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Abstract

Despite Graph neural networks’ significant performance gain
over many classic techniques in various graph-related down-
stream tasks, their successes are restricted in shallow mod-
els due to over-smoothness and the difficulties of optimiza-
tions among many other issues. In this paper, to alleviate the
over-smoothing issue, we propose a soft graph normalization
method to preserve the diversities of node embeddings and
prevent indiscrimination due to possible over-closeness. Com-
bined with residual connections, we analyze the reason why
the method can effectively capture the knowledge in both input
graph structures and node features even with deep networks.
Additionally, inspired by Curriculum Learning that learns easy
examples before the hard ones, we propose a novel label-
smoothing-based learning framework to enhance the optimiza-
tion of deep GNNs, which iteratively smooths labels in an
auxiliary graph and constructs many gradual non-smooth tasks
for extracting increasingly complex knowledge and gradually
discriminating nodes from coarse to fine. The method arguably
reduces the risk of overfitting and generalizes better results. Fi-
nally, extensive experiments are carried out to demonstrate the
effectiveness and potential of the proposed model and learning
framework through comparison with twelve existing baselines
including the state-of-the-art methods on twelve real-world
node classification benchmarks.

1 Introduction
Graph neural networks (GNNs) (Wu et al. 2020) are widely
used state-of-the-art techniques to solve many tasks on graph
(e.g., semi-supervised node classification (Feng et al. 2020),
link prediction (Yun et al. 2021), graph classification (Xie
et al. 2022), and community detection (Liu et al. 2021), etc).
Also, GNNs have achieved outstanding results recently in
many domains including texts (Fei, Zhang, and Zhou 2021),
images (Guan et al. 2022), traffic (Choi et al. 2022), molecule
(Han et al. 2022), and even electroencephalogram (i.e., EEG)
(Demir et al. 2021) compared to classic methods (e.g., CNN
and RNN). They are previously derived in spectral domain
based on the eigen-decomposition of graph Laplacian (e.g.,
Spectral-CNN (Bruna et al. 2014) and ChebNet (Defferrard,
Bresson, and Vandergheynst 2016)). Graph Convolutional
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Network (GCN) (Kipf and Welling 2017) is proposed to
accelerate it via a linear approximation of universal filters
on graph signals and also give an intuitive interpretation
on spatial domain, i.e., message passing, which is further
developed by SGC (Wu et al. 2019), GAT (Veličković et al.
2018), GIN (Xu et al. 2019), and MPNN (Gilmer et al. 2017).

More recently, some deep GNNs (Chen et al. 2020; Li
et al. 2019) are proposed to further improve the expressive
power of GNNs in light of successes of other deep neural
networks, e.g., CNN and RNN. But unfortunately, GNNs are
not easy to go deep and often suffer from severe performance
degradation due to, e.g., over-smoothness (Liu, Gao, and Ji
2020), difficulty in optimization (Yang et al. 2020), memory
limitation (Li et al. 2021), time consumption (Li et al. 2021),
and over-squashing (Topping et al. 2022). In this paper, we
mainly focus on the first two problems, i.e., improvements
will be devised with respect to the following two aspects: 1)
structures; and 2) the learning process.

In order to alleviate over-smoothness, various kinds of
techniques (Chen et al. 2022) are proposed to prevent over-
closeness of node embeddings or reduce the extent of ag-
gregations including graph normalization (Zhou et al. 2021),
residual connections (Chen et al. 2020), and random drop-
ping (Huang et al. 2020), etc. Existing graph normalization
techniques directly operate with norms, means, variances
or distances of embeddings, and can effectively reduce the
over-closeness. However, it’s still unclear what or how much
knowledge they can preserve in deep layers via only these
numeric-related operations. Some residual connections meth-
ods are proven to keep useful feature semantics as GNNs go
deep, but they may risk missing structural knowledge, e.g.,
GCNII (Chen et al. 2020). Random dropping approaches are
devised mainly for regularization without theoretical guar-
antees for alleviating information loss in over-smoothness
and seldom perform competitively compared to other state-
of-the-arts.

Thus for structures, we propose R-SoftGraphAIN, a resid-
ual connections-based soft graph normalization layer, which
can be viewed as a combination of a novel soft graph nor-
malization operation and two improved residual connections.
Compared to Pairnorm (Zhao and Akoglu 2020), it can nor-
malize embeddings in an an-isotropic manner instead of
equally treating all nodes. Compared to GCNII, it can be

ar
X

iv
:2

31
2.

08
22

1v
2 

 [
cs

.L
G

] 
 1

4 
D

ec
 2

02
3



shown to preserve relatively high frequent structural knowl-
edge instead of over-emphasizing features and can be viewed
as a generalization of GCNII. In Sec. 3.1, theoretical analysis
is carried out to show its following characteristics as the depth
approaches infinity: 1) The mean distance of pairwise node
embeddings will be kept nearly constant similar to Pairnorm;
2) The diversities of these signals are maximized; 3) It tends
to extract the most d lowest frequent components of structural
knowledge; 4) It never forgets the original feature’s informa-
tion. Experimental evaluations prove its effectiveness due to
significant performance gain compared to others.

On the other hand, in order to ease the optimization of deep
GNNs, we borrow ideas from Curriculum Learning (CL)
(Wang, Chen, and Zhu 2022; Soviany et al. 2022). In CL,
models are encouraged to first learn from easy examples and
then examples with gradually increased difficulty (Bengio
et al. 2009). The idea has been generalized to devise better
curriculum applied to various scenarios in many domains
including texts and images via, e.g., designing multifarious
tasks with increasing difficulties (Caubrière et al. 2019), grad-
ually unleashing expressive powers of models (Sinha, Garg,
and Larochelle 2020), or defining pacing functions to decide
to which extent to learn from a task (Hacohen and Weinshall
2019). However, graphs contain specific structures and semi-
supervised learning has a special setting, which may require
a careful curriculum design, but few prior works focus on
this (see Sec. 2). Therefore in this paper, we give a simple yet
effective label-smooth-based example called SmoothCurricu-
lum. More specifically, we first employ label propagation
to estimate unknown labels, and all labels are iteratively
smoothed in an auxiliary graph built via a pre-trained teacher
model in order to construct gradual non-smooth tasks. From
the analysis in Sec. 3.2, this learning framework encourages
graph encoders to extract increasingly complex knowledge
and learn to gradually discriminate nodes from coarse to
fine1, which intuitively emphasizes relatively global knowl-
edge and alleviates possible label noise, thus reducing the risk
of overfitting and generalizing better. Obvious performance
improvements across various real-world datasets reveal the
potential of this simple framework.

The contribution of this paper can be summarized as fol-
lows:

• We propose a residual connections-favored soft graph
normalization structure (called R-SoftGraphAIN) for pre-
serving knowledge from both input graph topology and
features and retaining the diversities of node embeddings
in deep layers to consequently alleviate over-smoothness.

• We design a novel label-smoothing-based curriculum
learning framework (called SmoothCurriculum) to ease
the difficulty of optimization of deep GNNs and better
their generalization via implicit coarse-to-fine node dis-
crimination.

• Extensive experiments were carried out to demonstrate
the effectiveness and potential of our method compared
to twelve existing baselines including state-of-the-arts.
1E.g., for collecting residential information of a person, first

the information of the country and then the city he lives in will be
collected.

2 Preliminaries and Related work
Notation Let G = (V,E) be an undirected graph with node
set V and edge set E, where n = |V |,m = |E| represent
the numbers of its nodes and edges respectively. We denote
by A ∈ {0, 1}n×n and X ∈ Rn×d its adjacency and feature
matrix where node i has feature xi = Xi,: ∈ Rd and a
ground-truth label yi = Yi ∈ N. Define In ∈ Rn×n as an
identity matrix, 0n,1n ∈ Rn×1 as all-zero/one vectors.

GCN and SGC GCN can be formulated as follows:

H(0) = X, H(l+1) = σ
(
ÂH(l)W (l)

)
∈ Rn×d. (1)

SGC simplifies GCN by dropping its non-linear activation
functions and its forward pass can be described as follows:

H(l) = ÂlXW ∈ Rn×d, ∀l ∈ [0, L), (2)

where L is the number of layers and σ(·) denotes a non-linear
activation function (e.g., ReLU, or Softmax for the last layer).
Â = D̃− 1

2 ÃD̃− 1
2 is the symmetrically normalized matrix

of Ã = A + In and diagonal matrix D̃i,i =
∑n

j=1 Ãi,j .
Sometimes, the probability transition matrix Ârw = D̃−1Ã
is employed for aggregating. H(l) ∈ Rn×d and W,W (l) ∈
Rd×d represent the embeddings and the trainable parameters.

Deep GNNs and Over-smoothness Majority of GNN vari-
ants are shallow networks (e.g., no more than three layers),
thus restricting their expressive power and limiting distant
message passing. Some prior works make efforts to deepen
GNNs via modifications or tricks which can be categorized
into three classes: residual connections, graph normalization
(e.g., Pairnorm (Zhao and Akoglu 2020), Nodenorm (Zhou
et al. 2021), Meannorm (Yang et al. 2020)), and random
dropping (e.g., DropEdge (Rong et al. 2020) and DropNode
(Huang et al. 2020)). Residual connections contain common
residual connection (from last layer) (Li et al. 2019), initial
connection (from the first layer) (Chen et al. 2020), dense
connection (from every layer) (Liu, Gao, and Ji 2020; Luan
et al. 2019), and jump connection (from every layer to the last
layer only) (Xu et al. 2018). See supplementary materials or
(Chen et al. 2022) for some more related work or a more de-
tailed survey. Our method appropriately combines improved
residual connections and a novel soft graph normalization en-
abling effective feature and structural knowledge extraction
and preservation even with a sufficiently large depth.

Curriculum Learning CL has become a popular kind of
training strategies for networks in many applications includ-
ing texts (Liu et al. 2020), images (Zhou, Wang, and Bilmes
2020), speeches (Wang et al. 2020), reinforcement learning
(Narvekar et al. 2020), etc. The basic idea is to give examples
from easy to hard, and has been developed a lot (Wang, Chen,
and Zhu 2022), but few are designed specifically for graph-
rated tasks (Wang et al. 2021; Chu et al. 2021). But note that
besides over-smoothness, another non-negligible cause hin-
dering deep GNNs is just the difficult optimization. Thus in
this work, we hope to ease it via a novel curriculum learning
framework based on iterative label smoothing on an auxil-
iary graph. Here we define a curriculum as a task sequence



T1, T2, · · · , TnT
with gradually increasing difficulties where

Ti =
(
D(i), f

(i)
θ , ℓ(i)(·), p(i)

)
denotes a task meaning that

a model f (i)
θ learns from the data D(i) with a loss function

ℓ(i)(·) and pacing strategy p(i) (e.g., the time it spends). f (i)
θ

is some modified or restricted version of fθ.

