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Abstract
Overparameterization often leads to benign overfitting, where
deep neural networks can be trained to overfit the training
data but still generalize well on unseen data. However, it lacks
a generalized asymptotic framework for nonlinear regres-
sions and connections to conventional complexity notions. In
this paper, we propose a generalized high-dimensional analy-
sis for nonlinear regression models, including various non-
linear feature mapping methods and subsampling. Specifi-
cally, we first provide an implicit regularization parameter
and asymptotic equivalents related to a classical complex-
ity notion, i.e., effective dimension. We then present a high-
dimensional analysis for nonlinear ridge regression and ex-
tend it to ridgeless regression in the under-parameterized and
over-parameterized regimes, respectively. We find that the
limiting risks decrease with the effective dimension. Moti-
vated by these theoretical findings, we propose an algorithm,
namely RFRed, to improve generalization ability. Finally, we
validate our theoretical findings and the proposed algorithm
through several experiments.

Introduction
In conventional machine learning (Vapnik 1999), an explicit
regularization term should be added to the learning objective
to avoid overfitting, where the model fits the training data
well but generalizes poorly on unseen data. From the per-
spective of statistical learning, the regularization parameter
λ balances the bias and variance (Li, Liu, and Wang 2023b).
However, recent studies on overparameterized models, in-
cluding neural networks and kernel methods, have shown
that even without explicit regularization, these models of-
ten achieve benign overfitting, interpolating the training
data while still generalizing well (Belkin, Ma, and Mandal
2018; Liang and Rakhlin 2020; Bartlett et al. 2020; Zhang
et al. 2021). Furthermore, the ”double descent” performance
curve has been observed beyond neural networks (Nakki-
ran et al. 2021). Based on random matrix theory, subsequent
works have theoretically analyzed this phenomenon using
high-dimensional asymptotics for various models, includ-
ing linear models (Belkin, Hsu, and Xu 2020; Hastie et al.
2022), random Fourier features (Liao, Couillet, and Ma-
honey 2020; Mei and Montanari 2022; Li, Liu, and Zhang
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2022), neural networks (Ba et al. 2020; Frei, Chatterji, and
Bartlett 2022; Somepalli et al. 2022), sketching (Chen et al.
2023), and random projections (Bach 2023). These studies
have shown that in the under-parameterized regime, there is
a U-shaped performance curve, with models achieving be-
nign overfitting when over-parameterized. Despite the ex-
tensive literature devoted to understanding the double de-
scent phenomenon, there are still several open problems:
1) The lack of a general asymptotic analysis framework for
generalized nonlinear regression models that covers various
models. 2) Existing asymptotic results often remain as self-
consistency equations that are hard to estimate, and there is a
need for a connection to traditional model complexity mea-
sures, such as effective dimension and Rademacher com-
plexity, to aid in understanding. 3) Benign overfitting can be
caused by overparameterization, and subsampling may also
achieve better performance from a dual view.

In this paper, we address these challenges by developing
a generalized high-dimensional analysis framework and an
improved algorithm for nonlinear regression models, thanks
to the asymptotic equivalents involving effective dimen-
sion in (Bach 2023) and the insights from downsampling in
(Chen et al. 2023). We first devise a generalized nonlinear
model that covers linear regression, random features, neu-
ral networks, random projections, and sketching. Next, we
establish the implicit regularization and asymptotic equiv-
alents that are implicitly related to effective dimension in
high-dimensional analysis for generalized nonlinear regres-
sion. Using these tools, we derive asymptotic risks for non-
linear ridge regression and ridgeless regression models. Mo-
tivated by the theoretical finding that the excess risk de-
creases with the effective dimension, we design a random
feature regression model with effective dimension (RFRed)
to minimize the training loss and effective dimension by
jointly optimizing the feature mapping and model parame-
ters. We conduct experiments to explore the impacts of non-
linear feature mappings and subsampling, respectively. We
leave the proofs and more experiments in the appendix1. Our
contributions can be summarized as follows:

• We provide a generalized asymptotic analysis framework
for general nonlinear regression models, where the limit-

1Full version: https://lijian.ac.cn/files/2024/NonlinearHDA.pdf
Code: https://github.com/superlj666/NonlinearHDA
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ing risks are related to the effective dimension rather than
self-consistency equations.

• Motivated by the theoretical findings, we devise a train-
able nonlinear regression algorithm that minimizes the
effective dimension by optimizing the feature mapping,
regularization parameter, and the subsampling matrix.

