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Abstract

In the machine learning field, the challenge of effectively
learning with limited data has become increasingly crucial.
Active Learning (AL) algorithms play a significant role in this
by enhancing model performance. We introduce a novel AL
algorithm, termed Co-learning (CoLAL), designed to select
the most diverse and representative samples within a training
dataset. This approach utilizes noisy labels and predictions
made by the primary model on unlabeled data. By leveraging
a probabilistic graphical model, we combine two multi-class
classifiers into a binary one. This classifier determines if both
the main and the peer models agree on a prediction. If they do,
the unlabeled sample is assumed to be easy to classify and is
thus not beneficial to increase the target model’s performance.
We prioritize data that represents the unlabeled set without
overlapping decision boundaries. The discrepancies between
these boundaries can be estimated by the probability that two
models result in the same prediction. Through theoretical anal-
ysis and experimental validation, we reveal that the integration
of noisy labels into the peer model effectively identifies tar-
get model’s potential inaccuracies. We evaluated the CoLAL
method across seven benchmark datasets: four text datasets
(AGNews, DBPedia, PubMed, SST-2) and text-based state-
of-the-art (SOTA) baselines, and three image datasets (CI-
FAR100, MNIST, OpenML-155) and computer vision SOTA
baselines. The results show that our CoLAL method signif-
icantly outperforms existing SOTA in text-based AL, and is
competitive with SOTA image-based AL techniques.

Introduction
Active Learning (AL) is an approach to reduce the amount of
labels typically required to train models, thereby improving
training efficiency (Settles 2012; Ostapuk, Yang, and Cudre-
Mauroux 2019). The core challenge is to identify the most
beneficial instances to label at each round of the AL process.
Many AL strategies have been proposed to estimate the bene-
fit of each instance on the learning process. The most com-
mon AL algorithm family is that of uncertainty-based algo-
rithms, which estimate the “informativeness” of an instance
(Settles 2012). These algorithms select instances that the tar-
get model is most uncertain about (Siddhant and Lipton 2018;
Yoo and Kweon 2019; Linh et al. 2021; Ostapuk, Yang, and
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Cudre-Mauroux 2019). Another AL family is distribution-
based AL. These algorithms estimate the “representativeness”
of an instance (Sener and Savarese 2018; Gissin and Shalev-
Shwartz 2019; Zhang and Plank 2021; Cui et al. 2022). De-
spite much progress made in this area, current AL methods
still struggle with instances close to the decision boundaries
by using the available labeled data. Training on limited la-
beled data often results in incomplete decision boundaries,
causing the model to make numerous erroneous predictions
on unlabeled data (Malach and Shalev-Shwartz 2017). This
implies that predictions for unlabeled instances made by the
target model are potentially incorrect even when the target
model predicts them with high confidence scores. This issue
happens as the learning patterns representative of unlabeled
data emerge with an insufficient probability or do not appear
at all in the labeled data distribution.

Thus, in this work we propose a method that can quantify
the decision boundaries for unlabeled training data, which are
yet unknown to the target model. These unknown decision
boundaries are created by defining a peer model, which is a
supervised model trained with noisy labels (i.e., predictions
from the target model for yet unlabeled data). The most ben-
eficial regions identified with these decision boundaries are
calculated through a probabilistic graphical model. From this
model, two multi-class classifiers (classes from the training
data) are fused into a binary classifier indicating whether two
models have the same prediction or not. We assume that, if
the probability of having the same prediction is high, the
unlabeled instance is easy to classify and would not further
improve the performance of the target model if labelled. It
also means that, unlabeled instances representative of unla-
beled training data which do not overlap with the decision
boundaries of labeled training data are preferred. We assume
that the disparity between decision boundaries can be inter-
preted through the probability that the two models share the
same predictions or the same decision boundaries.

Our contributions are summarized as follows: 1) We ana-
lyze the problem, observe it through a probability interpre-
tation, and encapsulate it in the form of the loss function
to intuitively explain the region of interests of our AL; 2)
We present extensive experimental results aimed at assessing
the effectiveness of the proposed method. The experimen-
tal results show that our approach outperforms SOTA AL
baselines over four text and three image datasets.
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Related Work
Uncertainty-based AL
The most common AL algorithm family estimates the clas-
sification uncertainty of an instance. This strategy takes the
output from the target model for an instance as the input to an
estimation function for the “informativeness” of the instance.
The outputs of the model may be, for example, the entropy
(Dagan and Engelson 1995), the confidence of the prediction
(Culotta and McCallum 2005), the margin between the confi-
dence of the two highest predicted classes (Settles 2012), the
information benefit from the Bayesian model’s parameters
(Gal, Islam1, and Ghahramani 2017), the ensemble of mul-
tiple variances of uncertainty AL methods for image input
(Beluch et al. 2018). Recent uncertainty-based algorithms are
based on the loss of the target model (Yoo and Kweon 2019;
Linh et al. 2021). However, these approaches often select
outliers due to their high uncertainty (Parvaneh et al. 2022).

