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Abstract

With the ability to collect vast amounts of image and nat-
ural language data from the web, there has been a remark-
able advancement in Large-scale Language Models (LLMs).
This progress has led to the emergence of chatbots and dia-
logue systems capable of fluent conversations with humans.
As the variety of devices enabling interactions between hu-
mans and agents expands, and the performance of text-based
dialogue systems improves, there has been recently proposed
research on visual dialog. However, visual dialog requires
understanding sequences of pairs consisting of images and
sentences, making it challenging to gather sufficient data for
training large-scale models from the web. In this paper, we
propose a new multimodal learning method leveraging ex-
isting large-scale models designed for each modality, to en-
able model training for visual dialog with small visual dia-
log datasets. The key ideas of our approach are: 1) storing
the history or context during the progression of visual dia-
log in the form of spatiotemporal graphs, and 2) introducing
small modulation blocks between modality-specific models
and the graphs to align the semantic spaces. For implemen-
tation, we introduce a novel structure-aware cross-attention
method, which retrieves relevant image and text knowledge
for utterance generation from the pretrained models. For ex-
periments, we achieved a new state-of-the-art performance on
three visual dialog datasets, including the most challenging
one COMET.

Introduction
With the emergence of large-scale language and vision mod-
els such as GPT-X (Radford et al. 2018, 2019; Brown
et al. 2020), LLaMA (Touvron et al. 2023), ViT (Dosovit-
skiy et al. 2020), pretraining and zero-shot transfer learn-
ing paradigm has been proposed where models are trained
on massive datasets containing a plethora of parameters and
tested across various downstream tasks without additional
finetuning. By virtue of the huge number of datasets en-
compassing diverse topics and concepts collected from the
web, large-scale language and vision models have acquired
the generalization ability to show remarkable performances
on numerous tasks, even unseen problems. Compared to
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Figure 1: High-level concept of our structure-aware align-
ment. In the multimodal context, memories having multi-
modal information compose a structure. By considering this
spatiotemporal-hierarchical structure, representations from
multimodal context can be aligned and relevent informations
for each turn can be retrieved.

modality-specific large-scale training (i.e. image-only and
text-only), it is challenging to gather massive amounts of
data for well-aligned image-text pairs, and there is a dis-
advantage of noise in such data, making the learning pro-
cess difficult. In this paper, we aim to develop a large-scale
vision-language multimodal model where image-text pair
data are scarce, such as visual dialog tasks. In particular,
we propose a new multimodal learning method leveraging
existing image-only and text-only models.
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Recently, pioneering work such as BLIP (Li et al. 2022),
and BLIP-2 (Li et al. 2023) have adopted a small-sized
transformer as a bridge for modulation between image-only
and text-only networks. Those methods learn the correspon-
dence between a single image and text sentence pair through
transformers, achieving remarkable performance in tasks
such as visual question answering and image captioning.
Unlike reasoning tasks for a single image-text pair, multi-
modal tasks where images and text are given as sequences
(such as visual dialog) present a greater challenge. In such
tasks, aligning not only the semantic space between images
and text but also the temporal relationships within the se-
quences is necessary. In this paper, we introduce a novel al-
gorithm that leverages large-scale pretrained vision and lan-
guage models to learn multimodal sequence pairs.

The two main ideas of the suggested method are 1) to
leverage the representation power of the pretrained large-
scale vision and language models and 2) to align the seman-
tic spaces of two models with modulation blocks. To achieve
the intricate alignment between multimodal sequences, we
adopt transformer architectures with a novel cross-attention
method as modulation blocks. We propose a method to rep-
resent the hierarchical semantic structure and temporal re-
lationships in multimodal sequences using a graph, and to
align the semantic structures between the sequences using
the graphs in cross-attention modules.

For experiments, we evaluate our method using three dif-
ferent visual dialog datasets, which are COMET, VisDial,
and MNIST Dialog. We achieve two new state-of-the-art
performances from these experiments. One thing we should
note is that all experimental results do not require any addi-
tional dataset and training methods.

Our contribution can be summarized as follows.

• We introduce a new multimodal sequential learning
method that can effectively leverage pretrained vision
and language models.

• To consider the inherent spatiotemporal semantic struc-
ture within the multimodal sequences, we introduce new
structure-aware retrieval-augmented modulation blocks.

• For the most challenging multimodal tasks, visual dialog
tasks, we achieve new state-of-the-art performances.