3 SmoothCurriculum-improved
R-SoftGraphAIN

In this section, we propose a novel model for alleviating the
over-smoothness of graph neural networks by incorporating
two main ingredients (i.e., R-SoftGraphAIN for GNN struc-
tures, and the adaptive curriculum design). Although treated
as a whole for reporting their performance in Sec. 4, we indi-
vidually introduce each ingredient in the following for better
clarity and briefness.

3.1 R-SoftGraphAIN
We will describe our normalization method and show how it
can be improved via residual and initial connections in the
following paragraphs.

Spectral Analysis on Over-smoothness Over-closeness
(i.e., embeddings are too close) is the external manifestation
of over-smoothness leading to indiscrimination via a classi-
fier. But it’s just a direct cause instead of an essential reason
analyzed by priors in the spectral domain on SGC as follows:

h(L) = ÂLx = UΛLUTx =

n∑
i=1

λL
i uiu

T
i x,

lim
L→∞

h(L) = u1u
T
1 x = D̃

1
21n1

T
n D̃

1
2x ∝ D̃

1
21n,

(3)

where x is a signal, Â = UΛUT contains decreasing eigen-
values {λi} with respective eigenvectors {ui} and λ1 = 1 >
λ2. The conclusion on GCN is similar with a very different
non-trivial analysis (Oono and Suzuki 2020). The analysis
tells us deep GNNs tend to: 1) hardly keep important struc-
tural knowledge, 2) gradually forget the semantics contained
in features, thus essentially leading to over-smoothness.

Pairnorm (Zhao and Akoglu 2020) attempts to numerically
solve over-closeness via direct manipulation on mean dis-
tance formulated as: H(l+1) = C

√
n · H ′/ ∥H ′∥F , H ′ =

(In − 1/n · 1n1
T
n )ÂH(l) with a constant C > 0. We con-

jecture its performance is limited even getting rid of indis-
crimination due to normalizing embeddings: 1) only element-
wisely and isotropically without modeling the complex rela-
tionships between nodes and between signals; 2) only numer-
ically without interpretable knowledge preservation. These
shortcomings motivate our GraphAIN considering normaliza-
tion an-isotropically and in a distribution/knowledge-aware
manner.

Soft Graph An-Isotropic Normalization As mentioned
above, we propose GraphAIN to deal with the comprehensive
distribution and keep diverse meaningful knowledge, which
can be described as follows:

Ht = Bt−1

(
BT

t−1Bt−1

)− 1
2 ∈ Rn×d, ∀ t ≥ 1,

Bt−1 = T · ÂHt−1 ∈ Rn×d, H0 = X,
(4)

where Ht = H(t) and X denote the embedding matrix of the
t-th layer and the original features. And T = In− 1

n1n1
T
n ∈

Rn×n represents a centering operator and P 1/2 refers to the
square root of a positive matrix P . The following statement
theoretically justifies our idea that we are normalizing the
covariance matrix of H instead of directly normalizing the
embedding for an individual node or signal independently:
Theorem 1. ∀ t ≥ 1, GraphAIN satisfies that:

1) 1T
nBt = 1T

nHt = 0n; 2) HT
t Ht = Id;

3) THt = Ht; 4) Bt = ĀHt;
where Ā = TÂT denotes a doubly centered version of Â.

Next theorem theoretically analyzes GraphAIN from an op-
timization perspective and gives a deep understanding of
combination of normalization and aggregations in GNNs:
Theorem 2. GraphAIN can be viewed as an iterative pro-
cess in order to solve the following restricted optimization
problem via Projected Gradient Ascent method:

max
H

f(H) =
1

2
· tr

(
HT ĀH

)
, s.t. HTH = Id, (5)

where H is initialized to input graph signals X ∈ Rn×d and
set the step size η = 1.
All proofs can be found in supplementary materials. This
theorem reveals what GraphAIN can learn. In fact, from
another point of view, the optimal solution to this problem
can be obtained via Lagrange multiplier method as follows:

L(H,ΛL) = tr
(
HT ĀH

)
− tr

(
ΛL

(
HTH − Id

))
, (6)

where L and ΛL are the Lagrange function and multipliers.
Let ∂L/∂H = 0, we get ĀH = ΛLH , which means that H
tends to the eigenvectors corresponding to the top-d eigenval-
ues of Ā with sufficient steps. Thus similar to Spectral Clus-
tering, it can capture essential structural knowledge due to the
similarity between Ā and Â. In addition to spectral interpreta-
tions, we give some intuitions in spatial domain: 1) it can eas-
ily solve over-closeness, due to the facts that ∥H∥2F = d and∑

i

∑
j ∥Hi,: −Hj,:∥22 = 2n·

∑
i ∥Hi,:∥22−2·∥

∑
i Hi,:∥22 =

2n · d meaning the average pairwise distance is kept com-
pletely constant similar to Pairnorm; 2) the spatial variance
in any direction is normalized to 1 for maximally preserving
the diversity of knowledge in a circular distribution.

However, it still suffers from performance degradation due
to the following four potential drawbacks: 1) too absolute;
2) numerical instability; 3) high time complexity; 4) risk of
forgetting original features during iterations. The first three
issues can be relieved via a soft version (i.e., SoftGraphAIN):

Ht ≈ Bt−1

[
a · Ud0Λ

− 1
2 ·b

d0
UT
d0

+ (1− a) · Id
]
, (7)

where BT
t−1Bt−1 ≈ Ud0

Λd0
UT
d0

is the d0-truncated SVD
calculating only the top-d0 ≤ d eigenvectors and eigenvalues
contained in Ud0

,Λd0
∈ Rd×d, and a, b ∈ [0, 1] are another

hyper-parameters controlling the extent of normalizing. For-
mally, they transform the singular values S ≈ Sd0 = Λ

1/2
d0
∈

Rd×d into (1− a) · Sd0
+ a · S1−b

d0
thus flexibly reducing

the absoluteness, possible noise in useless channels, risk of
numerical zero-divisions, and empirical time-inefficiency.



Additional Residual Combination R-SoftGraphAIN can
effectively alleviate the last drawback mentioned above via
some residual and initial connections formulated as follows:

Bt = α · TÂHt + β ·Ht + γ ·X ∈ Rn×d, ∀ t ≥ 1, (8)

where the non-negative hyper-parameters meet α+β+γ = 1.
Intuitively, the commonly used residual connections can alle-
viate gradient-vanishing and the initial ones are expected to
constantly supplement some feature information during ag-
gregations in case of oblivion. Moreover, the motivation can
be theoretically justified via the following similar theorem:
Theorem 3. Residual-favored GraphAIN can be viewed as
an iterative process in order to solve the following restricted
optimization problem via Projected Gradient Ascent method:

max
H

f(H) =
1

2
· tr

(
HT ĀH

)
− 1

2
· γ
α
· ∥H −X∥2F

s.t. HTH = Id,

(9)

where H is initialized to input graph signals X ∈ Rn×d and
set the step size η = α ∈ [0, 1].
This theoretically reveals that R-SoftGraphAIN never forgets
the original features as GNNs go deep, simultaneously re-
lieving two essential reasons in Sec. 3.1 and thus alleviating
over-smoothness. Furthermore, from this we can get some
intuitions on the roles of α, β, γ: α allows a sufficiently small
step size ensuring better convergence, γ estimates the contri-
bution of features. β can give some freedom to α and γ. In
order to further improve its performance, we generalize these
connections as fuzzy connections. We use Eq. 7 and Eq. 8 to
substitute Eq. 8, and replace X in Eq. 8 by H1 due to possible
misalignment in dimensions. A GCN-based implementation
of the whole structure is summarized in Algorithm 1 in sup-
plementary materials with a line-by-line description therein.

Relations to Others In this paragraph, we detailedly com-
pare ours with other related methods. SGC suffers from over-
smoothness due to both structural and feature knowledge
loss. Pairnorm numerically solves over-closeness without in-
terpretable knowledge preservation. Meannorm and Spectral
Clustering (SC) can keep the 2-th and lowest d frequent com-
ponents in structures respectively while keeping little feature
information. GCNII proves to be a universal approximator of
any function on features, but it ignores structural semantics.
Compared to them, ours can keep both features and structural
knowledge inheriting both advantages. From another per-
spective, Pairnorm, Meannorm, and Nodenorm (Zhou et al.
2021) are only element-wise, signal-independent, and node-
independent, respectively. However, our method considers
the comprehensive distributions and effectively models the
relationships between nodes and between signals, thus utter-
most preserving the diversity of the embeddings. Fig. 3 in
supplementary materials shows our superiority, where ours is
similar to and even outperform SC while others suffer from
over-smoothness to different extents.

3.2 SmoothCurriculum
In this section, we propose a simple yet effective curriculum
learning framework based on label-smoothing on an auxil-
iary graph to ease the hardness of optimizing the proposed

R-SoftGraphAIN. Inspired by Curriculum Learning, the key
idea of our framework is first to learn the low-frequent knowl-
edge contained in labels before the high-frequent ones, and
then to employ an easy-to-hard learning process that favors
a better generalization. The framework will be described in
detail regarding several of its important modules (e.g., label
estimation and smoothing, graph construction, and curricu-
lum designs), intuitions, and interpretations.

Label Estimation and Auxiliary Graph Deep GNNs are
powerful yet risk overfitting due to limited labeled data, es-
pecially in the semi-supervised setting. Thus we hope to
enlarge the training set via label estimation. One of the most
commonly used classic techniques is Label Propagation,
whose iterative process is: f ← P · f, fL ← YL initializing
fL = YL, fU = 0. Furthermore, its limit can be formulated
as: Y (e)

U = lim fU = (I − PUU )
−1

PULYL, where U,L rep-
resent unlabeled and labeled node sets, P = D−1A, PUL

is a sub-matrix of P respect to lines U and columns L, and
YL, Y

(e)
U are the known and estimated labels. But it suffers

from two shortcomings: 1) impossible propagation due to
possible disconnectivity; 2) impractical matrix inversion with
a large |U |. Thus, we estimate YU implicitly via a teacher
model ft(·) pre-trained on the labeled data Do = (XL, YL),
which can distill shared knowledge from distant nodes or
disconnected components to favor more accurate estimation.

Moreover, we expect to capture and encode the similari-
ties of nodes’ ground-truth labels into the structure or com-
munities of an auxiliary graph Gaux. It can be built as fol-
lows: 1) Gaux = G, input graph for graphs with noisy or
missing features; 2) Gaux = Gf , a KNN-graph built ac-
cording to node features for graphs with heterophily; 3)
Gaux = Ge, a KNN-graph built according to node embed-
dings output by the teacher ft(·) for others. More specifically,
a KNN-graph G(h) of a set of vectors h1, · · · , hn is built
as follows: link every hi to its top-k nearest vectors via a
KNN algorithm with Gaussian distance, drop the edge di-
rections, and then calculate the weights via similarity scores
W

(aux)
i,j = ReLU

(
hT
i hj

)γ′

with a distribution-controlling
hyper-parameter γ′ > 0 for edge weights W (aux) ∈ Rn×n.