Distribution-based AL
This type of AL methods has been shown to deal with the
issue of selecting outliers (Abe, Zadrozny, and Langford
2006; Liu et al. 2019a). These methods estimate the “rep-
resentativeness/diversity” of an instance looking at the dis-
tribution of data instances and their feature representation.
Clustering-based methods are commonly used in this AL fam-
ily (Nguyen and Smeulders 2004; Zhu et al. 2008; Nguyen
and Patrick 2014), e.g., the work of Sener et al. (Sener and
Savarese 2018), which is widely used for image classifica-
tion. Recently, Gissin et al. (Gissin and Shalev-Shwartz 2019)
and Zhang et al. (Zhang and Plank 2021) proposed self-
supervised algorithms to leverage data instances’ features
using a self-supervised mechanism without the need to label
data (see Section where we describe our baselines). However,
these methods can only interpolate unlabeled training data
through the labeled training data (Zhang and Plank 2021), or
when features of an unlabeled instance appear in the unla-
beled population (Gissin and Shalev-Shwartz 2019) without
indicating whether an unlabeled instance could significantly
improve the performance of the target model, if used for
training.

Learning Hard-To-Classify
Our method is mainly inspired by methods that select hard-
to-classify samples (Gissin and Shalev-Shwartz 2019; Zhang
and Plank 2021). The DAL method proposed by Gissin and
Shalev-Shwartz (2019) targets data samples that make the
labeled instances and unlabeled instances indistinguishable.
DAL thus builds another model besides the target model to
distinguish which unlabeled instances do not belong to the la-
beled data distribution. The CAL method proposed by Zhang
and Plank (2021) targets data samples with low classification
accuracy to identify difficult-to-classify unlabeled instances.
CAL thus builds another model as a binary classifier to distin-
guish between unlabeled instances that are hard or not based
on a fixed threshold on correctness. The disadvantage of these
methods is being unaware that the unlabeled data distribution
may vary across the categories in the dataset. This is critical

to learn which instances are poorly represented in the train-
ing data. From that point, the method we propose focuses on
supporting perspectives that are unknown to the target model
by means of another model used as a peer model. This peer
model takes as input data with noisy labels. Instead of merely
using confidence scores predicted by the peer model to select
beneficial unlabeled instances, we employ the disagreement
between both the target model and the peer model. This dis-
agreement aims to identify significant differences between
the two models for an unlabeled instance.

Learning from Noisy Labels
In the noisy label setup, easy data instances are connected
with clean samples, which are labeled by annotators and in-
crease the performance of the target model. Noisy data may
be incorrectly labeled and reduce the performance of the tar-
get model. Thus, “learning from noisy labels” research looks
at a set of solutions to tackle the presence of noisy labels so
that the performance of the target model can still be improved
(Blum and Mitchell 1998; Han et al. 2018; Rodrigues and
Pereira 2018; Malach and Shalev-Shwartz 2017; Jiang et al.
2018; Yao et al. 2020; Berthon et al. 2021). Some related
popular approaches in this line of work include (Han et al.
2018; Malach and Shalev-Shwartz 2017; Jiang et al. 2018)
which use a peer model to select clean labels. These methods
implicitly show that neural networks themselves can detect
the easy and hard regions of data even when the labels are
noisy (Han et al. 2018). Different from co-teaching (Han
et al. 2018) and co-training (Blum and Mitchell 1998), our
co-learning method does not use the weights or the output
from the target model to remove noisy labels from the peer
model. Rather, it uses the output of the peer model to guide
the target model which predictions could be incorrect and
need to be annotated. Selected unlabeled instances are then
annotated and used in the next training iteration as they might
be incorrectly predicted and are thus beneficial for the target
model to improve its performance.

