFAR100 datasets consist
of 60,000 color images from 10 and 100 classes, respec-
tively (Krizhevsky 2009). For each dataset, 50,000 images
were used for training, and the remaining 10,000 images were
reserved for testing. TinyImageNet is a subset of the ImageNet
2017 benchmark, consisting of 100,000 training and 10,000
testing images evenly covering 200 object categories (Le
and Yang 2015). The Kuzushiji49 dataset provides 223,365
training and 38,547 testing images of 49 Japanese charac-
ters (Clanuwat et al. 2018). The Fashion-MNIST (FMNIST)
and extended MNIST letters (EMNISTL) datasets provide
70,000 images of 10 cloth categories (Xiao, Rasul, and Voll-
graf 2017) and 124,800 letter images (LeCun et al. 1998),
respectively.

Data Allocation and Implementation Details. We used
K = 100 clients for all datasets. To distribute each dataset to
these clients, we extended (McMahan et al. 2017)’s approach
(to more than ten classes), which is commonly used to prepare
learning environments with heterogeneous clients (Li et al.
2020, 2022a). Firstly, we partitioned the dataset into 0.2 ×
C ×K shards, where C is the number of classes. Each shard
contained only a single class, and all shards were of equal
size. Then, we randomly assigned 0.2 × C shards to each
client, ensuring that each client received a subset of up to
20% of all classes. Our supplementary material presents the
results obtained when client data allocation was performed
by sampling class labels from Dirichlet distributions.

To simulate the affected clients, we employed the class-
symmetric flip model (van Rooyen, Menon, and Williamson
2015; Patrini et al. 2017; Han et al. 2018). For an affected
client k, we generated a transition matrix Tk ∈ RC×C by
randomly sampling each row from the uniform distribution
on [0, 1]C and normalizing the results. Then, the label of
each data point with class j in Pk was reassigned by sam-
pling from (Tk)

j,∗. For each number of affected clients in
{10, 20, 30, 40, 50, 60, 70} (out of K = 100), we repeat ex-
periments 10 times and report the average results.

We used convolutional neural networks with two convolu-
tion layers and two fully-connected layers for Kuzushiji49,
FMNIST, and EMNISTL, following the setup of (LeCun et al.
1998). The convolution layers comprised 10 and 20 filters of
size 5×5, followed by 2×2 max pooling. The fully-connected
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Affected clients 10 20 30 40 50 60 70
Dataset Method Mean accuracy ± standard deviation × 100

CIFAR10

Uniform 89.58±0.15 89.08±0.26 88.79±0.28 87.80±0.50 86.98±0.47 85.51±0.92 82.19±1.17
(Kim 2022) 89.50±0.21 88.98±0.33 87.86±0.82 85.83±0.81 84.79±1.03 83.06±1.44 78.32±1.16
(Turan et al. 2022) 89.48±0.15 88.46±0.40 87.68±0.44 83.92±1.18 79.52±1.44 73.24±2.21 69.23±1.95
(Sun et al. 2019) 90.00±0.21 89.61±0.23 88.92±0.26 87.61±0.39 86.82±0.62 85.10±1.07 81.00±1.37
(Fang and Ye 2022) 89.59±0.17 89.09±0.26 88.72±0.29 87.64±0.39 84.87±7.04 85.56±0.99 82.16±1.23
Denoising 89.29±0.20 88.88±0.31 88.47±0.32 87.62±0.41 86.61±0.53 85.41±1.08 82.12±1.23
Ours 89.91±0.16 89.62±0.41 89.71±0.30 89.40±0.32 89.00±0.71 88.33±1.42 85.64±2.85

CIFAR100

Uniform 66.64±0.36 65.68±0.24 64.41±0.38 62.82±0.40 60.35±0.53 56.23±0.69 50.55±0.82
(Kim 2022) 66.90±0.25 65.84±0.36 64.60±0.39 62.45±0.26 59.48±0.40 55.27±0.82 49.16±1.15
(Turan et al. 2022) 66.74±0.27 65.34±0.35 63.24±0.43 59.39±0.36 45.54±0.89 42.82±0.39 39.28±1.03
(Sun et al. 2019) 66.73±0.26 65.74±0.23 64.41±0.22 62.83±0.32 60.13±0.45 55.96±0.83 49.83±0.80
(Fang and Ye 2022) 66.76±0.34 65.77±0.36 64.44±0.29 62.81±0.44 60.20±0.60 56.22±0.76 50.62±1.06
Denoising 66.17±0.24 65.19±0.27 63.60±0.51 61.93±0.32 59.14±0.53 55.01±0.94 49.27±0.81
Ours 66.87±0.35 66.50±0.46 65.83±0.46 64.39±0.32 63.47±0.42 62.67±0.49 58.38±1.27