• We discover interesting byproducts of the asymptotic re-
sults, such as the use of nonlinear feature mapping to
reduce effective dimension and the potential benefits of
subsampling for generalization.

Preliminaries
In the random design setting of linear regression, the covari-
ates x1, · · · , xn ∈ Rd are sampled independently from a
fixed distribution Px such that the covariates are zero mean
E(xi) = 0 and have a covariance matrix Cov(xi) = Σ ∈
Rd×d. We consider the linear model f(x; η) = η⊤x where
η ∈ Rd is the parameter vector. Specifically, the response
yi is determined by yi = η⊤∗ xi + εi, ∀i ∈ [n], with xi and
εi are independent, η∗ is the underlying parameter vector,
E(ε) = 0 and Var(εi) = σ2. The optimal parameter vector
η∗ ∈ Rd satisfies E(y − η⊤∗ x) = minη E(y − η⊤x).

We denote y = (y1, · · · , yn)⊤ ∈ Rn the response vec-
tor, X = (x1, · · · , xn)

⊤ ∈ Rn×d the feature matrix, and
ε ∈ Rn the noise vector. Thus, we have y = Xη∗ + ε. We
also define Σ̂ = 1

nX
⊤X ∈ Rd×d the empirical covariance

matrix, of which the expected counterpart is the population
covariance matrix E(Σ̂) = E( 1nxix

⊤
i ) = Σ.

Linear Ridge Regression
The linear ridge regression aims to solve the minimization
problem:

η̂ = argmin
η∈Rd

{
1

n

n∑
i=1

(
η⊤x− yi

)2
+ λ∥η∥22

}
, (1)

which admits the closed-form solution

η̂ = (Σ̂ + λI)−1Σ̂η∗ + (Σ̂ + λI)−1X
⊤ε

n
. (2)

Generalized Nonlinear Regression Model
Although the ridge linear regression has been well-studied
in the high-dimensional setting (Dobriban and Wager 2018;
Hastie et al. 2022), the linear models are rather simple while
the modern models are usually equipped with nonlinear fea-
ture mappings. In this section, we first introduce a gener-
alized nonlinear feature mapping for ridge regression and
then present subsampling for nonlinear models to reduce the
number of samples.

We consider the nonlinear model f(x; θ) = θ⊤ϕ(x)
where ϕ : Rd → Rp is the nonlinear feature mapping and
θ ∈ Rp is the parameter vector in the feature space Rp.

Assumption 1. (Existence of θ∗ in the feature space) We as-
sume the response yi are generated in the feature space Rp

after the feature mapping ϕ(xi), admitting yi = f(x; θ∗) +
εi where θ∗ ∈ Rp is the ideal estimator in the feature space

and ε ∈ Rn is the noise vector. The label noise ε is inde-
pendent of ϕ(xi) and follows a distribution on R such that
E(εi) = 0 and Var(εi) = σ2. We also assume the norm of
θ∗ is bounded.

The above assumption implies E(y|x) = x⊤θ∗ and was
widely used in the generalization analysis of kernel ridge
regression (Caponnetto and De Vito 2007; Smale and Zhou
2007; Li, Liu, and Wang 2023a, 2024). Therefore, instead of
(1), nonlinear ridge regression aims to solve

θ̂ = argmin
θ∈Rp

{
1

n
∥ϕ(X)θ − y∥22 + λ∥θ∥22

}
, (3)

with the closed-form solution

θ̂ = (Σ̂ϕ + λI)−1Σ̂ϕθ∗ + (Σ̂ϕ + λnI)−1ϕ(X)⊤ε

n
, (4)

where ϕ(X) = [ϕ(x1), · · · , ϕ(xn)]
⊤ ∈ Rn×p is the fea-

ture matrix and Σ̂ϕ = 1
nϕ(X)⊤ϕ(X) ∈ Rp×p is the covari-

ance matrix after the nonlinear feature mappings. We con-
sider some special cases for the nonlinear feature mapping:

• Linear method: ϕ(x) = x.
• Random projection: ϕ(x) = Wx, where W ∈ Rp×d has

sub-Gaussian components with mean zero and unit vari-
ance.

• Random Fourier features (Li, Liu, and Wang 2022):
ϕ(x) =

√
2
p cos(Wx+b), where W = [w1, · · · , wp]

⊤ ∈
Rp×d are sampled from the the Fourier transform of the
kernel and the bias b is uniformly sampled from [0, 2π]p.