Our Method: Co-learning AL
Research Problem
Our AL setup consists of unlabeled data U with size NU ,
U = {xj}NU

j=1, the currently labeled training data L with
size NL, L = {xi}NL

i=1, c ∈ {1, 2, ..., C}, where C represents
the number of classes within the training dataset, a target
model fψ as a neural network parameterized by ψ, and a peer
model fξ as a neural network parameterized by ξ. The target
model is trained only with labeled data, which are clean la-
bels while the peer model is trained with unlabeled data for
which noisy labels are predicted by the target model. Malach
and Shalev-Shwartz (2017) have shown that the results of ma-
chine learning models are not reliable when they are trained
on a small amount of training data. We thus create a peer
model to reveal how reliable the target model predictions for
xj ∈ U (xj is the vector representation of the jth unlabeled
instance) are. This reliability is expressed through the prob-
ability that the target model has the same predictions as the
peer model. There are two questions addressed by our AL
algorithm:
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Algorithm 1: CoLAL algorithm

1: Input: labeled data L, unlabeled data U , seed data I ,
pool of samples having different predictions from target
model and peer model, acquisition size B = 100, target
model fΨ, AL model fξ with input U and noisy labels
(fΨ(Xu))

2: Initialize data I , T
3: L← I
4: while U ̸= ∅ do
5: Train fΨ with labeled data
6: Infer noisy-labels for unlabeled training data U
7: Train fξ with unlabeled data and their noisy labels.
8: Clear or Initialize T
9: for i < Nu do

10: Calculate the disagreement in Equation 5 ▷
Compute the disagreement between 2 models fΨ, fξ

11: if (fΨ(xi)) ̸= (fξ(xi)) then
12: T ← xi
13: end if
14: end for
15: if T ̸= ∅ then
16: Select top B samples with the highest disagree-

ment from T and remove them from U
17: else
18: Select top B samples with the highest disagree-

ment from U and remove them from U
19: end if
20: end while

• Can learning from noisy instances detect potentially in-
correct predictions made by the target model fψ?

• Can incorrect predictions by fψ be identified by the dis-
agreement with fξ?

The first question is mostly answered based on how deep neu-
ral networks memorize. This is beneficial for filtering noisy
labels while effectively learning the patterns of unlabeled
data:

Random predictions can be made when the categorical dis-
tribution is not significantly different among classes. In these
cases, if few clean samples are included in the training pro-
cess of fξ, fξ can learn from clean samples instead of noisy
samples. This is shown by Bo Han et al. (Han et al. 2018)
who observed that deep networks are capable of identifying
and learning clean patterns during the early stages of training,
even with the presence of noisy labels (e.g., see Figure 1(b)).
Instances that are most representative of a specific region of
data are learned first in the early epochs. In our work, fξ is
trained with only 2 epochs to enforce this behaviour.

From an intuitive perspective, various classifiers can create
distinct decision boundaries, leading to different learning
capabilities (see Figures 3(a), 3(b), 3(c)). Thus our work
proposes a co-learning mechanism using two models: one
target model and one peer model. While the peer model fξ
is trained with a high number of unlabeled data for which
we generate noisy labels and a small number of epochs (2
epochs), the target model fψ is trained on a small amount of
good quality labeled data and a higher number of training

epochs (15 epochs).
The second question is addressed in the following sections.

((a)) Instances learned first
in early training or with few
epochs (e.g., 2 epochs).

((b)) Gray points are noisy
instances and are filtered in
the early stage of training.

Figure 1: Example of memorization mechanism. The training
set has two classes: white with a black border and red with
a red border. Samples highlighted with bolder borders are
learned first.

Theoretical Foundation of Co-learning

Figure 2: Graphical representation of the combined classifi-
cation task; xj represents nodes of U, Y jψ and Y jξ represents
class labels from the target model and the peer model, Sij is
the similarity between the prediction from the target model
and peer model, ψ and ξ represent the neural network param-
eters of the target model and peer model respectively.

In this work, we propose a novel method that combines
the output of two models: the target model trained on the
labeled training data L and the peer model trained on the
unlabeled training data U . We assume that the combined
model can identify the incorrect predictions made by the
target model. Let Sjψξ indicate the same prediction from the
two models, Ŝjψξ denote the probability that fψ has the same
prediction as fξ. Y

j
ψ , Y

j
ξ are the labels for an instance at

index j from two models fψ, fξ. P (S
j
ψξ|Y

j
ψ , Y

j
ξ ) = 1 when

Y jψ = Y jξ . The output for the unlabeled sample j by the
target model parameterized by ψ is f(xj ;ψ) = P (Y jψ |xj ;ψ).
The output for the unlabeled sample j by the peer model
parameterized by ξ is f(xj ; ξ) = P (Y jξ |xj ; ξ). Now, we set
up our research problem through a probabilistic graphical
model G (see Figure 2). This describes the graph to observe
the similarity S in predictions between two models as follows:
P (G) = P (U, Y, S;ψ; ξ) = P (S|Y )P (Y |U ;ψ; ξ)P (U)

(1)
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((a)) The model trained on la-
beled data with a green decision
boundary.

((b)) The peer model trained on
unlabeled data with a black de-
cision boundary.

((c)) The model integrates deci-
sion boundaries using both la-
beled and unlabeled data mod-
els.

