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Abstract

In open-set recognition (OSR), a promising strategy is
exploiting pseudo-unknown data outside given K known
classes as an additional K+1-th class to explicitly model po-
tential open space. However, treating unknown classes with-
out distinction is unequal for them relative to known classes
due to the category-agnostic and scale-agnostic of the un-
knowns. This inevitably not only disrupts the inherent dis-
tributions of unknown classes but also incurs both class-
wise and instance-wise imbalances between known and un-
known classes. Ideally, the OSR problem should model the
whole class space as K+∞, but enumerating all unknowns is
impractical. Since the core of OSR is to effectively model
the boundaries of known classes, this means just focusing
on the unknowns nearing the boundaries of targeted known
classes seems sufficient. Thus, as a compromise, we convert
the open classes from infinite to K, with a novel concept
Target-Aware Universum (TAU) and propose a simple yet ef-
fective framework Dual Contrastive Learning with Target-
Aware Universum (DCTAU). In details, guided by the tar-
geted known classes, TAU automatically expands the un-
known classes from the previous 1 to K, effectively alleviat-
ing the distribution disruption and the imbalance issues men-
tioned above. Then, a novel Dual Contrastive (DC) loss is
designed, where all instances irrespective of known or TAU
are considered as positives to contrast with their respective
negatives. Experimental results indicate DCTAU sets a new
state-of-the-art.

Introduction
In real-world classification tasks, the deployed model may
encounter data from unknown classes as the incomplete
knowledge obtained during training(Geng, Huang, and Chen
2020). Thus, a more realistic recognition scenario has been
introduced, namely open-set recognition (OSR), aiming to
classify known data and reject unknown data simultaneously
(Scheirer et al. 2012).

With the rapid emergence of algorithms crafted for OSR,
the strategy of utilizing pseudo-unknown data participated
in training has garnered increasing attention, which involves
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Figure 1: (a) The K+1 stereotype (top) inevitably disrupts
the inherent distributions of unknowns and incurs a big-
ger unknown class overwhelming other known classes. The
K+K strategy introduced (below) can alleviate the issues
existing in K+1; (b) An illustrated experiment on partial
data of CIFAR10 indicates K+K can be as a compromise.
K+K (red) outperformsK+1 (yellow) by a wide margin and
shows comparable performance to K+2K (blue), while re-
quiring less time cost.

obtaining the pseudo-unknown data through GANs or aug-
mentation methods (Ge et al. 2017; Neal et al. 2018; Kong
and Ramanan 2021; Du et al. 2022; Zhou, Ye, and Zhan
2021; Dhamija, Günther, and Boult 2018; Gunther et al.
2017; Perera and Patel 2019; Chen et al. 2021; Xu, Shen,
and Zhao 2023). This strategy treats the pseudo-unknown
classes as an additional K+1-th class, excluding K known
classes, and improves performance to varying degrees. How-
ever, consider a realistic scenario, even at the first sight of
animals and vehicles, we would never categorize them as
one class without distinction at all. This reveals that it is
counter-intuitive to treat the category-agnostic and scale-
agnostic unknowns (i.e., the scale involves the number of
instances in each unknown class and the number of classes
of unknowns) as the K+1-th class. Such an extreme K+1
strategy will cause two issues. First, the inherent class distri-
butions of unknowns will be disrupted since the initially spe-
cific categories of unknowns are fused into a single mixed
class. Second, imbalance occurs on both class- and instance-
wise: there are K classes for knowns but only one class for
unknowns; on the latter, copious unknown instances forced
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Figure 2: Two components of the proposed framework Dual Contrastive Learning with Target-Aware Universum (DCTAU).
(a) An illustration about how Target-Aware Universum(TAU) is generated; (b) The Dual Contrastive Loss is defined between
the i-th targeted known class and other known classes & the i-th TAU class (top) and between the i-th TAU class and other TAU
classes & the i-th targeted known class (below).

into a single mixed class will overwhelm the known classes,
as illustrated in Fig. 1(a) (top). The ideal (yet extreme) strat-
egy should adopt theK+∞, where modeling the whole class
space involves K classes of known classes and an infinite
number of unknown classes. However, in reality, it is im-
practical to enumerate all unknown classes. To further clar-
ify such two extremes, we design an illustrated experiment
on partial data of CIFAR10. As shown in Fig.1 (b), with
K+1 as a baseline (yellow line), performance improves sig-
nificantly as the number of pseudo-unknown classes grows
to K (red line). Afterwards, with the further increase of it,
performance plateaus and comes with substantial time con-
sumption. For instance, when reached to 2K, time consump-
tion surprisingly rises by 60% (blue line). Therefore, we be-
lieve that using K pseudo-unknown classes to approximate
the ∞ open classes is a roughly reasonable option.