• Neural network with a single-hidden layer, e.g. ReLU
ϕ(x) = max{Wx, 0}, and Sigmoid ϕ(x) = 1

1+exp−Wx .

• Deep neural networks: ϕ(x) = ϕL(ϕL−1(· · ·ϕ1(x))),
where L is the depth of the network and the feature map-
pings ϕ1, · · · , ϕL may be different.

Generalized Nonlinear Regression Model with
Subsampling
We consider the subsampling methods for nonlinear ridge
regression with the subsampling feature matrix Sϕ(X) ∈
Rm×p where S ∈ Rm×n is subsampling matrix. Note that
the regression problem are based on subsampled examples

θ̂ = argmin
θ∈Rp

{
1

m
∥Sϕ(X)θ − Sy∥22 + λ∥θ∥22

}
, (5)

where the closed form solution is

θ̂ =
(
Σ̂Sϕ + λI

)−1

Σ̂Sϕθ∗ +
(
Σ̂Sϕ + λI

)−1
ϕ(X)⊤S⊤Sε

m , (6)

where Σ̂Sϕ = 1
mϕ(X)⊤S⊤Sϕ(X) ∈ Rp×p. There are some

special cases for subsampling:

• Full sampling: S = In and m = n, such that Sϕ(X) =
ϕ(X).

• Subset selection: only one 1 and other zeros in each row
of S. For example, [0, 1, 0, · · · , 0] represents to subsam-
ple the second example x2.
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• Sketching: S is the sketching matrix, e.g. Gaussian
sketching requires that the sketching matrix S is gener-
ated from the Gaussian distribution.

When S = In and ϕ(X) = X , we can recover the tradi-
tional linear ridge regression (2) from (6).

Asymptotics for Generalized Nonlinear
Regression

Throughout this paper, we study the behaviors of the out-
of-sample excess risk in the proportional asymptotic limit
where the sample size n, the dimension d, the dimension of
the feature mapping p, and the subsampling size m go to
infinity, i.e. n, d, p,m → ∞, in such a way that p/m → γ ∈
(0,∞). We call γ < 1 the under-parameterized model and
γ > 1 the over-parameterized model.

Assumptions
We use the notations in random features (Rudi and Rosasco
2017) to obtain the population covariance matrix.
Assumption 2 (Continuous and bounded feature mapping).
Assume the feature mapping ϕ : Rd → Rp be continuous in
terms of both the input and hyperparameters in the mapping
and bounded.

Note that the assumption above is satisfied when the ac-
tivation function is continuous and bounded, for example,
random Fourier features (RFF) ϕ(x) =

√
2
p cos(Wx + b)

provides continuous and bounded feature mapping.
Proposition 1. Under Assumption 2, the inputs in X are
sampled i.i.d. from Px, and then the empirical covari-
ance matrix of the feature mapping Σ̂ϕ = 1

pϕ(X)⊤ϕ(X)

converges to a deterministic covariance matrix Σϕ =
E[ϕ(x)ϕ(x)⊤] when p → ∞.

Using the operatorial definitions in random features,
we define the above population covariance matrix Σϕ =
E[ϕ(x)ϕ(x)] ∈ Rp×p, which also apply to neural net-
work. Using the central limit them, the empirical covari-
ance matrix converges to the population covariance ma-
trix Σ̂ = 1

pϕ(X)⊤ϕ(X) = 1
p

∑p
i=1 ϕ(xi)ϕ(xi)

⊤ →
E(ϕ(x)ϕ(x)⊤) = Σϕ when p → ∞.

We modify high-dimensional assumptions in linear re-
gression (Dobriban and Wager 2018; Hastie et al. 2022;
Bach 2023) to nonlinear regression.
Assumption 3 (Covariance condition for nonlinear fea-
ture mapping). Supoose Σϕ is invertible and bounded, and
the eigenvalues of Σϕ are positive and bounded. ϕ(X) =

ZΣ
1/2
ϕ where Z has i.i.d. entries with zero mean, and unit

variance.
The above assumption specifies the covariance struc-

ture for feature mappings, where Z can be standard Gaus-
sain components or Rademacher random variables P (z =
−1) = P (z = 1) = 1/2.
Assumption 4 (Orthogonal subsampling matrix). Suppose
the rows of subsampling matrix is orthogonal, such that
SS⊤ = Im. Meanwhile, S⊤S converges to a deterministic
matrix ΣS .