Figure 3: Decision boundaries across training scenarios. In this example, two classes are differentiated by fill colors, with green
borders indicating labeled samples.

In Equation 1, S represent the similarities between U and L,
Y represents the predictions of U from fψ, fξ. P (S|Y ) =∏
j P (S

j
ψξ|Y

j
ψ , Y

j
ξ ). To calculate P(G), we need to compute

the marginalization through Y as
∑
Y P (S|Y )P (Y |U ;ψ; ξ)

P (X,Y, S;ψ; ξ) ≈
∑
Y

P (S|Y )P (Y |U ;ψ; ξ)

=
∏
j

(∑
j

1[Sjψξ = 1]P (Y jψ |xj ;ψ)P (Y
j
ξ |xj ; ξ)

+
∑
j

1[Sjψξ = 0]P (Y jψ |xj ;ψ)P (Y
j
ξ |xj ; ξ)

) (2)

Then we take a negative logarithm on Equation 2 so that we
obtain Equation 4 by converting the inner product of two
categorical distributions from the two multi-class classifiers
into the binary classifier as follows:

g(xj , f(., ψ), f(., ξ)) = f(xj ;ψ)
T f(xj ; ξ) = Ŝjψξ (3)

L = −
∑
j

log
(∑
j

1[Sjψξ = 1]P (Y jψ |xj ;ψ)P (Y
j
ψ |xj ; ξ)

+
∑
j

1[Sjψξ = 0]P (Y jψ |xj ;ψ)P (Y
j
ξ |xj ; ξ)

)
= −

∑
j

Sjψξ log
(
f(xj ;ψ)

T f(xj ; ξ)
)

+ (1− Sjψξ) log
(
1− f(xj ;ψ)T f(xj ; ξ)

)
= −

∑
j

Sjψξ log
(
Ŝjψξ

)
+ (1− Sjψξ) log

(
1− Ŝjψξ

)
(4)

In this section we show that we can convert the comparison
between two multi-class classifier to binary classification by
defining the function g indicating the probability of having
the same prediction from the two models. In this binary clas-
sification, a class of “1” denotes the same prediction between
fψ and fξ, otherwise is “0”. To maximize P (G), we mini-
mize Equation 4. The likelihood nature of the loss function in
Equation 4 helps us to explore the overlap of decision bound-
aries between the two models. Specifically, to minimize the

loss, the two models must have the same output node when
Sjψξ = 1. In the case Sjψξ = 0, the less overlap between
two distributions, the lower the loss. These characteristics
illustrate why when we minimize this loss we can learn the
similarity between the decision boundaries of two multi-class
classification models.

Selection Criterion. In the previous section, we show that
the inner product between the categorical distributions from
two models can be considered as the probability of having
the same prediction from the two models. In our work, we
consider the unlabeled samples where their predictions are
not the same as the target model, represented by Sjψξ = 0.
To maximize P (G), we aim to select regions with the least
overlap with labeled data or the target model’s categorical
distributions. We also consider this minimal overlap as the
disagreement between the two models. Thus, we formulate
our selection criterion (SC) as following:

argmax
j={1,Nu}

1− g(xj , f(., ψ), f(., ξ))

= argmax
j={1,Nu}

1− fψ(xj ;ψ)T fξ(xj ; ξ)

= argmax
j={1,Nu}

1−
C∑
c=1

P (Y jψ = c|xj ;ψ) ∗ P (Y jξ = c|xj ; ξ)

(5)

where Nu is the number of unlabeled training data instances.
We clarify the mechanism of how this equation is com-
puted through an example. In the first case, we have the
categorical distribution of xi: fψ(xi) = [0.1, 0.8, 0.1] and
fξ(xi) = [0.2, 0.6, 0.2], the disagreement between fψ(xi)
and fξ(xi)=1 − (0.1 ∗ 0.2 + 0.8 ∗ 0.6 + 0.1 ∗ 0.2) = 0.48.
In the second case, we have the same categorical distri-
bution from the target model fψ(xi) = [0.1, 0.8, 0.1] and
fξ(xi) = [0.8, 0.1, 0.1], the disagreement between fψ(xj)
and fξ(xj)=1 − (0.1 ∗ 0.8 + 0.8 ∗ 0.1 + 0.1 ∗ 0.1) = 0.83,
which is higher than the first case. It is obvious that the
more dissimilar the predictions are, the more disagreement
between fψ(xi) and fξ(xi) there would be. Besides, our over-
lap estimation allows us to halt the selection of non-beneficial
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samples when the models achieve a certain level of agree-
ment. This level indicates that further annotation is unlikely
to enhance the performance of the target model. It also means
that these instances receive the same prediction from the tar-
get model and the peer model and thus that these instances
do not contain any new features to learn from. Thus, we only
consider unlabeled samples if they have different predictions
from the two models (see Line 11 in Algorithm 1). To select
the most beneficial samples when the two models disagree,
we select the top B samples with the highest disagreement
(see Lines 16 and 18 in Algorithm 1).