Given this, the challenge converts to how to generate K
pseudo-unknown classes. Since the core of OSR is recog-
nized to effectively model the boundaries of known classes
(Geng, Huang, and Chen 2020; Vaze et al. 2021), here comes
an intuition: as seen in Fig. 1(a) (below), we should focus
on generating K pseudo-unknown classes for open classes
nearing the boundaries of K targeted known classes, which
naturally converts to a K+K strategy.

Upon the above, we first introduce a novel concept,
Target-Aware Universum, to serve as these K pseudo-
unknown classes. Then we design Dual Contrastive loss to
learn more discriminative representations around the bound-
aries between K known classes and K pseudo-unknown
classes. We name this framework as Dual Contrastive Learn-
ing with Target-Aware Universum (DCTAU). Two main
components of the framework are illustrated in Fig. 2. (1)
Target-Aware Universum (TAU). The concept of TAU
originates from the Universum Learning, which introduces
an external dataset that does not belong to any classes in
the task (Weston et al. 2006; Chapelle et al. 2007). To
align perfectly with OSR task, TAU is the result of modi-
fying the universum through Targeted Mixup, which inter-

polates a targeted known and the average of the remain-
ing knowns, as seen in Fig. 2(a). By this, each TAU nears
to its targeted known since the targeted known contributes
more information whereas the remaining known classes are
averaged out. Meanwhile, TAU automatically expands the
pseudo-unknowns from the previous 1 to K classes which
effectively alleviates the distribution disruption and the im-
balance issues mentioned above. (2) Dual Contrastive loss
(DC). To endow unknowns with the equal opportunity to be
used as the positives, we design a novel DC loss, where all
instances irrespective of known or TAU, aiming to simulta-
neously optimize greater inter-class margins and intra-class
compactness for K TAUs in a similar manner as K known
classes, as in Fig. 2(b). In DC loss, each anchor known class
as the positive contrasts both other known classes and its
TAU class firstly, meanwhile each TAU class contrasts both
other TAU classes and its corresponding targeted known
class. Further, theoretical analyses provide that DC loss can
adaptively adjust the weights between knowns and TAUs in
gradient update process to achieve fairly contrast and inherit
the inner ability of hard negative mining. Ultimately, these
two components enable DCTAU framework to achieve all
beings (i.e., known and unknown classes) are equal in OSR.
The contributions of this paper are summarized as follows:
• We emphasize the comprehension of unknowns and

break the K+1 stereotype to a K+K strategy, achieving
all beings are equal in OSR.

• We propose a novel framework Dual Contrastive Learn-
ing with Target-Aware Universum (DCTAU) involving
Target-Aware Universum and Dual Contrastive loss.

• We theoretically analyzed the effectiveness of DCTAU
and extensive experiments show it surpasses the state-of-
the-art performance.

Related Work
Open Set Recognition
(Scheirer et al. 2012) pioneered the formalization of open set
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recognition. (Bendale and Boult 2016) first integrates deep
learning into the OSR task and proposed OpenMax. Sub-
sequently, deep learning has gained significant attention in
the OSR task. One of those focuses on transforming closed
training into open. Apart from directly using natural images,
it is broadly classified into two categories:
GANs Based Methods. Seminal work in (Ge et al. 2017)
extended Openmax, using a conditional GAN to synthe-
size unknown data to train the DNNs. Following this, (Neal
et al. 2018; Perera et al. 2020; Kong and Ramanan 2021)
enhanced the performance by different strategies based on
GANs. Recently, (Chen et al. 2021) is an extension of (Chen
et al. 2020a) and adds confusing training samples from a
generator. However, the training process of GANs is com-
plex and unstable as it needs to train an additional network.
Augmentation Based Methods. (Zhou, Ye, and Zhan 2021)
introduced Data Placeholder, which anticipates novel class
patterns by Manifold Mixup (Verma et al. 2019). (Cho and
Choo 2022) used background-class as Known Unknown
Classes during training. (Xu, Shen, and Zhao 2023) syn-
thesized vague virtual instances and augmented negatives
to enhance representation learning. (Zhu et al. 2023) pro-
posed OpenMix, which learned to reject pseudo data mixed
through outlier samples. However, these methods not only
consider the scale and quality of augmented instances but
also treat the pseudo-unknown as the K+1-th class.