Label Smoothing and Curriculum Design To get multi-
scale label signals, we iteratively smooth labels on Gaux

with initial signal Y [0] = Y from ft (·) as: Y [i+1] = Paux ·
Y [i], ∀ i ∈ [0, nT ), where Paux = D−1

auxW
(aux) and Daux

are the probability and degree matrix on Gaux, respectively.
Note that this simplified Label Propagation without fixing
fL will definitely encounter over-smoothness similar to SGC,
but it’s just what we desire (see next paragraph). After that,
a curriculum C can be defined as T0, T1, · · · , TnT

, where
task Ti =

(
D(i), fθ, ℓ(·), p(i)

)
, i.e., the graph encoder fθ

and the loss ℓ(·) are shared in all tasks but the training data
D(i) =

(
X,Y (i)

)
and pacing strategies p(i) vary. Here, we

prepare Y (i) = Y [nT−i], ∀ i ∈ [0, nT ]. In other words, the
encoder fθ will be encouraged to learn tasks from T0 to TnT

where easy tasks containing easy data D(i) are solved before
the relatively harder ones with even paces. And finally, it will
be fine-tuned to solve the original task with Do = (XL, YL).



Analysis and Interpretations Next we give some analysis
and intuitions on what SmoothCurriculum exactly does and
how it guides the training in the following aspects: 1) opti-
mizing from convex to non-convex: as claimed in (Bengio
et al. 2009; Wang, Chen, and Zhu 2022), curriculum learning
with priority for easy tasks can be equivalently understood
as landscape smoothing for empirical loss contributing to
a more convex optimization problem, which guides models
to find a local minima with less vibration and better gen-
eralizability. 2) learning spectral knowledge from low- to
high-frequency: Y [i] = (Paux)

i
Y [0] = UΛiUTY [0] and

Λi = diag
(
λi
1, λ

i
2, · · · , λi

n

)
with always decreasing eigen-

values. Let i vary decreasingly, and consider important values
{ij , j ∈ [1, n]} where at time ij , Y [ij ] ≈

∑j
t=1 λ

ij
t utu

T
t Y

[0]

with the dominating top-j eigenvalues {λi
k, k ∈ [1, j]}. Then

from Y [ij ] to Y [ij+1], old knowledge will be reviewed due
to λ

ij
t ≤ λ

ij+1

t and some relative high-frequent component
uj+1u

T
j+1Y

[0] as new information will be injected to label
signals. Additionally, if we independently consider a single
signal y[0], then uj+1u

T
j+1y

[0] =
(
uT
j+1y

[0]
)
uj+1 ∝ uj+1

introducing a new channel for spectral embedding encod-
ing some new details leading to more complex clustering
structures. Thus models can learn to discriminate nodes from
coarse to fine. 3) learning spatial knowledge from global to
local: Intuitively, the shared commonsense is illustrated first
due to limi→∞ (Paux)

i
Y [0] = 1n1

T
nY

[0], which encodes
the global label frequency. Then the pieces of information
in big communities, small communities, and local environ-
ments are presented in order because over-smoothness hap-
pens quickly in high-density regions but slowly otherwise. In
other words, it also spatially favors coarse-to-fine node dis-
crimination via perceiving the multi-scale community struc-
ture or density varieties of Gaux.

4 Experimental Results
In this section, we conduct extensive experiments to evaluate
the effectiveness of our method (applied with GCN, GAT,
and GIN) by comparing it with twelve baselines on twelve
real-world graph benchmarks on semi-supervised node clas-
sification tasks. Note that our method can be applied to more
sophisticated spatial propagation-based GNN backbones to
further improve its performance, but we prefer basic ones to
keep it simple and evaluate its potential. Due to space limita-
tions, some experimental details are given in supplementary
materials including dataset descriptions, implementations,
omitted results (e.g., with other layers, with different splits,
comparisons with more baselines on heterophilous graphs, as
well as standard errors), hyper-parameters (searching spaces
and specific configurations), and some more visualizations.

Experimental Settings They are performed on an Ubuntu
system with a single GeForce RTX 2080Ti GPU (12GB Mem-
ory) and 40 Intel(R) Xeon(R) Silver 4210 CPUs. And the pro-
posed model is implemented by Pytorch (Paszke et al. 2019)
and optimized with Adam Optimizer. For a fair comparison,
twelve real-world public benchmarks are chosen, including
two kinds: 1) eight graphs with homophily: four widely used
scientific citation networks (i.e., Core, Citeseer, Pubmed (Sen

et al. 2008), and a large-scale graph OGBN-ArXiv (Hu et al.
2020)), scientific co-authorship networks Physics and CS
(Mernyei and Cangea 2020), as well as Amazon purchasing
system Computers and Photo (Shchur et al. 2018); 2) four
graphs with heterophily: webpage datasets Texas, Wisconsin,
and Cornell (Pei et al. 2020) as well as an actor co-occurrence
network Actor (Tang et al. 2009). Their statistics and adopted
splits are summarized in Tab. 4 in supplementary materi-
als. We adopt the standard semi-supervised training/valida-
tion/testing splits for them following prior works (Kipf and
Welling 2017; Chen et al. 2020, 2022). Furthermore, twelve
baselines or state-of-the-art GNN models are applied for com-
parison including four vanilla classic models (GCN, SGC,
GAT, and GIN), two spectral-based methods (ChebNet (Def-
ferrard, Bresson, and Vandergheynst 2016) and BernNet (He
et al. 2021)), a normalization-based method Pairnorm (Zhao
and Akoglu 2020), some residual connections-based meth-
ods including GCNII (Chen et al. 2020), GPRGNN (Chien
et al. 2021), APPNP (Gasteiger, Bojchevski, and Günnemann
2019), JKNet (Xu et al. 2018), and DAGNN (Liu, Gao, and
Ji 2020). For a fair comparison with spectral-based baselines,
we view the orders of Laplacian used in filters as the depths.

Node Classification with Homophily and Heterophily
We call the proposed method applied to GCN, GAT, and
GIN Ours(GCN), Ours(GAT), and Ours(GIN), respectively,
where Ours(GCN) is the default, i.e., Ours. We run each ex-
periment five times with different initializations, and report
the average accuracies in Tab. 1 and Tab. 2 with varied num-
bers of layers on these benchmarks. The standard errors and
results with some other layers are given in supplementary
materials. From Tab. 1 and 2, it is shown that our model
consistently achieved the best results against these state-of-
the-art counterparts in almost all listed layers. Notably, for
Amazon Computers Dataset, we get a performance improve-
ment compared to DAGNN of more than 6.8% and 7.4% in
32 and 64 layers, respectively. As observed from Tab. 2, our
method outperforms any other listed model by very large mar-
gins on four heterophilous graphs and the large-scale graph
OGBN-ArXiv. In supplementary materials, we also provide
results with fully supervised random splits compared to the
listed counterparts (see Tab. 16) and more baselines on these
heterophilous graphs (see Tab. 17). These results demonstrate
its potential to alleviate over-smoothness in deep layers.

Node Classification with Noisy Features Sometimes fea-
tures can provide enough meaningful supervision signals
for node prediction, which veils the ability of a GNN for
structure understanding. In this subsection, we evaluate our
model in a challenging task called Node Classification with
Noisy Features where all node features are substituted by
noise sampled from Standard Normal Distribution N (0, 1)
while only the structure of input graph remains. This task is
more difficult than that in (Zhao and Akoglu 2020), since: 1)
The feature substitution is conducted for all nodes instead of
the nodes out of the training set only. 2) We make the fea-
tures noisy instead of replacing them with zeros. Intuitively,
this task tests how deeply GNNs can understand the input
structure, i.e., whether they can capture more useful struc-
tural knowledge for alleviating the adverse effect of noise in



Method Cora Citeseer Pubmed CS Physics Computers Avg.Rank
#Layes 32 64 32 64 32 64 32 64 32 64 32 64

GCN 31.90 27.56 36.66 25.40 44.22 32.65 41.29 34.23 79.87 75.34 58.30 37.58 12.75
SGC 63.84 55.39 67.50 63.08 70.70 65.33 70.52 72.51 91.46 90.77 37.44 37.50 10.33

ChebNet 31.90 20.63 33.43 24.90 48.67 45.37 29.28 23.24 70.35 50.74 58.58 50.12 12.67
GAT 72.28 31.92 59.08 22.90 78.72 41.88 85.85 12.83 91.87 17.75 76.05 37.18 10.92
GIN 60.92 31.90 47.32 23.10 72.94 40.23 52.90 20.79 83.02 24.98 39.18 37.50 12.42

Pairnorm 65.00 66.24 44.20 41.48 72.12 71.72 72.71 68.62 88.51 89.11 74.96 74.35 9.67
GCNII 85.29 85.34 73.24 73.00 79.81 79.88 71.67 72.11 93.15 92.79 37.56 37.50 6.67
JKNet 73.23 72.54 50.68 52.22 63.77 69.10 81.82 82.84 90.92 89.88 67.99 67.78 9.17

GPRGNN 83.13 82.48 71.01 70.96 78.46 78.92 89.56 89.33 93.49 93.26 41.94 78.30 6.83
DAGNN 83.39 82.16 72.59 71.00 80.58 80.44 89.60 89.47 93.31 93.52 79.73 79.23 4.92
APPNP 83.68 83.66 72.13 72.02 80.24 80.08 91.61 91.58 93.75 91.61 43.02 41.42 5.67
BernNet 81.38 17.72 70.82 39.10 70.24 32.86 91.54 9.20 92.27 19.38 81.06 12.81 10.67

Ours(GCN) 85.12 84.87 74.42 74.50 81.28 81.58 92.11 92.05 94.22 94.20 85.21 85.13 1.42
Ours(GAT) 84.60 84.68 74.26 74.04 80.46 80.20 91.30 91.26 94.02 94.02 84.82 85.04 3.33
Ours(GIN) 84.18 83.80 74.88 74.16 80.32 80.94 91.79 91.71 94.56 94.53 85.16 85.13 2.17

Table 1: Results of node classification tasks on Cora, Citeseer, Pubmed, CS, Physics, and Computers

Method Photo Texas Wisconsin Cornell Actor OGBN-ArXiv Avg.Rank
#Layes 32 64 32 64 32 64 32 64 32 64 32 64

GCN 58.47 50.21 62.16 62.16 57.84 57.84 56.76 56.76 25.16 25.16 46.38 42.95 10.00
SGC 26.08 24.57 56.41 56.96 51.29 52.16 58.57 55.41 26.17 25.88 34.22 23.14 11.67