Algorithmic Complexity Discussion
Our AL approach utilizes a single model trained on unla-
beled data, which is comparable to other SOTA methods such
as, e.g., Gissin et al. (Gissin and Shalev-Shwartz 2019). A
key distinction between our method and these alternatives
lies in the labeling of unlabeled data: Our model employs
labels derived from the target model, while the aforemen-
tioned methods utilize binary labels, with 0 representing
unlabeled data and 1 representing labeled data. We introduce
an additional simple difference multiplication computation,
as detailed in Line 10 of Algorithm 1. The time complexity
of our method is equivalent to that of other methods, with an
additional O(NU ) factor, where NU denotes the number of
training samples. Consequently, our method is both effective
and efficient.

Experimental Setting
Datasets
In this study, we consider four benchmark text classifica-
tion datasets that were used to evaluate SOTA baselines (Yu
et al. 2022; Margatina et al. 2021). The first dataset, AG-
News (Zhang, Zhao, and Lecun 2015), is focused on news
topic classification and comprises 4 classes, with 119,000
training samples, 1,000 development samples, and 7,600 test
samples. The second dataset, DBPedia (Zhang, Zhao, and
Lecun 2015), is designed for Wikipedia topic classification
and encompasses 14 classes, with 280,000 training samples,
1,000 development samples, and 70,000 test samples. The
third dataset, Pubmed (Dernoncourt and Lee 2017), is used
for medical abstract classification and includes 5 classes,
with 180,000 training samples, 1,000 development samples,
and 30,100 test samples. Finally, the fourth dataset, SST-
2 (Socher et al. 2021), is used for sentiment analysis and
contains 2 classes, with 60,600 training samples, 800 devel-
opment samples, and 1,800 test samples.

We also consider three benchmark datasets to evaluate
image classification SOTA baselines, as in (Parvaneh et al.
2022). These are CIFAR100 (Krizhevsky 2009), MNIST
(LeCun et al. 1998) and OpenML 1. CIFAR100 includes 100
classes of 32x32 coloured images, featuring 50,000 images
for training and 10,000 images for testing. MNIST includes
10 classes of 28x28 binary images depicting handwritten
single digits, with a training set of 50,000 images and a test
set of 10,000 images. Additionally, we have selected the

1https://www.openml.org/

OpenML-155 dataset, which consists of 9 classes of meta-
data samples, totaling 50,000 training samples and 10,000
test samples, as configured in (Parvaneh et al. 2022).

Baselines
We compare our approach against seven AL methods: two
classic baselines: Random (Settles, Craven, and Ray 2008)
and Max-Entropy (Ent.) (Dagan and Engelson 1995); and
five recent SOTA baselines: Deep-batch Active Learning
(Ash et al. 2020), Contrastive Active Learning (Margatina
et al. 2021), Actune Active Learning (Yu et al. 2022), Task-
Independent Triplet Loss (Seo et al. 2022), and Feature Mix-
ing for Active Learning (Parvaneh et al. 2022).

Random. Random is a baseline method that selects in-
stances for annotation randomly without any particular strat-
egy or approach. It is often used as a reference point for
comparing the performance of other more sophisticated ac-
tive learning methods.

Max-Entropy (Entropy). Given a classification model’s
output probability distribution P (Y jψ = c|xj , ψ) over class
c, the entropy H representing the model’s uncertainty for an
instance xj is: H = −

∑C
c=1 P (Y

j
ψ = c|xj , ψ) log(P (Y jψ =

c|xj , ψ)). Unlabeled samples with higher entropy values (i.e.,
with greater uncertainty) can be prioritized for labeling.

Deep-batch Active Learning (BADGE). The estimation
of informativeness is based on the lower bounds of the gradi-
ents of the model’s loss function with respect to the model’s
parameters. The lower bounds are calculated using a varia-
tional approximation that involves sampling from the poste-
rior distribution of the model’s parameters. This method’s
estimation is based on multiple lower bounds obtained by
sampling from the posterior distribution. It calculates the
uncertainty using a variational approximation that involves a
probability distribution. The most informative data points for
labeling are expected to maximize the reduction of the loss
function.

Contrastive Active Learning (CAL). This method lever-
ages unlabeled data by using contrastive samples to select
informative instances for labeling. The selection process in-
volves computing the Kullback-Leibler (KL) divergence be-
tween labeled and unlabeled data, with the goal of identifying
instances that are maximally distinct from the labeled data.
The CAL algorithm works by first training a contrastive rep-
resentation learning model on the available unlabeled data,
which generates representations that capture the underlying
structure of the data. The KL divergence between the labeled
and unlabeled data distributions is then computed using these
representations, and the unlabeled instances with the highest
KL divergence are selected for labeling.