Remark 1. The above assumption is relatively strict that
cannot be satisfied by i.i.d. sketching matrices. However, this
assumption holds for orthogonal sketching matrix and sub-
set selection since the subsampling matrix S is fixed for the
subset selection without replacement.

Using the above assumptions, we can prove that the sub-
sampled nonlinear feature mappings have a deterministic co-
variance and make the following assumption.
Assumption 5 (Covariance condition for subsampled non-
linear models). The empirical covariance matrix of Σ̂Sϕ =
1
mϕ(X)⊤S⊤Sϕ(X) converges to a deterministic covari-
ance matrix ΣSϕ = Σ

1/2
ϕ Z⊤ΣSZΣ

1/2
ϕ . The spectral dis-

tribution FΣSϕ
of ΣSϕ converges to a limit probability dis-

tribution µ supported on [0,+∞) and Σ is invertible and
bounded in operator norm.

The above assumption implies there is no vanishing
eigenvalues in the limiting µ.

Implicit Regularization and Asymptotic
Equivalents
For any measure G on [0,∞), we define the Stieltjes trans-
form by mG(z) =

∫
1

l−zdG(l), where z ∈ C \ R+. Mean-
while, the companion Stieltjes transform vG is defined by
vG(z) + 1/z = γ(mG(z) + 1/z).

The Stieltjes transform v(z) is the limit of the Stielt-
jes transform of the spectral measure of the kernel ma-

trix v̂(z) = 1
m tr

[(
K̂Sϕ − zI

)−1
]
, where K̂Sϕ =

1
mSϕ(X)ϕ(X)⊤S⊤ ∈ Rm×m. More examples about Stielt-
jes transform refer to (Dobriban and Wager 2018; Dobriban
and Liu 2019; Hastie et al. 2022).

There is an unique positive solution for v(z) in the self-
consistency equation (Bai and Silverstein 2010; Jacot et al.
2020; Bach 2023):

m+mzv(z) = p

∫ +∞

0

σdµ(σ)

1/v(z) + σ
, (7)

where µ is the limit probability distribution of the spectral
measure of ΣSϕ. However, it’s hard to describe the limiting
density for general ΣSϕ.

Setting z = −λ for any λ > 0, we have v̂(−λ) =
1
m tr[(K̂Sϕ + λI)−1], which converges to v(−λ) almost
surely. From Section A.1 in (Bach 2023), using the the self-
consistency equation (7), there holds the asymptotic equiv-
alence for the effective dimension (also called degree of
freedom) for λ > 0, d̂f1(λ) = tr

(
Σ̂Sϕ(Σ̂Sϕ + λI)−1

)
∼

df1(κ) = tr
(
ΣSϕ(ΣSϕ + κI)−1

)
, where κ = 1

v(−λ) is the
implicit regularization parameter. Here, we denote a ∼ b
as the asymptotic equivalence, such that the ratio a/b tends
to one when n, d, p,m → +∞. Note that, when λ = 0, κ
may not be zero and leads to implicit regularization in the
over-parameterized regime γ > 1.

Using the definition of µ in Assumption 5, we have
1
pdf1(κ) = 1

p

∑p
i=1

σi

σi+κ →
∫ +∞
0

σdµ(σ)
σ+κ , which is de-

creasing in κ and converges to one when κ = 0, while
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df1(0) = rank(ΣSϕ). Therefore, we have df1

(
1

v(z)

)
→

p
∫ +∞
0

σdµ(σ)
1/v(z)+σ when κ = 1

v(z) . Then, using z = −λ and
κ = 1

v(−λ) , we rewrite (7) as

λ ∼ κ

(
1− 1

m
df1(κ)

)
. (8)

Note that, the implicit regularization parameter κ =
1

v(−λ) ∈ R+, which is the limit of 1/tr[(Sϕ(X)ϕ(X)⊤S⊤ +

mλI)−1]. Since df1(κ) is decreasing in κ, we know that λ
and γ is positive correlated.
Remark 2 (Implicit regularization). We consider the ridge-
less settings when λ → 0 in terms of γ. 1) Underparameter-
ization (γ < 1): Since df1(κ) ≤ p and (1 − 1

mdf1(κ)) > 0
from (8), we have κ = 0 when λ = 0. Meanwhile, ΣSϕ

is invertible from Assumption 5, such that df1(κ) = p and
λ ∼ κ(1 − γ) when λ goes to zero. 2) Overparameteriza-
tion (γ > 1): If κ = 0 when λ = 0, from (8) we have
λ ∼ κ(1−γ) < 0, violating the fact λ > 0. Therefore, when
λ → 0+, we have κ > 0 and df1(κ) → m+. There is an
implicit regularization parameter κ > 0 with df1(κ) = m
for the ridgeless regression λ = 0.