Related Work
Large-scale Models for Multimodal Learning
Large-scale multimodal models (Su et al. 2019; Chen et al.
2020b; Yu et al. 2021; Zellers et al. 2022; Kim, Son, and
Kim 2021; Lu et al. 2019; Tan and Bansal 2019; Li et al.
2019; Radford et al. 2021; Li et al. 2020) stand out for their
proficiency in seamlessly integrating visual and textual data.
For instance, ViLBERT (Lu et al. 2019) is a notable exam-
ple that employs a two-stream architecture, processing vi-
sual and textual information separately using co-attention
mechanisms to allow for joint reasoning over both modali-
ties. These models leverage huge amounts of unlabeled data
to learn joint representations of texts and images or videos.
Typically pretrained on vast datasets with paired image-text

data, they use attention mechanisms to capture intricate re-
lationships between modalities and can be finetuned for spe-
cific tasks.

However, their performance is closely tied to the quality
of pretraining data, and their computational intensity, cou-
pled with concerns about generalization and interpretability,
presents challenges that remain areas of active exploration.
Furthermore, in a sustained reasoning process, like visual di-
alog tasks, it’s crucial to formulate answers by understand-
ing the semantic essence of large-scale image or text models,
while also factoring in information from earlier dialog turns.
But previous studies (Li et al. 2022, 2023) have primarily
focused on processing a single image and its corresponding
text sentence using transformers. In our study, our structure-
based cross-attention method signifies a shift towards more
sophisticated alignment techniques. By representing the se-
quence of context as a spatiotemporal graph, it ensures effec-
tive information retrieval and alignment between modalities.

Visual Dialog
Visual dialog, an emerging research domain, delves into
generating conversational responses intricately linked to im-
ages. This field, while reminiscent of Visual Question An-
swering (VQA), places a heightened emphasis on the con-
text extracted from sequential dialog turns. Initial studies,
such as the one (Das et al. 2017), predominantly merged
CNNs with RNNs, capturing both the image and the se-
quence of questions. The attention mechanism-based mod-
els (Lu et al. 2018; Park et al. 2021; Zhang et al. 2022a;
Gan et al. 2019), especially the co-attention model, have
been proposed, allowing simultaneous focus on specific im-
age regions and relevant textual parts of the question. This
dual focus has enriched the understanding of image-text dy-
namics. Furthermore, the alignment-based approach model
(Chen et al. 2022) has shown promise in explicitly aligning
visual concepts with textual semantics via unsupervised and
pseudo-supervised vision-language alignment. Another in-
triguing approach (Chen et al. 2021; Guo et al. 2020; Zhang
et al. 2022b; Zheng et al. 2019) is the graph-based represen-
tation suitable for the composite scenario of dialog history
and image, which offers a structured way to understand re-
lationships within an image. Diverging from these method-
ologies, our model leverages a large multi-modal hierarchi-
cal context. As the dialog progresses, at each turn, a model
must retrieve requisite information from this context to an-
swer. Our model’s distinctiveness lies in its ability to adap-
tively reference only the relevant context for answer gen-
eration, ensuring efficiency and producing contextually rich
and precise answers even as the context expands with each
dialog turn.

Structure-Aware Retrieval-Augmented
Learning

In this section, we introduce a novel algorithm that lever-
ages large-scale pretrained vision and language models to
learn multimodal sequence pairs. The suggested algorithm
mainly consists of two parts: 1) a pretrained large-scale vi-
sion and language model, and 2) modulation blocks between
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Figure 2: Overview of our model architecture. Features from multimodal context which consists of sequences of pairs are given
to the cross modulation block, along with trainable embedding vector and dialog history. This block is constituted of sequential
attention blocks, each having self-attention and cross-attention layers. Passing two consecutive modulation blocks, context and
history information based on the current turn’s utterance is returned. These representations are passed on to the language model,
enabling answer generation with a context.

pretrained models and history or context. The overall archi-
tecture is illustrated in Figure 2.

For the sake of clarity in the following discussion, we as-
sume that three types of information are given in visual dia-
log tasks: a current utterance (text), dialog history (several
utterances and answers), and context (image and text se-
quences). The main purpose of the method is to align the
semantic spaces of multiple information using pretrained
modality-specific models.