TinyImageNet

Uniform 65.66±0.30 64.89±0.27 63.58±0.29 61.89±0.25 59.33±0.52 55.07±0.85 49.00±0.76
(Kim 2022) 65.62±0.26 64.91±0.26 63.83±0.19 61.84±0.19 59.10±0.57 54.13±0.94 47.87±1.13
(Turan et al. 2022) 65.43±0.25 64.42±0.31 62.70±0.26 58.26±0.26 44.88±0.74 41.66±0.59 37.74±0.74
(Sun et al. 2019) 65.55±0.19 64.84±0.21 63.63±0.38 61.96±0.26 59.49±0.66 54.83±0.93 48.75±0.96
(Fang and Ye 2022) 65.55±0.19 64.79±0.28 63.70±0.47 62.03±0.33 59.50±0.48 55.36±0.64 49.07±0.86
Denoising 65.27±0.25 64.19±0.17 62.99±0.34 61.10±0.21 58.51±0.50 53.88±0.82 47.77±0.88
Ours 65.77±0.23 65.25±0.19 64.59±0.38 63.48±0.33 62.69±0.34 61.73±0.55 58.52±0.80

FMNIST

Uniform 77.69±0.48 77.11±0.83 76.29±0.57 75.46±0.62 73.25±1.14 72.14±2.46 69.91±1.75
(Kim 2022) 76.34±1.03 75.83±1.07 75.79±1.13 75.12±0.98 72.25±1.05 70.61±2.55 68.73±1.59
(Turan et al. 2022) 77.06±0.59 75.83±1.11 74.36±0.63 72.22±1.13 65.48±1.78 62.23±3.76 62.51±2.81
(Sun et al. 2019) 77.98±0.52 76.76±0.76 76.10±0.98 75.42±0.53 72.93±1.24 70.93±1.92 69.12±2.14
(Fang and Ye 2022) 77.65±0.51 77.19±0.64 76.53±0.75 75.69±0.93 72.91±1.17 71.87±2.33 69.89±2.00
Denoising 77.62±0.38 77.07±0.62 76.23±0.82 75.54±0.86 73.55±1.05 71.80±2.19 70.04±1.56
Ours 77.87±0.72 77.66±0.67 77.40±0.97 77.31±0.90 76.36±0.99 74.96±1.36 72.31±1.67

Kuzushiji49

Uniform 48.45±0.78 47.75±0.60 46.71±0.73 44.07±0.87 41.22±1.11 37.97±0.68 31.28±1.93
(Kim 2022) 48.08±0.58 47.14±0.79 46.50±0.93 44.24±0.49 40.62±0.52 37.07±0.94 30.27±2.12
(Turan et al. 2022) 48.40±0.54 47.60±0.46 45.41±0.79 40.81±1.05 25.33±2.04 23.39±1.69 20.70±1.54
(Sun et al. 2019) 48.42±0.78 47.35±0.63 46.35±0.58 44.32±0.96 40.97±1.33 37.66±0.96 30.89±2.43
(Fang and Ye 2022) 48.51±0.62 47.59±0.61 46.52±0.64 44.18±0.98 41.20±1.14 38.11±1.12 32.00±2.53
Denoising 48.52±0.67 47.06±0.33 45.98±0.73 44.04±0.88 40.70±0.79 37.83±0.80 31.26±1.77
Ours 48.50±0.59 47.85±0.72 46.76±0.71 45.50±0.90 43.51±1.40 41.73±1.04 37.62±2.08