Actune Active Learning (AcTune). This algorithm en-
hances model performance by selecting annotation-worthy
instances via a region-based uncertainty method. This strat-
egy involves segmenting the input space, assessing the un-
certainty of each segment, and then giving preference to
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highly uncertain regions for annotation to improve predic-
tion accuracy. Additionally, AcTune employs a momentum-
based memory bank to incorporate representations of prior
instances, thereby enriching the training process. The distinc-
tiveness of this method lies in its emphasis on region-aware
sampling and the application of weighted k-means clustering.
The centroid of every cluster is then computed to identify
clusters with high uncertainty levels. Selected data points are
the one nearest to the centroid of selected clusters.

Task-Independent Triplet Loss (BATL). This work in-
troduces a task-independent batch acquisition method using
triplet loss. This method takes into account both pre-trained
linguistic features and task-related features while exploring
uncertainty and diversity in the unlabeled dataset. The pro-
posed acquisition function combines sentence representations
from a pre-trained language model with task-related features
from a classifier’s final hidden layer. The triplet loss is based
on an anchor, positive, and negative samples where the anchor
and positive samples share the same label, while the negative
sample has a different label. The selected data points are the
ones with the highest triplet loss.

Feature Mixing for Active Learning (AlphaMix). This
method identifies novel features in unlabeled data. This in-
volves analyzing inconsistencies in model predictions when
the data representations are interpolated. Parvanev et al. cre-
ated interpolations between labeled and unlabeled data repre-
sentations and then examined the resulting predicted labels.
Their findings indicate that the inconsistencies in these predic-
tions are crucial for identifying features that the model fails
to recognize in the unlabeled data. They also proposed an
efficient implementation based on a closed-form solution for
the optimal interpolation that induces changes in predictions.

Evaluation
We use accuracy to evaluate the effectiveness of the text
classification models (Yu et al. 2022; Seo et al. 2022). We
compare methods’ performance using significance tests (Dror
et al. 2018). Specifically, we employ the t-test as done in
previous work (Yu et al. 2022).

Training Settings
In our study, we employ RoBERTa-base (Liu et al. 2019b)
from the HuggingFace codebase (Wolf et al. 2020) as the
backbone for our CoLAL method and for all baselines, ex-
cept for the Pubmed dataset, where we utilize SciBERT (Belt-
agy, Lo, and Cohan 2019): a BERT model pre-trained on
scientific corpora. To ensure a true low-resource setting and
to maintain consistency with previous low-resource AL re-
search, we highlight that we train each model from scratch
in every round. This approach helps to avoid overfitting the
data collected in earlier rounds, as noted by Hu et al. (Hu
et al. 2019). By adhering to these settings, we aim to provide
a reliable comparison with the referenced previous work. The
configuration for the target model includes training for 15
epochs, using a batch size of 8, a learning rate of 2e-5, and a
weight decay of 1e-8. Additionally, we utilize the “Sequence
Classification” backbone from HuggingFace for our classifi-
cation tasks, ensuring compatibility and consistency across

experiments. Based on how models memorize, it is essential
to have a specific number of epochs for our peer AL model.
When incorrect labels exist, models can memorize incorrect
labels (Zhang et al. 2017). Our work thus can not run large
epoch numbers with Fξ. “Epoch=1” for Fξ is empirically
selected for BERT-based embeddings through different runs
with different epoch settings (i.e., 1, 2, 3, 5). Our experiments
are executed with 5 different random seeds on a GPU cluster
with 16GB nVidia Tesla V100 GPUs. In our active learning
setups, we follow the setup of Yuan et al. (Yuan, Lin, and
Boyd-Graber 2020; Yu et al. 2022; Parvaneh et al. 2022) by
setting the number of rounds equals to 10, the overall label-
ing budget for all datasets equals to 1000, and the initial size
of the labeled set equals to 100. For CIFAR100, the initial
labeled set is 1,000 with a total budget of 10,000. In each
round, we sample a batch of 100 samples from the unlabeled
set U and query their labels, except for CIFAR100, where
1,000 samples are chosen. Due to the impracticality of large
development sets in low-resource settings (Kann, Cho, and
Bowman 2019), we limit the size of the development set to
1,000, which is the same as the labeling budget. Additionally,
our method does not prescribe a fixed number of initial sam-
ples from each class; rather, it starts with a random sample
of the available data.