ChebNet 65.28 64,83 64.86 64.86 52.94 52.94 55.86 52.25 25.46 25.46 41.00 35.16 10.33
GAT 83.73 25.36 65.41 64.86 53.73 53.33 54.05 55.14 25.54 25.62 59.78 36.63 9.33
GIN 65.98 25.27 62.17 60.00 47.06 50.98 54.59 55.14 24.36 23.45 65.17 60.56 11.33

PairNorm 82.66 79.55 41.08 40.68 52.84 52.94 36.89 40.68 24.33 23.23 63.32 43.57 11.91
GCNII 62.95 65.12 69.19 65.41 70.31 59.02 74.16 56.92 34.28 34.64 72.60 70.07 5.33
JKNet 78.42 79.73 61.08 66.49 52.76 56.08 57.30 51.49 28.80 28.26 66.31 65.80 8.25

GPRGNN 91.74 91.28 62.27 61.08 71.35 64.90 58.27 52.16 29.88 32.43 70.18 69.98 6.25
DAGNN 89.96 87.86 57.68 60.27 50.84 51.76 58.43 52.43 27.73 25.45 71.46 70.58 8.92
APPNP 59.62 63.63 60.68 64.32 54.24 59.90 58.43 54.69 28.65 28.19 66.94 66.90 8.25
BernNet 91.59 16.53 61.08 16.76 63.53 24.71 52.43 11.89 28.19 20.66 45.16 37.18 11.92

Ours(GCN) 92.06 92.03 85.41 84.86 83.14 84.71 82.70 82.62 38.42 38.49 74.07 73.95 1.33
Ours(GAT) 91.98 92.00 78.92 78.38 73.73 74.90 77.84 81.62 34.97 35.54 74.37 74.41 2.50
Ours(GIN) 92.03 91.98 82.57 83.12 81.78 81.20 81.08 81.08 34.51 34.50 75.02 74.85 2.25

Table 2: Results of node classification tasks on Photo, heterophilous graphs (e.g., Texas), and a large-scale graph OGBN-ArXiv

features. We adopt our standard model Ours(GCN) itself as
the teacher and the original graph as the auxiliary graph. As
observed from Fig. 1, our model outperforms most evaluated
baselines in nearly all layers by a significant margin, showing
its effective extraction and preservation of structural seman-
tics. While SGC with no more than 64 layers can achieve
better results in some layers, it suffers from over-smoothness
severely with sufficient large layers (e.g., 103 or 104 layers).

Ablation, Hyper-parameter Studies, and Visualizations
In order to demonstrate the effects of each individual part
of our model and learning framework, we conduct extensive
ablation studies following (Chen et al. 2020) and report the
results on seven graph benchmarks in Tab. 3. In the following,
we take Ours(GCN) as our standard model and independently
drop each of the five parts: SoftGraphAIN (SG), residual con-
nections (RC), R-SoftGraphAIN (R-SG), label smoothing
(LS), and the holistic curriculum learning framework (CL),

where w.o. X means that we drop the part X. From Tab. 3,
we observe that every part contributes a portion to the per-
formance gain, among which R-SG is the most significant
since it reduces the risk of features and structure forgetting
simultaneously. To facilitate a better understanding, we plot
the varying effects of softly normalizing extents (the hyper-
parameter a in Eq. 7) in Fig. 2, from which we can see a
comprehensive ascending-and-then-descending trend, show-
ing the benefits of this soft version compared to the hard
one. In supplementary materials, we study some other hyper-
parameters (e.g., α and kKNN ), and detailedly visualize the
embeddings produced by our method and some counterparts.

Discussion On the Time and Space Complexities The
theoretical time complexity is analysed O(Ld2d0) where
d, d0 ≪ n if partial-SVD or truncated-SVD (Halko, Mar-
tinsson, and Tropp 2011) is utilized. And it would become
O(Ld3) with a full SVD decomposition. However, it is ef-
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Figure 1: Results of different models with varying layers in node classification tasks with noisy features

Method #Layers Cora Citeseer Pubmed CS Physics Computers Photo

w.o. SG 32 83.30±0.12 72.98±0.50 80.26±0.98 91.79±0.07 94.23±0.25 82.34 90.26
64 84.60±0.29 72.62±0.98 80.30±0.23 91.70±0.07 94.25±0.13 84.50 91.69

w.o. RC 32 82.88±0.79 72.82±1.01 78.84±0.59 91.40±0.26 92.99±0.19 83.78 91.42
64 82.40±0.33 71.04±0.55 78.60±0.27 89.03±0.62 92.59±0.63 84.25 91.14

w.o. R-SG 32 40.22±5.71 29.32±3.47 46.28±4.91 51.61±18.23 77.20±11.95 61.52 83.77
64 36.74±4.36 27.70±2.94 28.61±3.64 28.51±4.70 60.94±8.23 49.94 70.09

w.o. LS 32 83.96±0.65 73.64±0.68 81.04±0.21 92.02±0.05 94.10±0.11 84.52 91.50
64 84.00±0.22 74.34±0.79 80.86±0.79 91.95±0.08 94.06±0.08 84.91 91.64

w.o. CL 32 82.40±0.65 73.20±0.77 79.34±0.39 89.60±0.20 92.46±0.61 84.00 90.58
64 82.58±0.87 72.54±0.42 79.00±0.54 89.23±0.12 92.22±0.56 84.44 90.41

Ours(GCN) 32 85.12±0.15 74.42±0.26 81.28±0.18 92.50±0.09 94.45±0.06 85.21 92.06
64 84.87±0.26 74.50±0.23 81.58±0.66 92.41±0.07 94.52±0.04 85.13 92.03

Table 3: Ablation studies on seven benchmarks including Cora, Citeseer, Pubmed, CS, Physics, Computers, and Photo
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Figure 2: Results of Ours(GCN/GAT/GIN) against the varying hyper-parameter a ∈ [0, 1] controlling the normalizing extent

ficient under the high-parallelizability implemented via Py-
torch. The theoretical space complexity is O (L (n+ d) d).

5 Conclusion
In this paper, we propose R-SoftGraphAIN to alleviate the
over-smoothness of deep GNNs, by novelly employing soft
normalization of the covariance matrix with appropriately
incorporated residual connections. We show in theory that
the technique can maximally preserve the diversities of
knowledge from both structures and features even at a suf-
ficiently large depth against over-smoothness. Furthermore,
in order to ease the difficulty of the optimization of deep

GNNs, a label-smoothing-based curriculum learning frame-
work (called SmoothCurriculum) is proposed to intuitively
encourage the encoder to digest knowledge from low- to high-
frequency and to learn to discriminate nodes from coarse to
fine. Extensive experiments were carried out against semi-
supervised node classification tasks to show the effectiveness
of our model by demonstrating its practical performance gain
compared to twelve state-of-the-art baselines on twelve real-
world graph benchmarks. In future work, we will explore
more applications of our method such as link prediction,
graph classification, and community detection tasks.
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Bronstein, M. M. 2022. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in gnns. arXiv
preprint arXiv:2202.04579.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014. Spec-
tral Networks and Locally Connected Networks on Graphs.
arXiv:1312.6203.
Caubrière, A.; Tomashenko, N.; Laurent, A.; Morin, E.;
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Munos, R.; Veličković, P.; and Valko, M. 2021. Large-Scale
Representation Learning on Graphs via Bootstrapping. In
International Conference on Learning Representations.
Topping, J.; Giovanni, F. D.; Chamberlain, B. P.; Dong, X.;
and Bronstein, M. M. 2022. Understanding over-squashing
and bottlenecks on graphs via curvature. In International
Conference on Learning Representations.
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A The Organization of Supplementary
Material

The supplementary material is organized as follows:

• some more related work in Sec. B;
• Algorithm 1 and its detailed description (including the

details on Fuzzy Connections) omitted in the main text
due to space limit (see Sec. C);

• an additional pre-processing node filtering operation in
our implementation of the proposed curriculum learning
framework (see Sec. D);

• the downstream linear classifier and loss function for node
classification tasks in Sec. E;

• omitted proofs in Sec. F;
• experimental details including dataset descriptions, more

experimental results, implementation details, and hyper-
parameter configurations in Sec. G;

• extensive visualizations in Sec. H;
• the time/space complexities in Sec. I;
• additional hyper-parameter studies on α, γ, and kKNN in

Sec. J;
• discussion on the connections between R-SoftGraphAIN

and SmoothCurriculum in Sec. K.

B More Possibly Related Literature
In this section, we give a short review of more related work
in order to enrich the background of this paper and improve
its completeness. However, we think the literature referenced
in the main text is enough to understand the proposed method
for readers.

Though some methods also aim to alleviate over-
smoothness in deep GNNs, they have different design motiva-
tions or perspectives. PDE-GCN (Eliasof, Haber, and Treister
2021) and (Rusch et al. 2022) are both ODE- or PDE-based
methods. (Chamberlain et al. 2021) and (Bodnar et al. 2022)
are designed from different diffusion processes. (Zhu et al.
2020) is mainly designed by dealing with heterophily and
does not focus on the over-smoothness. (Eliasof, Haber, and
Treister 2022) discards the traditional aggregation operator
in GCN and proposes a novel path-based or random walk-
based operator. Its authors argue that the over-smoothness
will not happen in this novel aggregation process and one can
naturally avoid the necessity of alleviating this issue.

Besides, many works consider improving the training pro-
cesses of models from different perspectives. (Yang, Ma, and
Cheng 2021) is based on regularization. (Verma et al. 2021)
and (Bo et al. 2022) are augmentation-based methods. And
compared to them, we propose a novel curriculum learn-
ing framework to find local minima with better generalizing
characteristics. (Hertz et al. 2021) proposes an optimization
algorithm sharing a similar concept of training from low to
high frequency. However, we are essentially different works
from different domains with the aim of solving different prob-
lems. (Wang and Leskovec 2020) and (Zhou et al. 2003) are
also label propagation-related works. However, they seem to
have little connection with ours.

C Algorithm 1 (Fuzzy R-SoftGraphAIN)
Recall Sec. 3.1 in the main text. For clearer understanding
and better reproducibility, here we give an implementation
of the comprehensive structure of the proposed Fuzzy R-
SoftGraphAIN in Algorithm 1.

We give a brief description of Algorithm 1:

• Lines 1→ 3 compute the symmetrically normalized adja-
cency matrix Â from A.

• Lines 4 → 5 compute the centering operator T , which
can normalize the row mean vector of a node embedding
matrix into 0, as well as the parameter β, and initializes
q′ = q0 = 1.

• Lines 6 → 8 obtain H1 from H0 without any skip con-
nection.

• Line 9 initializes the matrices Slast and Sinit, which rep-
resent the items in fuzzy last residual connection and
fuzzy initial connection, respectively (please kindly see
the specific introduction in the following subsection).