Pretrained Vision and Langauge Models

To get the feature representations for visual modality, we
adopted a pretrained vision transformer model (ViT) (Doso-
vitskiy et al. 2020). Using the pretrained ViT model with
frozen weight parameters, images included in context are
converted into fixed-size embedding vectors. For the lan-
guage modality, we adopted a pretrained encoder-decoder-
based language model, Flan-T5 (Chung et al. 2022). All tex-
tual information from the current utterance, dialog history,
and contexts are fed into the Flan-T5. Then, the answer ut-
terances are generated with the Flan-T5 decoder.

Retrieval-augmented Structural Alignment
We introduce a novel method to align semantic spaces be-
tween multimodal sequential information using pretrained
large-scale models. The two key ideas are 1) visual ground-
ing to language space with a small modulation block and 2)
considering the structural relationships within the context.

Basically, for visual grounding, Transformer (Vaswani
et al. 2017) blocks between vision and language models are
adapted as modulation blocks. The modulation block con-
sists of self-attention and cross-attention layers. By adding
additional tokens (illustrated as contextualized embedding
tokens in Figure 2) into language models and cross-attention
mechanisms between vision and language models, visual
features are grounded in language modality.

Furthermore, it is assumed that there is an inherent spa-
tiotemporal semantic structure in history and multimodal
context as can be seen in Figure 1. Specifically, the most
challenging dataset, COMET, provides context with com-
plex multimodal graphs. Each node in the graph represents
a memory unit, which consists of an image with textual at-
tributes. According to the attributes of each memory unit,
we can define a hierarchical structure with three layers: trip,
day and event. To consider the structural information in the
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visual grounding step, we introduce a structure-aware cross-
attention mechanism.

In detail, the cross-modulation block consists of self-
attention, cross-attention, and a feed-forward layer. Every
attention block executes basic scaled-dot product attention:

Attention(Q,K, V ) = softmax(
QK⊤
√
dk

)V (1)

where Q = query, K = key, V = value, and dk is the dimen-
sion of the key and query.

To include the spatiotemporal semantic structure of his-
tory and context into the cross-modulation block, an adja-
cency matrix A is introduced. The nodes of A represent
each image or attribute, indicating their respective meanings.
Edges of A are added between consecutive days or trips, also
attributes having hierarchical relationships.

Attention(Q,K∗, V ) = softmax(
QK∗
√
dk

)V,

K∗ = K⊤ ⊙A

(2)

where ⊙ is the element-wise product.
In our setting, the query stands for newly added tokens

(i.e. contextualized embedding tokens). The representations
for the contextualized embedding tokens will be trained to
ground the visual information into the language semantic
space constructed from the history and utterance.

In the 3, using a matrix to encode the structural informa-
tion brings another advantage when it comes to multimodal
data. If the context consists of images along with a text se-
quence, the correlation of the image-text pair can be lost
when each modality is encoded with the modality-specific
pretrained models. By encoding the relationships between
the image-text pair in the matrix, this can be prevented and
the model can match the true pair.

Outputs of cross-modulation blocks are contextualized
embedding vectors. These vectors are trained and can be
viewed as a contextualized representation of retrieved infor-
mation. By using these, the language model can generate the
answer by viewing the proper context at each turn.

Training Method
By leveraging the ability of the pretrained image encoder,
the weight parameters of ViT are frozen. To generate an-
swer sentences with contextualized visual information, the
parameters of language models are trained with modulation
blocks.

Our model is trained in an end-to-end manner by mini-
mizing an answer generation loss:

LGEN
θ = −

|y|∑
i=1

logPθ(yi|y<i, U,H,C,A) (3)

where the decoder in the language model attends to pre-
viously generated tokens y<i, utterance U , history H , and
context C with structural information matrix A.

Experiments
Dataset
We mainly evaluate our algorithm on the most challenging
visual dialog dataset, COMET (Kottur et al. 2022) and use
two commonly used visual dialog datasets: VisDial 1.0 (Vis-
Dial) (Das et al. 2017), and MNIST Dialog (Seo et al. 2017).

In COMET, unlike the other two datasets having a static
image as a context for each dialog, a model must retrieve rel-
evant information from a memory graph at each turn, which
is much more challenging. A dialog is grounded in this
memory graph, which contains 100 memories. These mem-
ories are a set of pairs of images and attributes ((I1, attr1), .
. . , (Im, attrm)). This memory graph has a spatiotemporal-
hierarchical structure, where memories are grouped into
events, days, and trips. A visualization of the structure of
the memory graph is illustrated in figure 3.