Results and Analysis
Comparison on Text Classification Benchmarks
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Figure 4: Our method compared to SOTA baselines on AG-
News. The horizontal axis represents “Number of used train-
ing samples ” while the vertical axis represents “Accuracy”.

Our CoLAL approach is statistically significantly better
than the baselines on AGNews, DBPedia, PubMed, SST-2
(see Figures 4, 5(a), 5(b), 5(c)). Among the baselines, Ac-
Tune yields the best performance except on PubMed dataset,
where BADGE slightly outperforms other baselines without
significant difference.

AGNews: Our CoLAL method consistently outperforms
other methods across all sample sizes, achieving the highest
accuracy at each stage. CoLAL outperforms the best baseline
by average gaps ranging from 0.642% to 2.050%, with peak
differences between 1.103% and 3.26% at 800 samples.

DBPedia: Our CoLAL exceeds other methods with average
accuracy gaps spanning from 0.543% to 1.733%, with its
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((a)) Comparison on DBPedia.
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((b)) Comparison on PubMed.
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((c)) Comparison on SST-2.

Figure 5: Performance comparison on text classification. The horizontal axis represents “Number of used training samples ”
while the vertical axis represents “Accuracy”.
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((a)) Comparison on CIFAR100.
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((b)) Comparison on MNIST.
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((c)) Comparison on OpenML-155.

Figure 6: Performance comparison on image classification. The horizontal axis represents “Number of used training samples ”
while the vertical axis represents “Accuracy”.

highest outperformance between 1.646% and 2.391% at 200
and 400 samples respectively.

PubMed: Our CoLAL method consistently outperforms
other methods across all sample sizes, achieving the highest
accuracy at each stage. In comparison with other baselines,
CoLAL shows average accuracy improvements ranging from
1.026% to 2.046%, with particular distinction in performance
against the best baseline BADGE at 1.955%. Interestingly, we
observe no significant difference between the baseline meth-
ods, while our CoLAL method shows a distinct performance
gap. These results serve as evidence for the effectiveness of
our CoLAL approach in enhancing the performance of the
target model with significant gaps compared to other methods
on the Pubmed dataset.

SST-2: Our CoLAL method shows average accuracy gaps
over other methods between 1.026% and 2.219%, with max-
imum improvements observed at 3.628% against BADGE
and 2.812% against AcTune at 600 samples.

Comparison on Image Classification Benchmarks
Our CoLAL method exhibits competitive performance com-
pared to the AlphaMix baseline and other baselines for image
classification across three datasets: CIFAR100, MNIST, and
OpenML-155, as shown in Figures 6(a), 6(b), and 6(c). Co-
LAL achieves AlphaMix’s performance by the 5th iteration
on the MNIST dataset and performs comparably to other

baselines in the first four iterations on CIFAR100. Further-
more, during iterations 6 to 10 on the OpenML-155 dataset,
CoLAL slightly outperforms the baselines.

Conclusions
In this paper, we propose a novel AL algorithm: Co-learning
for Active Learning. The aim of this method is to select unla-
beled training data points by quantifying the overlap in the
categorical distribution with the target model, ensuring the
selected data is diverse from the labeled data and representa-
tive of the training set. We empirically show that our method
is significantly more effective than SOTA AL methods over
four benchmark datasets for text classification and compet-
itive with SOTA over three benchmark datasets for image
classification. Moreover, our method provides a way for ma-
chine learning models to quantify the influence of unlabeled
instances through the overlap across different regions of the
training data space.
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J. M. 2018. The Power of Ensembles for Active Learning in
Image Classification. In CVPR.
Berthon, A.; Han, B.; Niu, G.; Liu, T.; and Sugiyama, M.
2021. Confidence Scores Make Instance-dependent Label-
noise Learning Possible. In ICML.
Blum, A.; and Mitchell, T. 1998. Combining labeled and
unlabeled data with co-training. In COLT.
Cui, L.; Tang, X.; Katariya, S.; Rao, N.; Agrawal, P.; Subbian,
K.; and Lee, D. 2022. ALLIE: Active Learning on Large-
scale Imbalanced Graphs. In WWW.
Culotta, A.; and McCallum, A. 2005. Reducing labeling
effort for structured prediction tasks. In AAAI.
Dagan, I.; and Engelson, S. P. 1995. Committee-based sam-
pling for training probabilistic classifiers. In Machine Learn-
ing Proceedings.
Dernoncourt, F.; and Lee, J. Y. 2017. PubMed 200k RCT:
a dataset for sequential sentence classification in medical
abstracts. In IJCNLP.
Dror, R.; Baumer, G.; Shlomov, S.; and Reichart, R. 2018.
The Hitchhiker’s Guide to Testing Statistical Significance in
Natural Language Processing. In ACL.
Gal, Y.; Islam1, R.; and Ghahramani, Z. 2017. Deep Bayesian
ActiveLearning with Image Data. In ICML.
Gissin, D.; and Shalev-Shwartz, S. 2019. Discriminative
Active Learning. In ICLR.
Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I. W.-H.; and Sugiyama, M. 2018. Co-teaching: Robust
training of deep neural networks with extremely noisy labels.
In NeurIPS.
Hu, P.; Lipton, Z.; Anandkumar, A.; and Ramanan, D. 2019.
Active Learning with Partial Feedback. In ICLR.
Jiang, L.; Zhou, Z.; Leung, T.; Li, L.; and Fei-Fei, L. 2018.
MentorNet: Learning Data-Driven Curriculum for Very Deep
Neural Networks on Corrupted Labels. In ICML.
Kann, K.; Cho, K.; and Bowman, S. R. 2019. Towards Realis-
tic Practices in Low-Resource Natural Language Processing:
The Development Set. In EMNLP-IJCNLP.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE.
Linh, L.; Nguyen, M.-T.; Zuccon, G.; and Demartini, G. 2021.
Loss-based Active Learning for Named Entity Recognition.
In IJCNN.