Bach (Bach 2023) provided asymptotic equivalents for
spectral functions of the empirical covariance operator,
which established the relations between spectral functions
and expected effective dimensions. Following the asymp-
totic equivalents in (Bach 2023), we provide asymptotic
equivalents for spectral functions of nonlinear regression
models.
Proposition 2. Under Assumptions 2 - 5, the following
asymptotic equivalents holds:

tr
[
ΣSϕ(Σ̂Sϕ + λI)−1

]
∼ κ

λ
df1(κ), (9)

tr
[
ΣSϕ(Σ̂Sϕ + λI)−2

]
(10)

∼ κ2

λ2
tr
[
ΣSϕ(ΣSϕ + κI)−2

]
· m

m− df2(κ)
,

θ⊤∗ (Σ̂Sϕ + λI)−1ΣSϕ(Σ̂Sϕ + λI)−1θ∗ (11)

∼ κ2

λ2
θ⊤∗ (ΣSϕ + κI)−2ΣSϕθ∗ ·

m

m− df2(κ)
.

where df1(κ) = tr
(
ΣSϕ(ΣSϕ + κI)−1

)
and df2(κ) =

tr
(
Σ2

Sϕ(ΣSϕ + κI)−2
)

.

Asymptotic Analysis of Ridge Regression
Let M be a self-adjoint positive semidefinite matrix and
the vector norm ∥v∥2M := v⊤Mv. In the fixed design set-
ting, the covariates x1, · · · , xn are assumed deterministic
and the expected excess risk measures the ”in-sample” error
Eε

[
∥θ̂ − θ∗∥2Σ̂Sϕ

]
defined by Eε

[
1
m∥Sϕ(X)(θ̂ − θ∗)∥22

]
.

In contrast, the random design setting assumed the covari-
ates to be sampled i.i.d. with the covariance matrix ΣSϕ. We
can obtain the excess risk for the random design setting with
Σ̂Sϕ replaced by ΣSϕ, i.e. Eε

[
∥θ̂ − θ∗∥2ΣSϕ

]
, to measure

the ”out-of-sample” error. We only provide main results in
this section, while leaving the proofs and comparison with
related work in the appendix.

We recover the bias-variance decomposition for the non-
linear regression with subsampling (6).

Lemma 1 (Bias-variance decomposition). Under Assump-
tions 4, the excess risk of the nonlinear ridge regression with
subsampling (6) exhibits the following bias-variance decom-
position

Eε

[∥∥∥θ̂ − θ∗

∥∥∥2
ΣSϕ

]
= Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
︸ ︷︷ ︸

Variance

+
∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ︸ ︷︷ ︸

(Bias)2

,

where

Variance =
σ2

m
tr
[
(Σ̂Sϕ + λI)−1Σ̂Sϕ(Σ̂Sϕ + λI)−1ΣSϕ

]
,

(Bias)2 = λ2θ⊤∗ (Σ̂Sϕ + λI)−1ΣSϕ(Σ̂Sϕ + λI)−1θ∗.

Note that, in the proof of the variance term, there is a
sketched covariance ϕ(X)⊤S⊤SS⊤Sϕ(X)

m , which is difficult
to estimate by effective dimension. Dobriban et al. (Do-
briban and Liu 2019) utilized the orthogonal invariance of
Gaussian matrices and properties of Wishart matrices to pro-
vide asymptotic limit for the i.i.d. sketched covariance ma-
trix. However, these proof techniques only applied to the
under-parameterized regime n ≥ p and ignored the over-
parameterized regime. Recent work used random matrix the-
ory tools for estimating the limiting variance and the results
are with self-consistent equations, which is hard to be esti-
mated and related to the effective dimension.

Theorem 1 (Asymptotic risk for ridge regression). Under
Assumptions 2 - 5, the nonlinear ridge regression with sub-
sampling estimator in (6) admits the following limiting vari-
ance and bias:

Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
∼ σ2 df2(κ)

m− df2(κ)
,∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ

∼ mκ2θ⊤∗ (ΣSϕ + κI)−2ΣSϕθ∗
m− df2(κ)

.

(12)

From (12), we find that both the variance and bias terms
are increasing for larger df2(κ) and the excess risk explodes
when df2(κ) → m.