Figure 3: Visualization of spatiotemporal-hierarchical struc-
ture in the multimodal memory context.

In VisDial and MNIST Dialog datasets, at each turn t in
a dialog, history Ht = ((Q1, A1), . . . , (Qt−1, At−1)), ques-
tion Qt and a single image I are given and the model is
asked to answer. Images in VisDial and COMET are from
MS-COCO (Lin et al. 2014) dataset. Images in MNIST Di-
alog are generated using MNIST digits. Statistics of three
datasets are as follows:

VisDial MNIST Dialog COMET

Total # dialogs 125.3k 150k 11.5k
Avg # turns / dialog 10 10 4.4

Avg # images in dialog 1 1 100

Table 1: Statistics of Visual Dialog datasets. In VisDial and
MNIST Dialog datasets, every dialog consists of ten turns
and one image. In COMET, the number of turns and images
(memories) varies.

Evaluation Metrics
As each dataset has different tasks and different settings, we
summarized evaluation metrics for clear comparison.

COMET To evaluate, four different subtasks are pro-
posed: API Call Prediction, Multimodal Coreference Res-
olution (MM-Coref), Multimodal Dialog State Tracking
(MM-DST), and Response Generation. In detail,
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1. API Call Prediction predicts the right API call to execute
the query. it consists of five classes.
• SEARCH: Search based on current query.
• REFINE SEARCH: Enhancing the search over the ex-

isting query.
• GET INFO: Retrieve information about current or pre-

viously viewed memories.
• GET RELATED: Retrieve other memories similar to

the current/prior memories.
• SHARE: Share it with others.

2. Multimodal Coreference Resolution (MM-Coref) re-
trieves relevant memories from the context.

3. Multimodal Dialog State Tracking (MM-DST) is track-
ing user belief states across multiple turns.

4. Response Generation generates appropriate responses to
user questions.

These subtasks are solved at once, by parsing the gen-
erated answer and comparing each part to the ground-truth
answer. Evaluation metrics for each subtask are summarized
in Table 2.

Task Metric

API Call Prediction Accuracy

MM-Coref Precision / Recall / F1

MM-DST Precision / Recall / F1

Response Generation
Generation: BLEU
Retrieval: Accuracy,

Mean Reciprocal Rank, Mean Rank

Table 2: Subtasks and corresponding metrics of COMET
dataset.

VisDial As 100 candidate answers are given at each turn
t, both generative and discriminate settings can be consid-
ered. As our model is tackling generative setting, by calcu-
lating log-likelihood scores of each answer candidate given
question and history, we can define the score by every pos-
sible answer. Based on this score, the ranking of 100 candi-
dates is sorted. For evaluation, retrieval-based metrics are
used: NDCG, Mean Reciprocal Rank (MRR), Recall@k,
and Mean Rank with respect to human response. This gen-
erative setting, which ranks based on generative score and
uses retrieval-based metrics, is broadly used in prior works
(Kang et al. 2023; Wang et al. 2020)

MNIST Dialog In this dataset, a model must generate an
answer for each turn, which is in a set of 38 possible single
words. This can be treated as a classification task, having
38 classes. So the evaluation metric is classification accu-
racy. Answers contain information about visual attributes,
i.e., {color, background color, number, style, count}.

Baselines
We compare our model against various baselines on each
dataset.

COMET GPT-2 model (Radford et al. 2019) based ap-
proach was proposed. In terms of using a memory graph,
two approaches were considered: text-only and multimodal.
In text-only setting, instead of image features, memory at-
tributes are used as flattened strings. In contrast, in multi-
modal setting, the GPT-2 model uses BUTD (Anderson et al.
2018) and CLIP (Radford et al. 2021) image features as in-
put image tokens.

VisDial Similar to the previous work (Kang et al. 2023),
we compare the performance of our method with 10 base-
lines: 1) Attention-based models: CoAtt (Wu et al. 2018),
HCIAE (Lu et al. 2017), Primary (Guo, Xu, and Tao 2019),
ReDAN (Gan et al. 2019), DMRM (Chen et al. 2020a),
DAM (Jiang et al. 2020b) 2) Graph-based models: KBGN
(Jiang et al. 2020a), LTMI (Nguyen, Suganuma, and Okatani
2020), LTMI-GoG (Chen et al. 2021) 3) Semi-supervised
learning model: GST (Kang et al. 2023).