Contrastive Learning
Contrastive learning has become a dominant component
in Self-Supervised Learning (SSL) (Duan et al. 2018;
Hendrycks et al. 2019; Jaiswal et al. 2020; Misra and Maaten
2020). The standard SSL methods based on InfoNCE loss
(Oord, Li, and Vinyals 2018), such as SimCLR(Chen et al.
2020b), MOCO(He et al. 2020) and Self-Con(Bae et al.
2023), has already demonstrated outstanding performance.
Further, SupCon(Khosla et al. 2020) extends contrastive
learning to the fully supervised setting.

(Vaze et al. 2021) heuristically discovered that a good
closed-set accuracy always benefits for open set recogni-
tion. Leveraging this viewpoint to the representation learn-
ing, (Xu, Shen, and Zhao 2023) made an initial venture to
apply Supervised Contrastive Learning to OSR task, and
developed ConOSR which utilizes data augmentation and
soft label technologies to representation learning. However,
progress in this paradigm is bottlenecked by the absence of
a contrastive loss specially designed for pseudo-unknowns.

Universum Learning
The initial concept of universum was introduced by (Weston
et al. 2006) as a collection cannot be assigned to any target
classes in task. In recent years, (Zhang and LeCun 2017) ex-
tended this to deep learning. (Nguyen, Morell, and De Baets
2017) introduced a distance metric learning approach that
leverages universum data. (Xiao, Feng, and Liu 2021) tack-
led the challenge of Transductive learning with universum.

The most recent advancements in this field explored the
acquisition of universum through the application of Mixup
(Zhang et al. 2017). (Han, Geng, and Chen 2023) produced
hard negatives in contrastive learning by Mixup-induced

universum. (Zhang, Geng, and Chen 2022) used High-order
Mixup for universum to re-balance the classes in long-tailed
recognition. In spite of its efficiency, a lack of designing a
novel universum suitable for OSR still persists.

Dual Contrastive Learning with Target-Aware
Universum

Preliminaries and Problem Statement
We denote Dtr as a training set consisting n labeled in-
stances {(xi,yi)}ni=1, where yi ∈ {1, ...,K} is the cor-
responding class label, and Ni denotes the number of in-
stances in each class. Additionally, Dtau represents the set of
TAU data derived from Dtr , which contains an equal num-
ber of n instances

{
xi
u,y

i
u

}n
i=1

, where the labels of pseudo-
unknowns yi

u ∈ {K + 1, ...,K +K}.
We employ a two-step training strategy. In the contrastive

learning step, an encoder network E (·) and a projection
network ψ(·) are optimized by the contrastive loss based
on the features of ψ(E (xi)) and ψ(E

(
xi
u

)
). In the clas-

sifier training step, only Dtr is involved in training, and
a classifier f (·) is optimized by the cross entropy loss.
Dte = {t1, ..., tu}ni=1 denotes a test set which contains the
instances drawn from unknown classes.

Target-Aware Universum
Different from existing methods for OSR, we explore the
potential to generate universum as the pseudo-unknown data
through instances of K known classes straight off the shelf.
Mixup. Traditional Mixup generates data by linear interpo-
lating pairs of training instances. Given xi and xj , a pair of
training instances randomly sampled from Dtr , the synthe-
sized instance is defined as (Zhang et al. 2017):

x̃ = λ · xi + (1− λ)xj , (1)

where λ ∈ [0, 1] is sampled from the Beta distribution. How-
ever, it only combines the instance-pairs information of two
images which simply captures the local information result in
generating ambiguous samples. Thus, we introduce a vari-
ant of Mixup, namely Targeted Mixup, to acquire global in-
formation among all classes. The outcome is referred to as
Target-Aware Universum (TAU), which eliminates ambigu-
ous samples to a large extent. As shown in Fig. 3.