Remark 3. The value of df2(κ) is influenced by three fac-
tors: 1) The explicit regularization parameter λ: According
to the self-consistency equation in (8), κ is positively corre-
lated with λ. In (Bach 2023), it is suggested that choosing
an appropriate λ can ensure df2(κ) ≪ m to prevent risk ex-
plosion. 2) The feature mapping: By considering the covari-
ance on the feature mapping and subsampling of the inputs
Sϕ(X) instead of the primal inputs X , the value of df2(κ)
still depends on the choice of the feature mapping. Using a
suitable feature mapping with hyperparameters or trainable
feature mapping can further decrease df2(κ) and improve
generalization performance. This explains why ridge regres-
sion models employing nonlinear feature mappings such as
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kernel ridge regression (KRR), random features, and neu-
ral networks outperform linear regression. 3) The subsam-
pling matrix: The value of df2(κ) is also affected by the sub-
sampling matrix. By employing an appropriate subsampling
matrix, even through downsampling, it is possible to reduce
df2(κ).

Asymptotic Analysis of Ridgeless Regression
We consider the limit when λ = 0 where the ridge regres-
sion estimator (6) becomes a minimum ℓ2-norm (ridgeless)
estimator θ̂ = θ∗ + Σ̂−1

Sϕ
ϕ(X)⊤S⊤Sε

m .
We first consider the under-parameterized regime γ < 1

where κ = 0 when λ = 0 as discussed in Remark 2. Since
Σ̂Sϕ is invertible, we have df2(κ) = rank(Σ̂Sϕ) = p. Sub-
stituting κ = 0 and df2(κ) = p to (12), we obtain the fol-
lowing results.
Corollary 1 (Under-parameterized regime). Under As-
sumptions 2 - 5, if λ = 0 and γ < 1, the nonlinear ridgeless
regression with subsampling estimator in (6) admits the fol-
lowing limiting variance and bias:

Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
∼ σ2 p

m−p ,
∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ

= 0.

In above results, we recover the classical results in The-
orem 1 of (Hastie et al. 2022) for underparameterization.
When γ → 1, i.e. p → m, the variance term explodes. Note
that, since we assume θ∗ ∈ Rp in Assumption 1 and re-
sponses are generated by θ⊤∗ ϕ(x) in the feature space, the
variance term is zero and the risk is increasing in p, i.e. there
is no U-shape excess risk in the under-parameterized regime.
However, as shown in Proposition 4 of (Jacot et al. 2020;
Bach 2023), if we assume θ∗ ∈ Rd in the input space and
the feature mapping ϕ(x) = W⊤x where W ∈ Rd×p, we
can obtain a nonzero bias term that is decreasing in p and
observe an U-shape excess risk.

We then consider the over-parameterized regime γ > 1
where κ is defined by df1(κ) = m from Remark 2 and
df2(κ) ≤ df1(κ) = m.
Corollary 2 (Over-parameterized regime). Under Assump-
tions 2 - 5, if λ = 0 and γ > 1, with κ0 defined by
df1(κ0) = m the nonlinear ridgeless regression with sub-
sampling estimator in (6) admits the following limiting vari-
ance and bias:

Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
∼ σ2 df2(κ0)

m− df2(κ0)
,∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ

=
mκ2θ⊤∗ (ΣSϕ + κI)−2ΣSϕθ∗

m− df2(κ0)
.

(13)

The excess risk in over-parameterized regime depends on
the differences between two effective dimensions df1(κ0)−
df2(κ0). If df2(κ0) ≪ df1(κ0), the variance term tends to
zero and the bias term tends to κ2θ⊤∗ (ΣSϕ + κI)−2ΣSϕθ∗
when m → ∞. If df2(κ0) = rmdf1(κ0), there is catas-
trophic overffitting where both the variance and bias terms
explode. In other situations, these two effective dimensions
are constants away from each other, and there is no catas-
trophic overffitting but the variance term is a constant.

Since κ0 ∼ 1
tr((Sϕ(X)ϕ(X)⊤S⊤)−1)

and df2(κ0) is decreas-
ing in κ0, we can optimize Sϕ(X) to increase κ0 and reduce
df2(κ0) at the same time.