MNIST Dialog To retrieve relevant information along
with a question, associative attention memory was proposed
(Seo et al. 2017). Another approach focused on coreference
resolution and was implemented at a word level by utiliz-
ing two different modules, with each targeting coreference
resolution and description separately (Kottur et al. 2018).

Implementation Details
For experiments with the COMET dataset, we use pretrained
models with ViT-base for the image model and Flan-T5-base
for the text model. The two sequential cross-modulation
blocks of the proposed method are trained from scratch. The
image model and text model have 86M and 250M parame-
ters, respectively. Our modulation block contains 66M pa-
rameters. In total, our overall model has 468M parameters.
It takes 5 hours for 20 epoch training with 64 batch size
on a 4-A100 machine. During training, the pretrained im-
age model is frozen, text model and cross-modulation mod-
els are optimized. Each cross-modulation block contains 6
cross-attention layers and 12 self-attention layers. The di-
mension of each vector is 768 and 32 vectors for the output
embedding.

The same set of training hyperparameters is used for all
experiments except for feature extraction with the ViT-base
model. For experiments with the COMET dataset, represen-
tations of the special [CLS] token from the ViT-base models
are used for the image features. For experiments with Vis-
Dial and MNIST Dialog datasets, the patch-wised represen-
tation from the ViT model is used as an image feature in
the cross-modulation blocks. We use the AdamW optimizer
(Loshchilov and Hutter 2017) with β1 = 0.9, β2 = 0.98, and
weight decay of 0.05. We use a piecewise linear scheduler
with a linear warmup of 2K steps starting from a learning
rate of 1e-4 and a peak learning rate of 1e-3.

Quantitative Results
COMET Table 3 shows that our model demonstrated su-
perior results than the baseline in all tasks. Results were
slightly different by cross-modulation architectures, but all
exceeded the prior scores. In the multimodal baseline, de-
spite image features from the memory graph being used,
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Model 1. API 2. Coref 3. DST. 4. Gen.
Acc ↑ Coref F1 ↑ Slot F1 ↑ Joint Acc. ↑ BLEU ↑ BERTS. ↑

Text-only (Kottur et al. 2022) 88.6 78.2 91.5 72.9 0.205 0.895
Multimodal (Kottur et al. 2022) 89.4 84.8 92.6 77.5 0.251 0.905

Ours (Concatenation) 90.9 87.3 93.4 80.5 0.294 0.905
Ours (utterance → history) 90.6 87.2 93.7 80.5 0.296 0.907
Ours (history → utterance) 90.9 87.3 93.7 80.6 0.298 0.907

Table 3: Overview of evaluation results on the COMET test set. Our algorithm achieves higher performance than baselines, in
all four tasks. Scores by different cross-modulation block structures are presented.

Model 1. API 2. Coref 3. DST. 4. Gen.
Acc Coref F1 Slot F1 Joint Acc. BLEU BERTS.

w/o Hierarchy 90.8 87.1 93.5 80.2 0.291 0.906
Event 90.8 87.7 94.1 81.1 0.296 0.906
Day 90.9 87.3 93.7 80.6 0.298 0.907
Trip 91.0 87.3 93.7 80.8 0.299 0.907

Table 4: Archies on the COMET test set.

NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
CoAtt 59.24 49.64 40.09 59.37 65.92 17.86

HCIAE 59.70 49.07 39.72 58.23 64.73 18.43
Primary - 49.01 38.54 59.82 66.94 16.60
ReDAN 60.47 50.02 40.27 59.93 66.78 17.41
DMRM - 50.16 40.15 60.02 67.21 15.19
DAM 60.93 50.51 40.53 60.84 67.94 16.65

KBGN 60.42 50.05 40.40 60.11 66.82 17.54
LTMI 61.61 50.38 40.30 60.72 68.44 15.73

LTMI-GoG 62.63 51.32 41.25 61.83 69.44 15.32

GST 64.50 52.06 42.04 62.92 71.06 14.54

Ours 63.27 52.59 42.90 62.51 69.57 14.96

Table 5: Comparison with the state-of-the-art generative
models on VisDial v1.0 validation set. Compared baseline
results are from (Kang et al. 2023).

these features are treated as flattened tokens, losing intrin-
sic structural information of the memory graph. But our al-
gorithm takes account of trip-day-event hierarchical struc-
ture. Using image features exclusively disregards valuable
information that cannot be found in the image only, such as
time, location, and person’s name. Ablation results without
hierarchical information and considering various levels of
hierarchy are presented in table 4. The overall performance
without the hierarchical structure of context was the lowest,
proving the necessity of using hierarchical information.