Definition 1. Target-Aware Universum. Given a subset
Dsub = {(xk,yk)}KB

k=1 where each instance is randomly
sampled from each of the KB known classes in a batch. For
∀xi ∈ Dsub, its Target-Aware Universum is defined as:

xi
u = λ · xi + (1− λ) · 1

KB − 1

∑KB−1
yj ̸=yi

xj , (2)

where KB is the number of known classes in a batch.
Compared with the traditional Mixup, besides its ability

to eliminate ambiguous samples, the greatest characteristic
of Targeted Mixup is targeted known xi contributes signif-
icantly more information to TAU, whereas that of instances
in the remaining K-1 known classes is averaged out. There-
fore, TAU could be regarded as the high-quality hard neg-
ative (Kalantidis et al. 2020), as there is a great overlap of
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Figure 3: The generated images from mixing digital ”1” and
”2” may belong to digital ”2”, ”4” and ”8” images of known
classes(top). TAU can highlight the targeted known digital
”1” and avoid the ambiguous samples (below).

semantic information between it and its targeted known. We
will discuss why TAU is suitable for K+K in OSR in the
latter experimental results.

Further, a more insightful understanding of the essence of
Target-Aware is that guided by targeted known classes, TAU
is endowed with the concept of independent classes possess-
ing distinct K classes and Ni samples in per class. Con-
sequently, TAU automatically expands the unknown classes
from the previous 1 to K and alleviates the distribution dis-
ruption and the imbalance issues on both class-wise and
instance-wise.

Dual Contrastive Learning Loss
The contrastive learning loss was introduced to pull an an-
chor and its positives closer while the negatives are pushed
apart(Duan et al. 2018). Particularly, SupCon loss introduces
label information into learning. In this framework, given a
training instance xi, the network maps it to a representation
vector, ψ(E (xi)) = zi ∈ RDP , then the contrastive loss is
defined as(Khosla et al. 2020):

Lsup =
∑
i

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑
k ̸=i exp (zi · zk/τ)

, (3)

where P (i) is the set of all positive data in a batch from the
class i, and |P (i)| is its cardinality. τ is the scalar tempera-
ture hyper-parameter.

With the inclusion of label information, SupCon has re-
sulted in a remarkable improvement in the performance of
discrimination. However, given the absence of a dedicated
contrastive learning loss designed for unlabeled data, it hin-
ders the comprehensive of unknowns’ representation, which
unfairly contrasts to unknowns. Thus, we propose an opti-
mized version, namely Dual Contrastive (DC) loss, which
inherently adapts TAU classes to the same contrastive form
of known classes.

The DC loss is composed of two components. In the first
part, known classes act as anchors:

Lk =
∑
i∈Dtr

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

k ̸=i exp (zi · zk/τ) + U
,

(4)

where U =
∑

xi
u∈U(i) exp (zi · ui/τ), U(i) ∈ Dtau rep-

resents the set of TAU relative to i-th targeted known class,
and ψ(E

(
xi
u

)
) = ui ∈ RDP .

The objective of Lk is to improve the discrimination be-
tween the targeted known class and other known classes as
well as its TAU class. Each targeted known class acts as an
anchor, minimizing the intra-class distance between posi-
tively labeled classes while simultaneously maximizing the
inter-class margins from negatively labeled classes and its
TAU class.