Trainable Nonlinear Regression Model
From Theorem 1, we notice that both the limiting variance
and bias are increasing in df2(κ), and thus we lower the ex-
cess risk by reducing the effective dimension df2(κ). How-
ever, df2(κ) is hard to compute and thus we use the empiri-
cal effective dimension d̂f2(λ) instead. That coincides with
reducing d̂f2(λ) can improve the fixed design risk Eε[∥θ̂ −
θ∗∥2Σ̂Sϕ

] = λ2tr[θ∗θ
⊤(Σ̂Sϕ+λI)−1Σ̂Sϕ]+

σ2

n d̂f2(λ). There-

fore, smaller d̂f2(λ) can lead to better performance. To ob-
tain the smallest d̂f2(λ), we devise a generalized nonlinear
regression model with a bi-level problem

min
θ

1

n
∥Sϕ(X)θ − Sy∥22 + λ∥θ∥22

s.t. {λ, ϕ, S} = argmin
λ,ϕ,S

d̂f2(λ).
(14)

The value of df2(κ) depends on λ, the feature mapping
ϕ, and the subsampling matrix S, as discussed in Remark
3. To solve (14), we alternate between optimizing the model
parameter θ and the hyperparameters λ, ϕ, S: 1)With fixed
hyperparameters λ, ϕ, S, the algorithm trains the nonlinear
model θ. 2) With a fixed nonlinear estimator θ, the algorithm
optimizes the hyperparameters λ, ϕ, S.

To compute d̂f2(λ), the computational complexity is typi-
cally impractical for the over-parameterized regime (p > m)
at O(p3 +mp2) time. For the under-parameterized regime,
an alternative form is provided as

d̂f2(λ) =tr
(
X̃⊤(X̃X̃⊤ + λmI)−1X̃

X̃⊤(X̃X̃⊤ + λmI)−1X̃
)
,

(15)

where X̃ = Sϕ(X). The time complexity for the above form
is O(p2n) since p > n. To accelerate the computational effi-
ciency, we only compute d̂f2(λ) for every α-iterations rather
each iteration, where α ∈ N+.

Example: Random Feature Regression with
Effective Dimension (RFRed)
From (14), there are too many hyperparamters to optimize
and the compute of (15) is still very time-consuming. Based
on random Fourier features (Rahimi and Recht 2007), we
devise Random Feature Regression model with Effective Di-
mension (RFRed) to solve (14) with the feature mapping

ϕ(x) =

√
2

p
cos(W⊤x+ b), (16)

where the frequency matrix W = [w1, · · · , wp] ∈ Rd×p

composed p vectors drawn i.i.d. from a Gaussian distribution
N (0, 1

σ2 I) ∈ Rd. The phase vectors b = [b1, · · · , bp] ∈ Rp

are drawn uniformly from [0, 2π].
To improve the computational efficiency, we tune hyper-

parameters λ, S before the training and optimize the feature
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Figure 1: Testing error, testing loss, and effective dimension d̂f2(κ̂) versus the increase of the feature dimension p.
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Figure 2: Testing error, testing loss, and effective dimension d̂f2(κ̂) versus the increase of the subsampling size m.

mapping ϕ during the training. To accelerate the solve of
(14), we optimize θ and W jointly by minimize the the fol-
lowing objective

L(θ; W ) =
1

n
∥Sϕ(X)θ−Sy∥22+λ∥θ∥22+β d̂f2(λ), (17)

where ϕ : Rd → Rp is defined in (16), d̂f2(λ) is defined
in (15), λ = 0 for ridgeless regression, and β is a hyperpa-
rameter to balance the effect between squared loss and the
effective dimension.

Complexity. Using batch stochastic gradient method, we
have ∇θL = 1

nX̃
⊤
b (X̃bθ − ỹb) where {X̃b ∈ Rb×p, ỹb ∈

Rb} is a batch of {Sϕ(X), Sy} with the batch size b. We
also use the batch data to approximate d̂f2(λ) where X̃ in
(15) is replaced by X̃b. The compute of Sϕ(X) consumes
O(mnp + ndp). With T iterations, the update of θ takes
O(pbT ) time, the update of W consumes O(pb2T ), and the
compute of d̂f2(λ) requires O(p

2nT
nα ).

Experiments
We utilize the random Fourier feature, as defined in equation
(16), to provide an approximation of the Gaussian kernel
K(x,x′) = exp(−σ2∥x − x′∥2/2). It is important to note
that the random Fourier features, specified in equation (16),
are associated with the frequency matrix W ∼ N (0, σ2).
Our implementation is based on PyTorch, and we fine-tune

the hyperparameters through a grid search approach, ex-
ploring values for σ2 in the range of {0.01, · · · , 1000} and
λ ∈ {0.1, · · · , 10−5}. We leave more experiments in the
appendix, including the impact of the trainable feature map-
ping and the comparison experiments.