• Line 10→ 17 describe the comprehensive updating pro-
cess of node embedding matrix Ht.

• Line 11 (corresponding to Eq. 8 in the main text) com-
putes Bt−1 from Ht−1 with fuzzy connections (please
kindly see the specific introduction in the following sub-
section).

• Line 12 does a partial singular value decomposition retain-
ing the d0 most dominating components of BT

t−1Bt−1.
• Line 13 computes Ht from these components.
• Line 14 updates q′ and keeps q′ = qt−1.
• Line 15 → 16 update the items Slast and Sinit in fuzzy

connections.
• Line 18 returns the final node embedding matrix HL,

which will be fed into a linear classifier to solve the sub-
sequent downstream tasks such as node classification (see
Sec. E).

C.1 Fuzzy Connections: Smoother Versions For
Skip (Residual and Initial) Connections

To counteract the negative impacts of possible noise in the
node embeddings in an individual layer (i.e., Ht−1 for a resid-
ual connection and H1 for an initial connection 2), we design
a smoother version of these two connections called fuzzy
residual connection and fuzzy initial connection, respectively.
They can be specifically formulated by expanding Line 12 in
Algorithm 1 as follows.

S
(t)
init =

t−1∑
i=1

qi−1 ·Hi ∈ Rn×d,

S
(t)
last =

t−1∑
i=1

qt−1−i ·Hi ∈ Rn×d.

(10)

2Note that we have substituted X by H1 due to possible mis-
match between their dimensions (see the last two lines in Sec. 3.1 in
the main text), which makes our implementation more convenient.



Algorithm 1: Fuzzy R-SoftGraphAIN (based on GCN)

Input: adjacency matrix A ∈ {0, 1}n×n, node features H0 = X ∈ Rn×f (with n the node num and f the feature dim)

Output: embeddings H = HL ∈ Rn×d (with d the hidden dim)

Hyper-Parameters:
the coefficients in the soft graph normalization: a, b ∈ [0, 1] (a+ b ≤ 1),
the coefficients in the skip connections: α, γ ∈ [0, 1] (α+ γ ≤ 1),
the coefficients in the fuzzy connections: p, q ∈ [0, 1],
the parameter in partial SVD algorithm: d0 ≤ n,
the layer num: L ∈ N+,
the non-linear activation function: σ(·) (ReLU(·) default)

Trainable-Parameters: {Wt}1≤t≤L (in GCN)

Note: Here we consider general situations, where W1 ∈ Rf×d if f ̸= d, otherwise Wt ∈ Rd×d for ∀t ∈ [1, L].

1: Ã← A+ In

2: D̃ ← diag
(
Ã · 1n

)
3: Â← D̃− 1

2 ÃD̃− 1
2

4: T ← In − 1
n1n1

T
n ∈ Rn×n

5: β ← 1− α− γ, q′ ← 1
▷ calculate basic matrices Â and T , and initialize q′

6: B0 ← T · ÂH0W1

▷ obtain B0 from H0, for t = 1

7: Ud0
,Λ

1
2

d0
← d0-SVD

(
BT

0 B0

)
▷ partial SVD with the parameter d0 ≤ n

▷ Ud0
,Λ

1
2

d0
∈ Rn×n with d− d0 0ns

8: H1 ← σ
(
B0 ·

[
a · Ud0

Λ
− 1

2 ·b
d0

UT
d0

+ (1− a) · Id
])

▷ obtain H1

9: Slast ← H1, Sinit ← H1

▷ initialize two fuzzy links

10: for each t ∈ [2, L] do

11: Bt−1 = α · TÂHt−1Wt + β · Slast + γ · Sinit

▷ obtain Bt−1 from Ht−1

12: Ud0
,Λ

1
2

d0
← d0-SVD

(
BT

t−1Bt−1

)
▷ partial SVD for BT

t−1Bt−1 with d0 ≤ n

▷ Ud0 ,Λ
1
2

d0
∈ Rn×n with d− d0 0ns

13: Ht ← σ
(
Bt−1 ·

[
a · Ud0

Λ
− 1

2 ·b
d0

UT
d0

+ (1− a) Id

])
▷ obtain Ht from the SVD information related to Bt−1

14: q′ ← q′ · q
▷ update q′ ∈ [0, 1]

15: Slast ← Slast · p+Ht

16: Sinit ← Sinit + q′ ·Ht

▷ update two fuzzy links Slast and Sinit (will be used in Line 11)

17: end for

18: return HL
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Figure 3: Scatter plots for different deep models on synthetic data (considering only forward pass without trainable parameters).
This vividly illustrates the phenomenon of the over-smoothness where node embeddings tend to collapse to a line or several line
segments. We can clearly observe that ours can successfully keep the clusters away from blending, thus effectively alleviating the
over-smoothness.



Then we can reformulate Line 8 in Algorithm 1 as:

Bt−1 = α · TÂHt−1Wt + β · S(t)
last + γ · S(t)

init. (11)

One can easily check that S(t)
init → H1 and S

(t)
last → Ht−1

when q → 0, which is a special degenerate case, i.e., vanilla
initial and residual connections.

C.2 How To Apply It On Other GNN Encoders
Since our method does not essentially depend on or alter the
aggregating operations employed in GCN, it can be natu-
rally viewed as a plug-and-play module for nearly all spatial
aggregation-based GNN encoders. In our experiments, in ad-
dition to GCN (Kipf and Welling 2017), we also evaluate our
method based on GAT (Veličković et al. 2018) and GIN (Xu
et al. 2019) (i.e., Ours(GAT) and Ours(GIN)), and we found
that on some graph benchmarks (e.g., OGBN-ArXiv) they
perform quite competitive or better than Ours(GCN) even
adopting the exactly same hyper-parameters as Ours(GCN)’s
without any further tuning. Here, we give a short description
of how to achieve that.

From Line 6 and Line 11 in Algorithm 1, one can easily
find that the formula ÂHt−1Wt keeps intact as that in the t-th
layer of GCN, which might imply that it can be substituted by
some other aggregating formulas in another GNN encoders,
i.e., a universal form of Ht = Agg(Ht−1;Wt).

More specifically, in GAT, it is:

H
(i)
t =

∥∥∥∥K
k=1

σ

∑
j∈Ni

αk
ijWt

kH
(j)
t−1

 , (12)

where H
(i)
t denotes the embeddings of node i ∈ V at layer

t ∈ [1, L], K is the number of attention heads, Ni is the
first-order neighborhood of node i, and αk

ij denoting the
attention coefficient from node i to node j via head k can be
represented as follows:

αij =
exp

(
LeakyReLU

([
H(i)∥H(j)

]
W ′))∑

j∈Ni
exp

(
LeakyReLU

([
H(i)∥H(j)

]
W ′

)) ,
(13)

where W ′ is another trainable matrix.
As for GIN, Ht = Agg(Ht−1;Wt) has a simple formula:

H
(i)
t = MLP

(1 + ϵ) ·H(j)
t−1 +

∑
j∈Ni

H
(j)
t−1

 . (14)

Note that although we can always apply it to more sophis-
ticated GNN encoders in addition to the selected basic ones
for the sake of further performance improvement, we want
to keep it simple and evaluate its potential. Some expanding
work might be left as future work.

D Additional Node Filtering Pre-Processing
Operation in Curriculum Learning

Framework
We know that there would exist possible noises in the la-
bel estimation process (Sec. 3.2). Furthermore, we found in

experiments that the negative impacts introduced by these net-
tlesome noises could be accumulated during the subsequent
smoothing process (Sec. 3.2), which would potentially dam-
age the final performance to some non-negligible extent. To
alleviate this issue, we apply an additional node filtering oper-
ation after label estimation based on the unconfidence scores
estimated by the following normalized entropy function of
these pseudo labels (i.e., lots of probability distributions):

H(p) =
−
∑C

i=1 pi · log (pi)
logC

∈ [0, 1], (15)

where we consider p ∈ RC as a probability distribution or
a pseudo label of some node v ∈ V and C is the number of
classes in the node classification tasks. We filter those nodes
with too large normalized entropy values out by substitut-
ing their pseudo labels via C-dimensional all-zero vectors
because we think that they are unconfident predictions with
little meaningful knowledge.

And in this process, we introduce a hyper-parameter
mask ratio ∈ [0, 1] to control how many nodes we hope to
filter out (see the hyper-parameter Tab. 21 and Tab. 22).

Besides, after this filtration, some pseudo-labels would
become invalid probability distributions during the smoothing
process. To fix this issue, we re-normalize all the pseudo-
labels 3.

Please kindly notice that there would be some other al-
ternative methods to alleviate the negative impacts due to
noise. Here we just give an example, which is employed in
our experiments.

E Downstream Linear Classifier and Loss
Function for Node Classification Tasks

We employ the following downstream linear classifier and
the cross-entropy loss function:

LCE(H
(L), y) = − 1

|V |
∑
v∈V

∑
c∈C

yv(c) · log ŷv(c),

ŷv = Softmax
(
H(L)

v Wcls

)
∈ R1×C ,

(16)

where H(L) is the final node embedding matrix, y is the
ground-truth one-hot node labels, and Wcls ∈ Rd×C is a
trainable projection matrix. We train our model end-to-end
by minimizing this loss function.

Note that we should substitute the y vector with the corre-
sponding node pseudo-labels used in different stages of the
proposed curriculum learning framework.

F Omitted Proofs
In this section, we give the proofs of the theorems and corol-
laries omitted in the main text.
Theorem 4. (Corresponding to Theorem 1 in the main text)
∀ t ≥ 1, GraphAIN satisfies that:
1) 1T

nBt = 1T
nHt = 0n; 2) HT

t Ht = Id;
3) THt = Ht; 4) Bt = ĀHt;
where Ā = TÂT denotes a doubly centered version of Â.
3to make the sum of elements in every pseudo-label equal to 1



Dataset Nodes Edges Ave.Degree Features Classes train/val/test

Cora 2,708 5,429 4.0 1,433 7 140/500/1000
Citeseer 3,327 4,732 2.84 3,703 6 120/500/1000
PubMed 19,717 44,338 4.5 500 3 60/500/1000

Coauthor CS 18,333 81,894 8.93 6,805 15 300/450/17583
Coauthor Physics 34,493 247,962 14.38 8,415 5 100/150/34243

Amazon Computers 13,381 245,778 36.74 767 10 200/300/12881
Amazon Photo 7,487 119,043 31.8 745 8 160/240/7087

Texas 183 309 3.38 1,703 5 87/59/37
Wisconsin 251 499 5.45 1,703 5 120/80/51

Cornell 183 295 3.22 1,703 5 87/59/37
Actor 7600 33544 8.83 931 5 3648/2432/1520

OGBN-ArXiv 169,343 1,166,243 13.77 128 40 91446/30482/47415

Table 4: Dataset statistics of twelve real-world benchmarks with their splits
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Figure 4: Results of Ours(GCN/GAT/GIN) against the varying hyper-parameter γ ∈ [0, 1] controlling the coefficient of the
trade-off in Skip Connections, i.e., between initial connections and residual connections
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Figure 5: Results of Ours(GCN/GAT/GIN) against the varying hyper-parameter kKNN ∈ N+ controlling the number of the
closest neighbors chosen by the vanilla KNN algorithm for every node



Proof. Recall that GraphAIN can be formulated as follows:

Ht = Bt−1

(
BT

t−1Bt−1

)− 1
2 ∈ Rn×d, ∀ t ≥ 1,

Bt−1 = T · ÂHt−1 ∈ Rn×d, H0 = X,
(17)

1) Because T = In − 1
n1n1

T
n , 1T

nT = 0T
n holds. That

is, it is true that 1T
nBt = 0T

d ,∀ t ≥ 0, and consequently
1T
nHt = 0T

d ,∀ t ≥ 1.
2) According to the definition: ∀ t ≥ 1, HT

t Ht =(
BT

t−1Bt−1

)− 1
2
(
BT

t−1Bt−1

) (
BT

t−1Bt−1

)− 1
2 = In.