From the insights provided before, we also hope to treat
TAU as fairly as known data, allowing them to enhance dis-
criminability through the contrastive learning framework.
Then the second part for TAU is defined as:

Lu =
∑

i∈Dtau

−1

|U(i)|
∑

p∈U(i)

log
exp (ui · up/τ)∑

k ̸=i exp (ui · uk/τ) +K
,

(5)

where K =
∑

xi∈P (i) exp (ui · zi/τ), P (i) ∈ Dtr is the
set of data of the targeted known class relative to xi

u and
U(i) is the set of all positive data belongs to xi

u.
Lu, as the dual form of Lk, differs in the following as-

pects: (1) anchors are replaced by TAU classes; (2)positively
labeled classes are replaced by TAU classes, which share the
same label with the anchor xiu, boosting a compressed intra-
class space among them; (3) negatively labeled classes are
replaced by TAU classes with different labels, increasing the
inter-class margins; (4) meanwhile, the inter-class distance
between xi

u and its targeted known class xi is enlarged.
Finally, the loss in the contrastive learning step is a com-

bination:

L = Lk + γLu, (6)

where γ is a balancing coefficient. L can be regarded as the
comprehensive results of fairly contrasting all instances ir-
respective of known or TAU with their negatives.

Theoretical Analysis
In this subsection, we conduct theoretical analyses from
Fairly Contrast and Hard Negative Mining perspectives.
Since Lk and Lu are dual forms of each other, these anal-
yses are similar for both, for simplicity, we consider the Lk

as an example. The details can be found in Appendix A1.
The gradient for Lk with respect to zi can be depicted as:

∂Lk

∂zi
= −1

τ

(
zp +

1

S

∑
k ̸=iCk · zk +

1

S

∑
xi

u∈U(i)Oi · ui

)
= −1

τ
(zp +GNK +GTAU ) , (7)

where Ck = exp (zi · zk/τ), Oi = exp (zi · ui/τ) and
S =

∑
k ̸=i Ck +

∑
xi

u∈U(i)Oi. It can be divided into three
parts involved in the gradient update process: the represen-
tation of positively labeled data, the gradient of negatively
labeled known data and the gradient of TAU data.

If TAU is omitted, Lk reverts to Lsup, and the gradient for
Lsup with respect to zi will be written as:

∂Lsup

∂zi
= −1

τ

(
zp +

∑
k ̸=iCk · zk∑

k ̸=i Ck

)
, (8)
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Dataset MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

Softmax 97.8 88.6 67.7 81.6 80.5 57.7
OpenMax 98.1 89.4 69.5 81.7 79.6 57.6

G-OpenMax 98.4 89.6 67.5 82.7 81.9 58.0
OSRCI 98.9 91.0 69.9 83.8 82.7 58.6
CPN 99.0 92.6 82.8 88.1 87.9 63.9

RPL++ 99.3 95.1 86.1 85.6 85.0 70.2
GFROSR - 93.5 80.7 92.8 92.6 60.8
PROSER - 94.3 89.1 96.0 95.3 69.3

OpenHybrid 99.5 94.7 95.0 96.2 95.5 79.3
ARPL 99.7 96.7 91.0 97.1 95.1 78.2

Class-inclusion - 95.6 94.8 96.1 95.7 78.5
PMAL 99.5 96.3 94.6 96.0 94.3 81.8

All-U-Need(MLS) 99.3 97.1 93.6 97.9 96.5 83.0
Vanilla SupCon 99.7 98.8 93.7 97.9 97.0 79.6

ConOSR 99.7 99.1 94.2 98.1 97.3 80.9

DCTAU (w/o DC) 95.6 94.9 92.3 95.1 93.7 71.0
DCTAU 99.7 99.2 95.6 98.5 98.1 83.6

Table 1: Open Set recognition results in terms of the AUROC(%). DCTAU (w/o DC) means L only contains Lk. ”-” means the
original paper does not report the corresponding result. Results are averaged among five randomized trials.

Fairly Contrast. Compared with ∂Lsup/∂zi, the differ-
ences in ∂Lk/∂zi primarily reflected in: (1) the denomina-
tor of GNK contains

∑
xi

u∈U(i)Oi, causing the weight of
negatively labeled known data decreases; (2) GTAU added
increases the weight of TAU explicitly. In a nutshell, DC
loss can inherently adjust the weights between known data
and TAU in the gradient update process to pay more atten-
tion to unknowns, achieving fairly contrast in OSR.
Hard Negative Mining. Within Eq. (7), our DC loss can
adaptively adjust the weights of GNK and GTAU in which
all negatives exist. This adjustment is based on whether the
hard negatives attributed to GNK or GTAU , which reflects
the inner ability of hard negative mining. We further analyze
this ability across three situations, and more details will be
presented in Appendix A.