Impact of the Dimension of Nonlinear Regression

We fix n = 100, S = In,m = n and change the ran-
dom features dimension p ∈ [10, 400]. The training ex-
amples n = 100 are randomly drawn from the MNIST
dataset (LeCun et al. 1998). We set the same hyperparameter
σ2 = 0.1. We estimate the implicit regularization parame-
ter κ ∼ κ̂ = 1/tr[(ϕ(X)ϕ(X)⊤ + λnI)−1] and use d̂f2(κ̂)
to approximate the key quantity df2(κ). The results are re-
ported in Figure 1, which illustrated: 1) Mild regularization
(λ = 10−2 and λ = 10−4) exhibits double descent phe-
nomena, while stronger regularization restricts df2(κ) and
eliminates double descent. In the underparameterized set-
ting (γ < 1), test errors initially decrease due to reduced
bias, but increase later as variance dominates. When γ = 1,
the excess risk explodes due to a small m − df2(κ) (Theo-
rem 1). In the overparameterized setting (γ > 1), test errors
decrease again as df2(κ) decreases. 2) Ridgeless regression
experiences exploding loss in the overparameterized regime,
while ridge regression losses decrease with p due to numer-
ical issues with matrix inversion when rank(Σ̂Sϕ) ≪ p. 3)
Increasing p leads to a larger κ̂ approaching λ, and κ̂0 is
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Figure 3: The testing error, testing loss, and effective dimension d̂f2(κ) versus the increase of the ROS size.
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Figure 4: Testing error, testing loss, and effective dimension d̂f2(κ) w.r.t. different values of λ.

similar to κ̂ with smaller λ when λ = 0. Smaller df2(κ) and
appropriate regularization yield better generalization.

Impact of the Subsampling Size
We fix m = 1000, p = 800 and vary the subsampling size
m ∈ [640, 1000]. We directly use subset selection matrix in
this experiment. Using the same hyperparameters and per-
formance indicators, we report the results in Figure 2. We
find that: 1) Downsampling does not always hurt the gener-
alization ability, for example, the test error and square loss
of ridge regression with λ = 10−16 decreases in the over-
parameterized regime γ > 1 where m < p < n. 2) The
square loss and test error of ridgeless regression explodes
after γ > 1. Meanwhile, nonlinear models with larger regu-
larization parameters lose generalization ability slowly, such
that one can improve efficiency by sacrificing some accura-
cies. 3) Subsampling size has little influence on the implicit
regularization. Although the effective dimension d̂f2(λ) de-
crease when γ > 1 for λ = 10−2, λ = 10−4, there is no
decreasing errors since the decreasing m offsets the benefits
from smaller effective dimension.

Impact of the ROS Sketches
Here, we use the orthogonal sketch matrices, e.g. random-
ized orthonormal system (ROS) sketches (Pilanci and Wain-
wright 2015; Yang et al. 2017). Under same settings as above
experiments, we fix n = 1024, p = 800 and use different
sketch size m ∈ [666, 1024], As shown in Figure 3, we find

that: 1) Downsampling sketching m < n may also bene-
fits the generalization performance, i.e. the case λ = 10−4,
where the test errors increases first but drops again after
p > m. 2) With the setting λ = 10−4, the test accuracies
coincides with our theoretical findings in Theorem 1, where
the test error is highest when m = p due to both variance
explosion and bias explosion. 3) Strong regularization, for
example λ = 10−2, leads to better performance compared
to milder regularization terms. 4) As shown in the first and
last figures, ridge regression estimators with lower test errors
correspond to smaller d̂f2(λ).

Impact of the Different Regularization Parameter

Under same settings as above experiments, we fix n = 1000
and vary the regularization parameter λ ∈ [10−6, 1] and
compare the performance in different settings, i.e. γ = 0.5,
γ = 1, and γ = 2. We report the results in Figure 4,
which illustrates: 1) the optimal regularization parameters
λ are similar even in different settings γ = 0.5, 1, 2, i.e.
near λ = 10−3. 2) The implicit regularization parameter κ
mainly depends on λ rather than different γ. 3) Test error,
squared loss, and the effective dimension d̂f2(κ) are positive
correlated. 4) When the regularization parameter is small,
the threshold γ = 1 have highest test error, while the under-
parameterized estimator γ = 0.5 performs worse than the
others when the regularization parameter is near optimal.
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