3) 1T
nHt = 0d, so T · Ht =

(
In − 1

n11
T
)
Ht = Ht −

1
n11

THt = Ht.
4) ∀ t ≥ 1, Bt = TÂHt = TÂTHt = ĀHt.

Lemma 1. Consider the following linear regression with an
orthogonal condition:

Q∗ = argmin
Q
∥QA−B∥F s.t. QTQ = Id, (18)

and then we have Q∗ = UV T , where BAT = UΣV T is
the eigen-decomposition of BAT , U, V ∈ Rd×d are two
orthogonal matrices, and Σ ∈ Rd×d is a diagonal matrix
containing all the singular values of BAT .

Proof.

Q∗ = argmin
Q
||QA−B∥2F

= argmin
Q
⟨QA−B,QA−B⟩F

= argmin
Q
∥QA∥2F + ∥B∥2F − 2⟨QA,B⟩F

= argmin
Q
∥A∥2F + ∥B∥2F − 2⟨QA,B⟩F

= argmax
Q
⟨Q,BAT ⟩F

= argmax
Q
⟨Q,UΣV T ⟩F

= argmax
Q
⟨UTQV,Σ⟩F

= argmax
Q
⟨S,Σ⟩F where S = UTQV,

where S is an orthogonal matrix and Σ is a diagonal matrix.
Then S should equal Id so as to maximize the last objective.
That is S = UTQ∗V = Id, which means the solution is
Q∗ = UV T .

Corollary 1. Consider the following projection problem:

Q∗ = argmin
Q
∥Q−B∥F s.t. QTQ = Id, (19)

if B = UΣV T is the eigen-decomposition of B, then:

Q∗ = UV T . (20)

Proof. Incorporate A = In into Lemma 1, the conclusion
can be immediately achieved.

Theorem 5. (Corresponding to Theorem 2 in the main text)
GraphAIN can be viewed as an iterative process in order

to solve the following restricted optimization problem via
Projected Gradient Ascent method:

max
H

f(H) =
1

2
· tr

(
HT ĀH

)
, s.t. HTH = Id,

(21)

where H is initialized to input graph signals X ∈ Rn×d and
η = 1 is set as the step size.

Proof. We consider the following equivalent objective via
adding an additional constant:

H∗ = argmax
H

f(H) =
1

2
· tr

(
HT

(
Ā− In

)
H
)
. (22)

Then we take the derivative of f(H):

∂f(H)

∂H
=

(
Ā− In

)
H = ĀH −H. (23)

Projected Gradient Ascent includes two steps in every itera-
tion: First, we use original gradient ascent, that is:

H ′ = H + η · ∂f(H)

∂H
, (24)

where η is step-size, H is the old H , H ′ is the new one.
If we use η = 1, then we get the following equation:

H ′ = H +
∂f(H)

∂H
= H + ĀH −H = ĀH. (25)

Second, since H ′ might not satisfy the constraint, we project
it to the set satisfying the constraint:

H ′′ = H ′ (H ′TH ′)− 1
2 . (26)

The projection operation makes sense because H ′′ is the
nearest orthogonal matrix satisfying the constraint around
H ′. To see this, we do singular value decomposition for
H ′ = UΛV T , then:

H ′′ = H ′ (H ′TH ′)− 1
2

= UΛV T
(
V ΛUTUΛV T

)− 1
2

= UΛV TV Λ−1V T

= UV T .

(27)

Thus according to Corollary 1, we know that H ′′ can be
seen as a projection of H ′ onto the set consists of all orthog-
onal matrixs.

Theorem 6. (Corresponding to Theorem 3 in the main text)
Residual-favored GraphAIN can be viewed as an itera-

tive process of solving the following restricted optimization
problem via Projected Gradient Ascent method:

max
H

f(H) =
1

2
· tr

(
HT ĀH

)
− 1

2
· c
a
· ∥H −X∥2F

s.t. HTH = Id,

(28)

where H is initialized to input graph signals X ∈ Rn×d and
set the step size η = a ∈ [0, 1].



Method
Cora 2 8 16 32 64

GCN 81.45±0.37 72.72±2.37 63.40±4.40 31.90±0.70 27.56±3.36
SGC 79.00±0.46 78.02±1.06 75.26±1.06 63.84±3.63 55.39±2.51

ChebNet 80.33±1.19 78.70±1.51 68.40±1.41 31.90±1.77 20.63±5.81
GAT 82.40±0.05 78.30±0.47 76.50±0.34 72.28±0.61 31.92±0.04
GIN 80.54±0.36 76.74±1..92 68.72±1.30 60.92±3.10 31.90±0.00

PairNorm 78.30±1.33 71.06±1.74 66.80±2.71 65.00±3.74 66.24±1.58
GCNII 82.19±0.77 84.23±0.42 84.69±0.51 85.29±0.47 85.34±0.32
JKNet 79.06±0.11 75.66±0.38 72.97±3.94 73.23±3.59 72.54±3.65

GPRGNN 82.53±0.49 84.19±0.40 83.69±0.55 83.13±0.60 82.48±0.26
DAGNN 80.30±0.78 84.28±0.59 84.14±0.59 83.39±0.59 82.16±0.35
APPNP 82.06±0.46 83.59±0.40 83.64±0.48 83.68±0.48 83.66±0.36
BernNet 81.88±0.55 83.44±1.06 82.44±0.40 81.38±0.44 17.72±6.44

Ours(GCN) 84.20±0.12 85.22±0.20 84.96±0.21 85.12±0.15 84.60±0.29
Ours(GAT) 84.62±0.08 84.92±0.26 84.44±0.30 84.60±0.31 84.68±0.31
Ours(GIN) 84.24±0.33 83.96±0.35 84.08±0.41 84.18±0.58 83.80±0.16

Table 5: Accuracy comparison of node classification tasks on Cora

Method
Citeseer 2 8 16 32 64

GCN 69.46±0.29 57.74±6.30 48.70±3.48 36.66±8.61 25.40±2.34
SGC 67.92±0.85 68.42±0.46 68.08±0.73 67.50±1.43 63.08±0.29

ChebNet 69.27±0.28 63.20±1.92 58.73±2.62 33.43±3.10 24.90±1.25
GAT 71.38±0.04 64.69±0.27 62.20±0.25 59.08±0.44 22.90±2.23
GIN 68.02±0.41 59.80±0.79 53.55±1.98 47.32±3.90 23.10±0.00

PairNorm 65.80±1.35 54.81±6.46 46.26±2.69 44.20±1.23 41.48±4.63
GCNII 67.81±0.89 70.62±0.63 72.97±0.71 73.24±0.78 73.00±0.75
JKNet 66.98±1.82 60.56±1.41 54.33±7.74 50.68±8.73 52.22±6.99

GPRGNN 70.49±0.95 71.47±0.58 71.39±0.73 71.01±0.79 70.96±0.38
DAGNN 70.91±0.68 72.44±0.54 73.05±0.62 72.59±0.54 71.00±0.55
APPNP 71.67±0.78 72.04±0.52 72.13±0.53 72.13±0.59 72.02±0.46
BernNet 72.02±0.53 71.44±0.22 70.70±0.91 70.82±0.56 39.10±12.92

Ours(GCN) 74.84±0.32 74.72±0.26 74.12±0.08 74.42±0.26 74.50±0.23
Ours(GAT) 74.82±0.36 74.24±0.51 74.24±0.47 74.26±0.11 74.04±0.19
Ours(GIN) 74.58±0.81 74.22±0.08 74.04±0.33 74.88±0.31 74.16±0.29

Table 6: Accuracy comparison of node classification tasks on Citeseer



For convenience, we slightly abuse the symbols used in
the main text.

Proof. Consider the following generalized objective:

f(H) =
1

2
· tr

(
HT

(
Ā− p · In

)
H
)
− 1

2
· β · ∥H −X∥2F .

(29)

Then we take the derivative of f(H):

∂f(H)

∂H
=

(
Ā− p · In

)
·H − β · (H −X)

= Ā ·H − (β + p) ·H + β ·X.

(30)

We apply the SGD updating formulation with step size η as
follows:

H ′ = H + η · ∂f(H)

∂H

= H + η ·
(
Ā ·H − (β + p) ·H + β ·X

)
= η · Ā ·H + (1− η · (β + p)) ·H + η · β ·X.

(31)

Then let the coefficients equal to a, b and c, respectively, we
can get the following equations:

η = a

1− η · (β + p) = b

η · β = c.

(32)

Thus, we achieve: 
η = a

β = c
a

p = 1−b−c
a .

(33)

Then Eq. 31 can be transformed into:

H ′ = a · ĀH + b ·H + c ·X. (34)

This is exactly the propagation rule in Residual-favored
GraphAIN.

Moreover, according to the restriction a+ b+ c = 1, we
can determine the value of p as follows:

a+ b+ c = η + (1− η · (β + p)) + η · β
= (1− p) · η + 1 = 1,

(35)

which means p = 1 is true.
Then let β = c

a and p = 1, and the objective Eq. 29
becomes:

f(H) =
1

2
· tr

(
HT

(
Ā− In

)
H
)
− 1

2
· c
a
· ∥H −X∥2F .

(36)

This equation is equivalent to Equ. 28 due to the condition
that HTH = Id, i.e., tr

(
HTH

)
= ∥H∥2F = d.

Note that the step size η = a, and the projection formula-
tion of Residual-favored GraphAIN is the same as GraphAIN
(see Theorem 2), which completes the proof.

G Experimental Details
In this section, details of more experiments were provided
here to further evaluate the performance of our model as
complementary to the experiments in the main text.

G.1 Dataset Descriptions
Dataset statistics including their splits are summarized in
Tab. 4. In (Chen et al. 2022), a detailed introduction can be
found including all twelve homogeneous and heterophilous
graphs.