Rejecting Unknowns
In this step, a light-weight classifier f (·) is trained by mini-
mizing the cross entropy loss.

Given a training instance (xi,yi), a conventional Soft-
max classifier outputs the posterior probability of xi belong-
ing to the k-th known class by:

ŷi = P (yi = k|xi) =
exp(fk(E(xi)))∑K
c=1 exp(fc(E(xi)))

, (9)

The f (·) is optimized by minimizing the cross entropy
loss, Lce = −

∑
i yi log ŷi. Followed the (Xu, Shen, and

Zhao 2023), the rejection thresholds percentile εi are esti-
mated for detecting unknown data.

During the test, the max posterior probability as confi-
dence score, maxk∈{1,··· ,K} P (y = k|ti), and then a test

1All technical appendices: https://github.com/SuperL7/DCTAU

instance ti can be estimated as one of the known classes or
recognized as the unknown data by:

ŷ =

{
argmaxk∈{1,··· ,K} P (y = k|ti), if conf ≥ ε,

unknown class, otherwise.
(10)

Experiments
Experiments for Open Set Recognition
Datasets. Following the protocol defined in (Neal et al.
2018) and the dataset splits with (Chen et al. 2021; Xu, Shen,
and Zhao 2023), a summary of 6 benchmark datasets is pro-
vided:

• MNIST,SVHN,CIFAR10. MNIST(Lake, Salakhutdi-
nov, and Tenenbaum 2015), SVHN(Netzer et al. 2011)
and CIFAR10(Krizhevsky, Hinton et al. 2009) all consist
10 of classes, of which 6 classes are randomly selected
as known classes and the other 4 classes as unknown.

• CIFAR+10,CIFAR+50. In this group of experiments,
4 classes are selected from CIFAR10 as known classes
for training, and 10\50 classes sampled from CI-
FAR100(Krizhevsky, Hinton et al. 2009) as unknown.

• TinyImageNet. TinyImageNet is a subset derived from
ImageNet(Russakovsky et al. 2015) consisting of 200
classes. 20 known classes and the left 180 unknown
classes are randomly sampled for evaluation.

Implementations. In the contrastive learning step, the fea-
ture encoder backbone is the same with (Neal et al. 2018),
and an MLP with two fully connected layers is employed
as the projection network. In the classifier training step, the
network is also an MLP with a 128-node fully connected
layer. Followed with (Xu, Shen, and Zhao 2023), the train-
ing epochs of these two steps are 600 and 20 respectively.
More details will be found in Appendix B.
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Dataset MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

Softmax 99.2 92.8 83.8 90.9 88.5 60.8
GCPL 99.1 93.4 84.3 91.0 88.3 59.3
RPL 99.4 93.6 85.2 91.8 89.6 53.2

ARPL 99.4 94.0 86.6 93.5 91.6 62.3
ARPL+CS 99.5 94.3 87.9 94.7 92.9 65.9

Class-inclusion - 85.4 87.0 88.1 86.5 49.3

DCTAU 99.6 96.2 93.9 97.2 97.1 77.6

Table 2: The open set classification rate OSCR(%) curve results of open set recognition. ”-” means the original paper does not
report the corresponding result. Results are averaged among five randomized trials.

Evaluation Metrics. Area Under the Receiver Operating
Characteristic (AUROC) curve(Fawcett 2006) is used for de-
tecting unknown data from test set. Open Set Classification
Rate (OSCR) (Dhamija, Günther, and Boult 2018; Wang
et al. 2022) is employed for evaluating correct classifications
of known classes. Details will be shown in Appendix B.
Results Comparison. The baselines compared with DC-
TAU includes Softmax Thresholding(Hendrycks and Gim-
pel 2016), OpenMax(Bendale and Boult 2016), GOpen-
Max(Ge et al. 2017), OSRCI(Neal et al. 2018), CPN(Yang
et al. 2020), C2AE(Oza and Patel 2019), RPL++(Chen
et al. 2020a), GFROSR(Perera et al. 2020), PROSER(Zhou,
Ye, and Zhan 2021), OpenHybrid(Zhang et al. 2020),
ARPL(Chen et al. 2021), Class-inclusion(Cho and Choo
2022), PMAL(Lu et al. 2022), All-U-Need(MLS)(Vaze et al.
2021), and ConOSR(Xu, Shen, and Zhao 2023).