EMNISTL

Uniform 67.91±0.56 66.68±0.88 64.60±0.84 61.68±0.94 57.81±1.30 49.89±2.33 40.51±2.66
(Kim 2022) 67.41±0.69 65.48±0.91 63.62±1.23 61.01±1.36 55.84±1.57 47.55±1.84 39.36±3.55
(Turan et al. 2022) 67.46±0.90 66.03±0.47 62.17±0.77 55.78±1.24 37.08±1.13 29.96±2.94 26.06±2.80
(Sun et al. 2019) 67.55±0.68 66.38±0.90 63.99±0.82 61.33±0.89 56.43±1.50 49.61±2.11 37.31±2.19
(Fang and Ye 2022) 67.76±0.90 66.57±0.74 64.42±1.10 62.24±1.29 57.60±1.81 51.12±1.55 41.70±3.99
Denoising 67.21±0.84 66.73±0.70 64.22±0.99 62.19±1.69 56.37±2.05 49.87±2.09 41.90±3.49
Ours 68.68±0.78 67.70±0.84 66.81±1.28 65.74±1.28 64.11±2.24 59.74±1.87 49.81±2.36

Table 1: Performance of different gradient aggregation methods when client data are allocated using an extension of McMahan et
al.’s approach (McMahan et al. 2017). Our supplementary material presents the corresponding results achieved when client data
allocation was conducted by sampling class labels from Dirichlet distributions. The best results are highlighted in italic. The
results of the statistical significance tests for differences from baseline Uniform are represented with bold (significantly better)
and underline (significantly worse) fonts using a t-test with α = 0.95. With the exceptions of (Sun et al. 2019) on CIFAR10 with
{10,20,30} affected clients and (Kim 2022) on TinyImageNet with 30 affected clients, all existing approaches were statistically
equivalent or significantly worse than Uniform. In contrast, our algorithm was significantly better than Uniform in 36 out of the
total 42 cases and was never significantly worse.

layers were of 50 and 10. For the remaining datasets, we com-
bined a ResNet50 pre-trained on ImageNet dataset with three
fully connected layers of size 300 each, following (Kim 2022).
All experiments were conducted on a machine with two Intel
Xeon Silver 4210R CPUs and two NVIDIA RTX3090 GPUs.

Baselines. For comparison, we also conducted experiments
with 1) baseline uniform aggregation (i.e. αk = 1

K , ∀1 ≤
k ≤ K; Uniform), 2) (Kim 2022)’s iterative reweighting

algorithm, 3) (Turan et al. 2022)’s median-based gradient
selection approach, 4) (Sun et al. 2019)’s gradient clipping
algorithm, and 5) (Fang and Ye 2022)’s robust federated learn-
ing algorithm, which was originally designed for learning
personalized models for heterogeneous clients. We adapted
their client confidence re-weighting scheme to centralized
gradient aggregation by introducing a new client maintaining
the combined gradient Kgt. Turan et al.’s algorithm deter-
mines the gradients distinct from the median as outliers and
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requires a known number of outlier clients: We used the
ground-truth numbers of affected clients in our experiments
while in practical applications, one would need to determine
them as a hyperparameter. 6) We also performed experiments
with an algorithm that aims to denoise the gradient matrix
Gs = [gs

1, . . . ,g
s
K ] (Denoising) by considering the affected

gradients as noisy observations of underlying ground truths.
This constructs a new matrix (Gs

∗) by minimizing

Q(G) =
1

2
∥G−Gs∥2F + λN∥G∥∗, (9)

where ∥A∥F and ∥A∥∗ are the Frobenius and nuclear norms
of A, respectively. The energy Q is convex, and its minimum
can be determined through singular value shrinkage (Bach
et al. 2012). Once Gs

∗ is obtained, the corresponding gradi-
ents are uniformly aggregated.

Analysis. The results of our experiments are summarized
in Table 1. Existing gradient combination algorithms demon-
strated comparable or inferior performance to uniform av-
eraging across all datasets: (Fang and Ye 2022)’s algorithm
was on par with Uniform. This algorithm determines the
aggregation weights {αt

k}Kk=1 based on the average client
losses and their temporal variations. However, in our setting,
these loss values did not vary notably across the clean and
affected clients, resulting in almost uniform weights. (Sun
et al. 2019)’s algorithm assumes that the outlier gradients
exhibit larger magnitudes than clean ones. This assumption
is similar to that made in (Fang and Ye 2022), as the gradient
magnitudes are directly proportional to the loss scales, and it
also attained an equivalent level of performance as Uniform.
(Kim 2022)’s algorithm performed significantly worse than
Uniform, which can be attributed to the fact that when clients
are heterogeneous, outlier gradients can be closer to the aver-
ages (Fig. 1), and therefore contribute materially to the final
aggregation. (Turan et al. 2022)’s algorithm also achieved
considerably worse results as it filtered out a large portion
of clean gradients, assuming that the affected gradients were
often close to the median.