G.2 More experimental results
In this subsection, to further evaluate our model we report
more experimental results including comparative experiments
on homogeneous and heterophilous graphs with more layers,
ablation studies with specific standard errors, and results in
node classification tasks with noisy features. Some results
of layers 103 and 104 are also reported for reference in tasks
with noisy features (see next subsection for details), where
our models are always implemented based on SGC.

• Common semi-supervised node classification tasks on
homogeneous graphs: Tab. 5, Tab. 6, Tab. 7, Tab. 8, Tab. 9;

• Common semi-supervised node classification tasks on
heterophilous graphs: Tab. 10, Tab. 11;

• Ablation studies: Tab. 12, Tab. 13, and Tab. 14;
• Node classification tasks on a large-scale graph OGBN-

ArXiv in its public fixed split: Tab. 15;
• Node classification tasks in fully supervised settings (av-

erage results with multiple random 60%/20%/20% splits
following (Chen et al. 2020)) on three citation graphs:
Tab. 16;

• Results of node classification tasks on heterophilous
graphs compared to more state-of-the-art counterparts
(including some models specifically designed for het-
erophilous graphs): Tab. 17;

• Node classification tasks with noisy features: Tab. 18,
Tab. 19, Tab. 20.

G.3 Implementation details
In this subsection, we give some details on the implementa-
tions of our models against different tasks.

For seven homogeneous graphs in common semi-
supervised node classification tasks, we adopt Our model
itself based on GCN as a teacher model for fair comparison
(i.e., we don’t use other pre-trained models) and we build
the auxiliary graphs using Gaux = Gemd because we think
Gemd can be a rough estimation of similarities of ground-
truth labels of those nodes in the input graph.

For four heterophilous graphs, we adopt different imple-
mentations for adaptation to these specific scenes. Specifi-
cally, we build and aggregate in the auxiliary graphs Gaux =
Gfea and also employ Ours as the teacher to teach Ours it-
self for fairness. We choose Gfea instead of Gemd because
we assume that on these heterophilous graphs, features are
information more related to ground-truth labels of nodes
compared to their noisy structures.



Method
Pubmed 2 8 16 32 64

GCN 77.40±0.37 77.24±0.71 70.02±4.23 44.22±0.93 32.65±1.15
SGC 77.50±0.66 70.90±0.59 71.34±0.09 70.70±0.32 65.33±0.52

ChebNet 78.53±0.34 77.63±0.43 72.87±0.57 48.67±3.20 45.37±0.57
GAT 77.62±0.10 77.39±0.09 76.28±0.15 78.72±0.22 41.88±1.78
GIN 77.54±0.30 75.84±1.18 72.69±3.45 72.94±4.37 40.23±0.31

PairNorm 75.50±0.41 74.82±1.03 74.34±0.68 72.12±3.01 71.72±3.15
GCNII 78.05±1.53 79.34±0.51 80.03±0.50 79.81±0.27 79.88±0.17
JKNet 77.24±0.92 76.92±1.03 64.37±8.80 63.77±9.21 69.10±7.33

GPRGNN 78.73±0.63 78.90±0.47 78.78±1.02 78.46±1.03 78.92±1.45
DAGNN 77.74±0.57 79.68±0.37 80.32±0.38 80.58±0.51 80.44±0.46
APPNP 79.46±0.47 80.02±0.30 80.30±0.30 80.24±0.33 80.08±0.35
BernNer 79.12±0.66 78.32±0.79 77.92±0.79 70.24±10.07 32.86±8.26

Ours(GCN) 81.18±0.19 80.96±0.15 81.14±0.17 81.28±0.18 81.58±0.66
Ours(GAT) 80.64±0.25 80.34±0.27 80.16±0.18 80.46±0.34 80.20±0.24
Ours(GIN) 81.28±0.15 80.70±0.39 80.72±0.24 80.32±0.24 80.94±0.36

Table 7: Accuracy comparison of node classification tasks on Pubmed

Method CoauthorCS CoauthorPhysics

#Layers 16 32 64 16 32 64

GCN 53.19±7.23 41.29±5.11 34.23±8.31 85.23±2.18 79.87±3.86 75.34±1.12
SGC 71.75±3.65 70.52±3.96 72.51±0.89 92.34±0.20 91.46±0.48 90.77±0.67

ChebNet 48.43±8.82 29.28±6.85 23.24±0.00 77.62±2.09 70.35±3.41 50.74±0.00
GAT 85.32±0.22 85.85±0.22 12.83±2.58 91.84±0.16 91.87±0.11 17.75±1.53
GIN 70.77±3.02 52.90±3.87 20.79±5.21 85.22±2,61 83.02±2.53 24.98±10.76

PairNorm 75.17±5.15 72.71±3.21 68.62±6.79 90.18±1.17 88.51±0.95 89.11±1.49
GCNII 58.94±2.63 71.67±2.68 72.11±4.19 92.13±1.31 93.15±0.92 92.79±0.52
JKNet 81.31±3.21 81.82±3.32 82.84±3.15 91.24±0.97 90.92±1.61 89.88±1.99

GPRGNN 89.39±0.39 89.56±0.47 89.33±0.62 93.64±0.31 93.49±0.59 93.26±0.46
DAGNN 91.13±0.50 89.60±0.71 89.47±0.68 93.77±0.29 93.31±0.60 93.52±0.32
APPNP 91.64±0.53 91.61±0.49 91.58±0.36 93.96±0.36 93.75±0.61 91.61±0.33
BernNet 91.53±0.57 91.54±0.24 9.19±7.43 91.51±0.76 92.67±0.63 19.38±0.99

Ours(GCN) 92.47±0.07 92.50±0.09 92.41±0.07 94.51±0.04 94.45±0.06 94.52±0.04
Ours(GAT) 91.32±0.06 91.30±0.07 91.26±0.03 94.00±0.08 94.02±0.05 94.02±0.12
Ours(GIN) 92.06±0.21 91.79±0.06 91.71±0.04 94.44±0.04 94.56±0.12 94.53±0.16

Table 8: Node classification accuracy comparison on CS and Physics



Additionally, for node classification tasks with noisy fea-
tures, we maintain the basic settings in the common semi-
supervised node classification tasks (e.g., we use the same
splits for all benchmarks). We employ Gori as the auxiliary
graph and also use Ours as a teacher similar to the other
scenes. But here we utilize SGC-based implementations for
our models because we hope to conveniently implement mod-
els with 103 and 104 layers. More specifically, we first use a
simple linear layer for efficient dimension reduction and use
the non-parametric SGC with L layers for propagation and
finally use k-layer MLP to do feature transformation due to
limited non-linearity where k ∈ [l, 5] is a hyper-parameter
chose via their validation sets. For layers no more than 64,
we directly train Our model in an end-to-end manner.

But for deeper layers (e.g., 103 and 104 layers), we tend to
stop the gradient and avoid building the computation graphs.
Thus this trick can efficiently reduce the time for training and
the out-of-memory issue, though the expressivity is restricted.
In other words, it’s a trade-off between runtime, space com-
plexity, and nonlinearity. So to supplement non-linearity, we
tend to use an MLP instead of a simple linear layer.

We employ a 3090 GPU (with 24G Memory) to run other
models due to possible OOM issues while a 2080Ti GPU
(with 12G Memory) for ours. Pairnorm means GCN-based
Pairnorm (Zhao and Akoglu 2020). For layers more than
64 (i.e., 103 and 104 layers), the motivation for them is as
follows: 1) to show SGC can unavoidably suffer from over-
smoothness when the layers are deep enough; 2) to show our
model will not suffer from over-smoothness even with a suf-
ficiently large depth, conforming to the theoretical analysis.

Because of the high time and space complexity for our
model with 103 layers and above, we do not give the com-
parison results for the case. Anyhow, by compromising the
performance and reducing the time and space complexity,
we present those comparison results in the scenarios with
noisy features at 103 and 104 layers. We trust those compar-
isons can similarly carry over to the non-noisy scenarios and
achieve even better accuracy.

G.4 Hyper-parameter Configurations
It’s difficult to well-tune all the hyper-parameters simultane-
ously, so we do it in three stages: 1) Tune hyper-parameters
in R-SoftGraphAIN but with all other hyper-parameters fixed;
2) Tune hyper-parameters in Curriculum Learning but with
all other hyper-parameters fixed; 3) fine-tune other hyper-
parameters excepting that of R-SoftGraphAIN and Curricu-
lum Learning (e.g., learning rate, dropout rate, and weight
decay).

In every stage above, we choose the hyper-parameters
according to their best validation performance. The search
spaces of all meaningful hyper-parameters are listed in
Tab. 22, and we omit some unimportant ones because they
are actually robust to model performance. For every kind of
experiment, we search in the space randomly for 500 times
in total (i.e., the sum of all layers). Additionally, we report
all hyper-parameters configurations used by Ours(GCN) for
comparative experiments in Tab. 21. Note that the exactly
same hyper-parameters are employed for Ours(GAT) and
Ours(GIN) to reduce the burden of computational resources.

In other words, with further appropriate hyper-parameter
tuning, these two versions might have more outstanding per-
formance, possibly due to the fact that the encoders (i.e., GAT
and GIN) are more powerful than GCN itself.

In addition, note that in our experiments, we do not
directly use the hyper-parameters α, β, γ in Tab. 21. In
fact, we use their values after normalization, i.e., letting
α = α/ (α+ β + γ) ∈ [0, 1] in order to satisfy the rule
α+ β + γ = 1 in the main text (see Sec. 3.1).

H Extensive Visualizations
In this section, we plot the original features, embeddings out-
put by SGC, and embeddings output by our model on eleven
real-world graph benchmarks respectively in Fig. 6, Fig. 7,
and Fig. 8. These demonstrate that our model obtains clearer
clustering boundaries compared to SGC, which conforms
to the fact that our model achieves a performance gain in
comparison.

Moreover, Fig. 3 gives visualizations of the embeddings
produced by different deep models with synthetic data that
is generated as follows: first choose several cluster centers
{ci} in R3, then sample points inN (ci, I), where colors and
edges are created following Bernoulli distributions to ensure
that points in the same class tend to share a link and the
same color. These visualizations show that our model obtains
clearer decision boundaries compared to the baseline models
including SGC and Pairnorm, conforming to the performance
gain of our model.

I Discussion on the Time and Space
Complexities

The theoretical time complexity is analysed O(Ld2d0) where
d, d0 ≪ n if partial-SVD or truncated-SVD (Halko, Mar-
tinsson, and Tropp 2011) is utilized. And it would become
O(Ld3) with a full SVD decomposition. However, it is ef-
ficient under the high-parallelizability implemented via Py-
torch. The theoretical space complexity is O (L (n+ d) d).