VisDial As presented in table 5, our model exhibits re-
markable results on overall metrics, compared to the base-
lines on VisDial v1.0 validation set. We compared our result
with the attention-based approach (top 6 rows), graph-based
approach (middle 3 rows), and self-training-based approach

Model Accuracy ↑
I (Seo et al. 2017) 20.18
Q (Seo et al. 2017) 36.58

ATT (Seo et al. 2017) 62.62
ATT\H (Seo et al. 2017) 79.72
AMEM (Seo et al. 2017) 87.53

AMEM\H+SEQ (Seo et al. 2017) 96.39

CorefNMN\SEQ (Kottur et al. 2018) 88.7
CorefNMN (Kottur et al. 2018) 99.3

Ours 98.6

Table 6: Answer accuracy on MNIST Dialog test set.

(bottom 1 row). Among six evaluation metrics, we demon-
strate state-of-the-art scores in two: MRR and R@1. In the
other four metrics: R@5, R@10, Mean Rank, and NDCG,
the score gap is little. One thing we want to emphasize is in
the previous work, an additional training phase and gener-
ated dataset were used.

In GST (Kang et al. 2023), a generative self-training-
based approach was used, which trains the teacher & ques-
tioner model first, and the main student model successively.
Conceptual 12M dataset (Changpinyo et al. 2021) is used
as an image and dialog data is generated by teacher &
questioner model using these images. The student model
is trained on the generated dialog dataset additionally. To
train with this generated dataset, perplexity-based data se-
lection was used and multimodal consistency regularization
loss term was introduced to improve the generalization ca-
pability of the model. Our algorithm is trained end-to-end
with a single model and uses a VisDial train set only, which
is a much simpler yet harder setting.

MNIST Dialog Our model surpassed every other baseline,
as shown in table 6, except one (Kottur et al. 2018). This
algorithm takes advantage of separate neural modules spe-
cialized in coreference resolution and description. And ∆it,
which is the absolute difference between the current turn
and the turn when each candidate from the reference pool
was first mentioned, was used. This information is critical,
as removing this drops accuracy significantly. But our model
assumes a more general setting, not saving every previously
seen entity with its visual groundings in a reference pool,
which is memory inefficient. By using multimodal context,
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Figure 4: Examples of retrieved images from multimodal context. We visualize the focus of each multi-head in a cross-
modulation block by attention scores. The green-colored boxes represent images related to history, while the red-colored boxes
represent images related to the current utterance. As selected memories containing ground-truth memories, this result indicates
that our cross-modulation block can retrieve effectively necessary information from the context.

Figure 5: Visualization of attention scores with retrieved im-
ages. The blue box represents the ground truth images as-
sociated with the given dialog history and the below boxes
with numbers represent attention scores from the suggested
method.

textual information that cannot be found in the image (e.g.,
time, name of the person, city) can be given to the model,
flourishing the reasoning ability.

Qualitative Results
We investigated retrieved contexts by each attention head in
Figure 4 and visualize with the attention scores in Figure
5. By sequentially passing history and current utterance, not
only the current turn’s context but also history’s context are
retrieved. These results clearly demonstrate our sequential
cross-modulation blocks.

In Figure 6, we visualize which information in the entire
dialog history (past utterances and answers) and the entire
memory context receives high attention scores as the dia-
log’s turn progresses. This can demonstrate how the refer-

Figure 6: Visualization of attention scores for context and
history.

enced memory changes with each turn. One important point
to emphasize is that the suggested method gives less atten-
tion scores on unrelated previous history as the dialog pro-
gresses.

Conclusion
We propose a novel cross-modulation-based method for Vi-
sual Dialog. By introducing a modulation block, pretrained
language-only, and vision-only models can be aligned with-
out joint training. Thus, the model can enjoy the rich rep-
resentational ability from the two modalities. As multiple
cross-attention layers, relevant history and context informa-
tion to the current utterance can be retrieved. By using a ma-
trix representing structural information, hierarchical struc-
ture in context can be preserved. These two processes, align
and retrieve, are the key components of using pretrained
models for visual dialog tasks. We demonstrated impressive
results in three visual dialog datasets.
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