We set λN to 10−2 for Denoising since smaller values led
to nearly identical results as Uniform. Nonetheless, the re-
sulting accuracies were slightly worse than Uniform. In cases
where the affected gradients stem from incorrect training la-
bels, such as those arising from adversarial attacks, they can
substantially deviate from the ground-truth gradients. In such
scenarios, attempting to denoise Gs by lowering its nuclear
norm (second term in Q; Eq. 9) can inadvertently alter the
clean gradients, as they are typically more structured: Modi-
fying them, rather than the affected ones, can more readily
reduce the nuclear norm while retaining low reconstruction
error (first term in Q).3

Our findings suggest that existing robust gradient aggrega-
tion algorithms, which have demonstrated competitive per-
formance on homogeneous clients, may not be effective in

3Based on this observation, we performed preliminary experi-
ments with a new client anomaly degree evaluating how the columns
of the minimizer Gs

∗ deviate from Gs (with (Gs)∗,k being the k-th
column of Gs): A′′(gk) = ∥(Gs)∗,k − (Gs

∗)
∗,k∥2. While this ap-

proach led to measurable improvements over the Uniform approach,
our final design consistently and significantly outperformed it.

the presence of heterogeneous clients. Specifically, our ex-
periments indicate that the aggregation weights, calculated
based on the gradient distances to the weighted averages or
median, can be misleading in such scenarios. Moreover, the
assumptions typically imposed in prior work, such as the
uniformity of loss values and gradient magnitudes (Fang and
Ye 2022; Sun et al. 2019), may not hold in heterogeneous
settings, rendering those methods ineffective.

Our algorithm consistently outperformed Uniform and
state-of-the-art gradient aggregation algorithms by effectively
leveraging the nonlinear structures of heterogeneous gradi-
ents through the assessment of manifold projection distances.
The performance gains were more noticeable in scenarios
with 1) a large number of affected clients and 2) datasets
with a large number of classes. Specifically, for TinyIma-
geNet with 200 classes, when 70 clients were affected, ours
achieved a 19.43% accuracy improvement from Uniform,
while the advantage almost disappeared (0.17%; statistically
insignificant) when 10 clients were affected. For CIFAR10
with only ten classes, our algorithm achieved a 4.2% perfor-
mance margin for 70 affected clients. When all clients were
clean, Uniform and ours were statistically equivalent, with
accuracy values of 90.01±0.12 and 89.94±0.18, respectively.

In the supplementary material, we present additional ex-
periments on homogeneous clients. Despite our algorithm
not being explicitly designed for this scenario, our results
demonstrate that it is still competitive with or even superior
to existing algorithms, highlighting its general applicability.

5 Conclusions
We have considered the challenge of robustly aggregating
heterogeneous client gradients in scenarios where no informa-
tion about the affected clients, such as their number and types
of attacks, is available. Our thesis posits that the client gradi-
ents lie on a manifold, and we exploit this structure by assess-
ing the anomalies of given gradients through their projections
onto this manifold. To this end, we have devised an efficient
algorithm that iteratively generates random model parame-
ters and projects the resulting gradients onto the subspace
spanned by their spatial neighborhoods. This instantiation of
our thesis has produced promising results, outperforming ex-
isting state-of-the-art methods on heterogeneous clients while
delivering comparable outcomes in homogeneous ones.

Further research should focus on developing theoretical
foundations to provide a robust underpinning for these find-
ings. This would entail the development of new convergence
analysis techniques, as individual client gradients may not
provide unbiased estimators of the clean aggregated gradi-
ents in environments that involve heterogeneous clients, un-
like the settings in which existing robust distributed learning
techniques were designed. All robust gradient aggregation
algorithms considered in this paper may fail when client
attacks are coordinated. As a simple example, when local
clients transfer multiple identical erroneous gradients, these
algorithms will mistake them for clean ones. While simple
heuristics can easily detect this particular case, future work
should systematically investigate extending our algorithm to
respond to such coordinated attacks.
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