We provide the AUROC performance of different meth-
ods in Table 1. DCTAU shows a significant superiority
in performance over almost all the methods. Compared to
the method employing the contrastive framework, our DC-
TAU outperforms the recently proposed ConOSR across all
datasets, in particular, on the most challenging dataset Tiny-
ImageNet by a margin of 2.7%.

The results of OSCR are shown in Table 2. DCTAU shows
a remarkable performance improvement on all datasets. Sur-
prisingly, compared to the second best, the OSCR of DC-
TAU increased by 11.7% on TinyImageNet.

Experiments for Intrinsic Mechanism of DCTAU
In this group of experiments, we follow the protocol in
(Yoshihashi et al. 2019; Zhou, Ye, and Zhan 2021) to
explore the intrinsic mechanism for the efficacy of DC-
TAU through Out-of-distribution detection(OOD). Here, all
training classes of the original dataset are used as In-
distribution(ID) data. While instances from another dataset
are added to the test set as the OOD data.
Datasets.
• ID:MNIST/OOD:Omniglot,Noise,MNIST-Noise. Om-

niglot(Lake, Salakhutdinov, and Tenenbaum 2015) is a
dataset of hand-written alphabet characters. Noise is a set
of images synthesized by sampling each pixel value from
a uniform distribution on [0, 1]. MNIST-Noise is also a
synthesized set by superimposing MNIST’s test images
on Noise. The number of OOD data is 10,000, equal to

Dataset Omniglot MNIST-Noise Noise

Softmax 59.5 64.1 82.9
OpenMax 68.0 72.0 82.6
CROSR 79.3 82.7 82.6
PRESER 86.2 87.4 88.2
ConSOR 95.4 98.7 98.8

DCTAU 96.5 99.3 99.3

Table 3: Out-of-Distribution Detection on MNIST with var-
ious datasets added to the test set as unknowns. We report
macro F1-scores.

Dataset ImageNet ImageNet LSUN LSUN
(Crop) (Resize) (Crop) (Resize)

Softmax 63.9 65.3 64.2 64.7
OpenMax 66.0 68.4 65.7 66.8

OSRCI 63.6 63.5 65.0 64.8
CROSR 72.1 73.5 72.0 74.9

GFROSR 75.7 79.2 75.1 80.5
PRESER 84.9 82.4 86.7 85.6
ConOSR 89.1 84.3 91.2 88.1

DCTAU 94.7 93.2 95.1 94.5

Table 4: Out-of-Distribution Detection on CIFAR10 with
various datasets added to the test set as unknowns. We re-
port macro F1-scores.

the test data of MNIST.
• ID:CIFAR10/OOD:ImageNet,LSUN. The OOD data

is sampled from ImageNet and LSUN(Yu et al. 2015).
Since the image size of ImageNet and LSUN is differ-
ent from CIFAR10, we use two different ways to process
them. CIFAR10, ImageNet and LSUN all have 10,000
images of their test set. More details are in Appendix C.

Evaluation Metrics. The macro-averaged F1-scores over all
ID and OOD class is used to measure the performance.
Results Comparison. The results of the ID:MNIST setting
are reported in Table 3. DCTAU significantly outperforms
other methods. It achieves 99.3% for detecting noisy OOD
images, while 96.5% in Omniglot dataset for detecting se-
mantic OOD images. The results of the ID:CIFAR10 setting
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Figure 4: (a) AUROC and OSCR of DCTAU and DC-
TAU(w/o DC) with varying epochs. The experiments are
conducted on CIFAR10; (b) AUROC of DCTAU with vary-
ing augmentation techniques. The experiments are con-
ducted on CIFAR10 and TinyImageNet.

are reported in Table 4. We can see DCTAU also handles
these scenarios with the best performance. Especially, for
the ImageNet-Resize and LSUN-Resize datasets, DCTAU
excels more than 8.9% and 6.4%. Further elaborations about
the intrinsic mechanism for the efficacy of DCTAU from
two aspects based on Familiarity Hypothesis (Dietterich and
Guyer 2022) can be found in Appendix C.