Liu, Y.; Li, Z.; Zhou, C.; Jiang, Y.; Sun, J.; meng Wang;
and He, X. 2019a. Generative adversarial active learning for
unsupervised outlier detection. In TKDE.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019b.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. In arXiv preprint arXiv:1907.11692.
Malach, E.; and Shalev-Shwartz, S. 2017. Decoupling ”when
to update” from ”how to update”. In NIPS.
Margatina, K.; Vernikos, G.; Barrault, L.; and Aletras, N.
2021. Active Learning by Acquiring Contrastive Examples.
In EMNLP.
Nguyen, D. H. M.; and Patrick, J. D. 2014. Supervised
machine learning and active learning in classification of radi-
ology reports. JAMIA.
Nguyen, H. T.; and Smeulders, A. 2004. Active learning
using pre-clustering. In ICML.
Ostapuk, N.; Yang, J.; and Cudre-Mauroux, P. 2019. Ac-
tiveLink: Deep Active Learning for Link Prediction in Knowl-
edge Graphs. In WWW.
Parvaneh, A.; Abbasnejad, E.; Teney, D.; Haffari, R.; van den
Hengel, A.; and Shi, J. Q. 2022. Active Learning by Feature
Mixing. In CVPR.
Rodrigues, F.; and Pereira, F. 2018. Deep learning from
crowds. In AAAI.
Sener, O.; and Savarese, S. 2018. Active Learning for Con-
volutional Neural Networks: A Core-Set Approach. In ICLR.
Seo, S.; Kim, D.; Ahn, Y.; and Lee, K. 2022. Active Learn-
ing on Pre-trained Language Model with Task-Independent
Triplet Loss. In AAAI.
Settles, B. 2012. Active Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning.
Settles, B.; Craven, M.; and Ray, S. 2008. Multiple-instance
active learning. In NIPS.
Siddhant, A.; and Lipton, Z. C. 2018. Deep Bayesian Ac-
tive Learning for Natural Language Processing: Results of a
Large-Scale Empirical Study. In EMNLP.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C. D.;
Ng, A.; and Potts, C. 2021. Active Learning by Acquiring
Contrastive Examples. In ACL.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; and
Others. 2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. In EMNLP.
Yao, Y.; Liu, T.; Han, B.; Gong, M.; Deng, J.; Niu, G.; and
Sugiyama, M. 2020. Dual T: Reducing Estimation Error for
Transition Matrix in Label-noise Learning. In NeurIPS.
Yoo, D.; and Kweon, I. S. 2019. Learning Loss for Active
Learning. In CVPR.
Yu, Y.; Kong, L.; Zhang, J.; Zhang, R.; and Zhang, C. 2022.
AcTune: Uncertainty-Based Active Self-Training for Active
Fine-Tuning of Pretrained Language Models. In NAACL.
Yuan, M.; Lin, H.-T.; and Boyd-Graber, J. 2020. Cold-start
Active Learning through Self-supervised Language Modeling.
In EMNLP.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13344



Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
O. 2017. Understanding deep learning requires rethinking
generalization. In ICLR.
Zhang, M.; and Plank, B. 2021. Cartography Active Learning.
In Findings of EMNLP.
Zhang, X.; Zhao, J. J.; and Lecun, Y. 2015. Character-level
convolutional networks for text classfication. In NIPS.
Zhu, J.; Wang, H.; Yao, T.; and Tsou, B. K. 2008. Active
Learning with Sampling by Uncertainty and Density for Word
Sense Disambiguation and Text Classification. In COLING.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13345