In summary, the contrastive learning framework rein-
forces the grasp of learning the most distinctive informa-
tion of features among known classes. And our DCTAU en-
hances this ability, since TAU inherently introduces the dis-
tinctiveness to pseudo-unknowns (i.e., regards them as K
independent classes) and DC loss specifically enhances the
contrastive learning for more distinctive information of fea-
tures of pseudo-unknowns.

Detailed Analysis
Why Target-Aware Universum is Effective. In this subsec-
tion, we perform experiments to shed light on the reasons
behind the performance boost attained by employing TAU
data as the pseudo-unknowns in the K+K strategy.

We conduct a group of experiments on known classes
from CIFAR10, to compare the AUROC and OSCR of TAU
data with other images including Noise-Gaussian, Noise-
Uniform, Natural Images and images generated by tradi-
tional Mixup serving as the pseudo-unknown data. The
Noise-Gaussian and Noise-Uniform images are the pure
noisy images synthesized from a Gaussian distribution and
a uniform distribution, respectively. The SVHN dataset is
used as the Natural Images and traditional Mixup refers to
the images generated based on Eq. (1). The results are shown
in Table 5.

We interpret the results from the perspective of Hard
negative in contrastive learning. The hard negatives are
crucial in learning highly transferable visual representa-
tions(Kalantidis et al. 2020). The main reason of TAU can be
regarded as high-quality hard negatives is that while main-
taining better quality of semantic information about their tar-
geted known class, TAU data also possess a certain degree
of visual ambiguity. In contrast, Noise-Gaussian and Noise-
Uniform guarantee visual ambiguity but are severely lim-
ited in the quality of semantic information. Despite the Nat-

Method AUROC OSCR

Noise-Gaussian 83.2 77.1
Noise-Uniform 85.1 81.4
Natural Images 91.1 88.0
Mixup Images 93.8 92.2

TAU 95.6 93.9

Table 5: Different data as the Pseudo-unknown employed in
the K+K strategy.

λ 0.1 0.3 0.5 0.7 0.9

AUROC 93.5 94.2 95.6 95.1 95.0

Table 6: AUROC under different λ for TAU.

ural Images can ensure quality, its substantial semantic shift
makes them unsuitable as high-quality hard negatives. The
decrease in performance of Plain Mixup images is primarily
attributed to it may generate ambiguous samples.
Effect of Dual Contrastive loss. Table 1 presents the results
of the performance of DCTAU without Lu which solely em-
phasizes the discriminative nature of known classes. There
is a significant decline of DCTAU (w/o DC) compared to the
complete DCTAU, and it even lags behind other baselines.
The main reason is the TAU nears to the targeted known
class in the feature space. Without a specifically designed
contrastive loss to constrain them, they may be easily con-
fused with targeted known classes. This validates the impor-
tance of DC loss for our proposed DCTAU framework, and
highlights our main viewpoint, that is to handle both known
and unknown classes equally in the feature space.
Ablation of Hyper-parameters. (1)About Contrastive
Learning. We modify epochs and the augmentation tech-
niques, both of which are sensitive to contrastive learning.
Fig. 4(a) showcases the influence of epochs on CIFAR10.
The augmentation technique used in ConOSR is RandAug-
ment(Cubuk et al. 2020). To investigate the impact of differ-
ent augmentation techniques, we conduct a series of experi-
ments on CIFAR10 and TinyImageNet datasets. The results
are shown in Fig. 4(b). (2) λ for TAU. For Targeted Mixup
weight λ, we vary it from 0.1 to 0.9 and 0.5 achieves the
best performance. (3)Threshold ϵ and Visualization. De-
tails about both can be found in Appendix D.

Conclusion
This paper analyzes the drawbacks of the K+1 stereotype,
and first introduces a K+K strategy that emphasizes the
comprehension of unknowns during training. Based on this
guidance, we propose a novel framework involving two
components to achieve all beings are equal in OSR. And ex-
tensive experiments on various benchmarks show ours out-
performs the state-of-the-art approaches. In future work, we
will further explore approaches following theK+K strategy
and establish the relevant theoretical foundation.
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