J Additional Hyper-parameter Studies
In this section, to help readers better understand the properties
of our method, we further conduct some additional hyper-
parameter studies on the hyper-parameter α, γ, and kKNN ,
which we think are somewhat important in our framework.
We study these hyper-parameters based on all versions, i.e.,
Ours(GCN), Ours(GAT), and Ours(GIN). We visualize the
line graph considering the effects of them on the final results
(see Fig. 4 and Fig. 5).

Fig. 4 illustrates how the trade-off between residual con-
nections and initial connections influences the final perfor-
mance, considering fixing the hyper-parameter β. Note that
studying the hyper-parameter γ is equivalent to studying the
hyper-parameter α in this situation. From this figure, we can
see that in some datasets, γ should not be too small; other-
wise, the performance would decline or fluctuate. However, a
too-high value of γ also hurt the performance in some cases
(e.g., nearly all versions on Cora and Ours(GAT) on Pubmed).
Therefore, we had better keep its value ranging between 0.3
and 0.7 on Cora, Citeseer, and Pubmed, because it seems



Method AmazonComputers AmazonPhoto

#Layers 16 32 64 16 32 64

GCN 64.02±2.38 58.30±3.35 37.58±0.05 70.81±3.48 58.47±8.80 50.21±3.99
SGC 37.48±0.07 37.44±0.12 37.50±0.08 35.64±6.11 26.08±1.39 24.57±1.32

ChebNet 65.42±4,04 58.58±3.29 50.12±2.15 69.63±6.90 65.28±3.55 64,83±0.72
GAT 76.90±0.49 76.05±0.20 37.18±0.53 89.27±0.29 83.73±0.74 25.36±0.20
GIN 71.91±2.71 39.18±3.77 37.50±0.09 82.25±2.04 65.98±2.14 25.27±0.13

PairNorm 77.41±1.85 74.96±2.09 74.35±1.82 82.72±1.19 82.66±2.47 79.55±2.51
GCNII 38.88±4.26 37.56±0.43 37.50±0.08 68.37±6.61 62.95±9.41 65.12±2.86
JKNet 60.76±5.10 67.99±5.07 67.78±4.79 74.86±8.45 78.42±6.95 79.73±7.26

GPRGNN 76.07±2.28 41.94±9.95 78.30±2.51 91.55±0.43 91.74±0.81 91.28±0.88
DAGNN 80.33±1.04 79.73±3.63 79.23±2.36 90.81±0.59 89.96±1.16 87.86±0.70
APPNP 39.41±5.80 43.02±10.16 41.42±7.50 64.59±20.09 59.62±23.27 63.63±19.28
BernNet 84.23±1.62 81.86±1.63 12.81±12.10 89.17±1.91 91.59±0.15 16.53±5.78

Ours(GCN) 85.24±0.05 85.21±0.11 85.13±0.08 91.98±0.09 92.06±0.19 92.03±0.12
Ours(GAT) 84.88±0.14 84.82±0.27 85.04±0.15 92.04±0.07 91.98±0.07 92.00±0.05
Ours(GIN) 85.30±0.13 85.16±0.12 85.13±0.08 92.00±0.03 92.03±0.05 91.98±0.04

Table 9: Node classification accuracy comparison on Computers and Photo

somewhat stable in this range. And definitely, we can specifi-
cally and carefully tune it according to the validation sets of
all these datasets.

From Fig. 5, we can clearly observe a relatively stable
line trend between the hyper-parameter kKNN and the model
performance. In most cases, we think the range [5, 7] is quite
appropriate despite some exceptions. However, according to
this line graph, we generally think that it is not necessary to
carefully select or tune this hyper-parameter, though one can
definitely do it.

K Discussion On The Connections Between
R-SoftGraphAIN and SmoothCurriculum

In this section, to help readers better understand our method,
we briefly discuss the connection of our proposed two
parts, i.e., R-SoftGraphAIN and SmoothCurriculum. At first
glimpse, the proposed two parts have little essential rela-
tionship, because both of them can be applied to different
graph encoders to improve their performance. But under the
intrinsic design and basic motivation on facilitating a better
deep GNN model, they can be parts that get along with each
other quite well, and thus can be viewed as a whole part.
Specifically, one can easily notice that, according to its prop-
erties, R-SoftGraphAIN can preserve knowledge into d (or
d0, more accurately) different channels and organize them
well, e.g., the information in different channels would not in-
tervene with each other. With the aid of it, GNN encoders can
definitely improve performance when layers go deep. How-
ever, without the help of curriculum learning, the supervised
knowledge (i.e., label information) absorbed by this module
keeps constantly the same. Therefore, it would organize this
knowledge adaptively and in its own way, which is not quite
understandable and depends on both the feature and the input
graph structure. But under the guide of the proposed curricu-
lum learning framework, it will be gradually fed with the
knowledge that is from easy to hard, from low-frequency to
high-frequency, from global to local, and from generalizable

to relatively noisy or unnecessary. So fortunately, it has some
opportunities to load different knowledge hierarchies into
different channels and intuitively avoid some unnecessary
forgetting. For example, it could employ the first several chan-
nels to differentiate relatively larger communities, and use
additional channels to more accurately locate neighborhoods
and nodes themselves. Besides, to reduce the negative influ-
ence of noise, it can stop learning early when necessary. On
the other hand, if using the curriculum learning framework
individually and, e.g., applying it to GCN, GCN might have
only one channel, and thus the new knowledge might replace
the old one and the model tends to forget some basic yet
important and generalizable label information, assuming the
graph is connected. But with the help of R-SoftGraphAIN,
it might help organize this information well. That’s why we
think these two parts can be viewed as a whole to significantly
improve the model’s performance.



(a) Cora(Original Feature) (b) Cora(SGC) (c) Cora(Ours)

(d) Citeseer(Original Feature) (e) Citeseer(SGC) (f) Citeseer(Ours)

(g) Pubmed(Original Feature) (h) Pubmed(SGC) (i) Pubmed(Ours)

Figure 6: Scatter plots of original features and embeddings output via 32-layer SGC and our model on real-world benchmarks
Cora, Citeseer, and Pubmed



(a) CoauthorCS(Original Feature) (b) CoauthorCS(SGC) (c) CoauthorCS(Ours)

(d) CoauthorPhysics(Original Feature) (e) CoauthorPhysics(SGC) (f) CoauthorPhysics(Ours)

(g) AmazonComputers(Original Feature) (h) AmazonComputers(SGC) (i) AmazonComputers(Ours)

(j) AmazonPhoto(Original Feature) (k) AmazonPhoto(SGC) (l) AmazonPhoto(Ours)

Figure 7: Scatter plots of original features and embeddings output via 32-layer SGC and our model on real-world benchmarks
CS, Physics, Computers, and Photo



(a) Texas(Original Feature) (b) Texas(SGC) (c) Texas(Ours)

(d) Wisconsin(Original Feature) (e) Wisconsin(SGC) (f) Wisconsin(Ours)

(g) Cornell(Original Feature) (h) Cornell(SGC) (i) Cornell(Ours)

(j) Actor(Original Feature) (k) Actor(SGC) (l) Actor(Ours)

Figure 8: Scatter plots of original features and embeddings output via 32-layer SGC and our model on real-world benchmarks
Texas, Wisconsin, Cornell, and Actor



Method Texas Wisconsin

#Layers 16 32 64 16 32 64

GCN 62.16±2.70 62.16±2.70 62.16±2.70 57.84±4.90 57.84±4.90 57.84±4.90
SGC 62.03±0.59 56.41±4.25 56.96±5.28 52.25±7.19 51.29±6.44 52.16±7.08

ChebNet 69.37±1.56 64.86±0.00 64.86±0.00 71.90±3.00 52.94±0.00 52.94±0.00
GAT 64.32±2.96 65.41±1.21 64.86±0.00 53.33±1.64 53.73±1.07 53.33±0.88
GIN 52.97±6.78 62.17±4.44 60.00±4.01 47.06±3.67 47.06±2.40 50.98±4.38

PairNorm 32.70±17.41 41.08±18.04 40.68±16.71 44.51±11.33 52.84±8.97 52.94±11.35
GCNII 69.59±6.10 69.19±6.56 65.41±2.02 71.86±1.89 70.31±4.75 59.02±0.78
JKNet 65.41±3.03 61.08±6.23 66.49±2.76 55.98±3.53 52.76±5.69 56.08±4.04

GPRGNN 62.70±2.65 62.27±4.97 61.08±1.99 67.94±3.58 71.35±5.56 64.90±2.77
DAGNN 61.08±1.99 57.68±5.07 60.27±2.43 55.49±3.78 50.84±6.62 51.76±4.78
APPNP 64.46±3.11 60.68±4.50 64.32±2.78 59.31±3.71 54.24±5.94 59.90±3.00
BernNet 76.22±2.02 61.08±1.32 16.76±7.33 80.00±2.88 63.53±4.74 24.71±7.60

Ours(GCN) 85.95±1.21 85.41±1.48 84.86±1.48 82.35±1.39 83.14±1.75 84.71±0.88
Ours(GAT) 79.46±1.48 78.92±4.83 78.38±1.91 72.94±4.25 73.73±2.97 74.90±1.64
Ours(GIN) 82.70±1.58 82.57±1.48 83.12±1.33 82.35±1.39 81.78±2.15 81.20±1.21

Table 10: Node classification accuracy comparison on heterophilous graphs: Texas and Wisconsin

Method Cornell Actor

#Layers 16 32 64 16 32 64

GCN 56.76±2.70 56.76±2.70 56.76±2.70 25.16±0.30 25.16±0.30 25.16±0.30
SGC 55.41±1.35 58.57±3.44 55.41±1.35 25.88±0.49 26.17±1.15 25.88±0.49

ChebNet 55.86±1.56 55.86±1.56 52.25±1.56 34.71±0.11 25.46±0.00 25.46±0.00
GAT 53.51±2.26 54.05±0.00 55.14±1.48 26.70±0.13 25.54±0.09 25.62±0.13
GIN 55.68±2.42 54.59±1.21 55.14±1.48 24.78±1.08 24.36±2,48 23.45±2.73

PairNorm 35.95±16.77 36.89±18.63 40.68±12.89 22.84±2.29 24.33±1.60 23.23±2.84
GCNII 66.49±5.88 74.16±6.48 56.92±2.02 33.79±0.68 34.28±1.12 34.64±0.71
JKNet 50.27±3.95 57.30±4.95 51.49±4.40 29.23±0.65 28.80±0.97 28.26±0.43

GPRGNN 53.11±3.45 58.27±3.96 52.16±3.74 32.83±0.88 29.88±1.82 32.43±0.49
DAGNN 55.27±2.49 58.43±3.93 52.43±5.01 27.66±0.67 27.73±1.08 25.45±0.64
APPNP 56.35±2.46 58.43±3.74 54.69±2.55 28.38±0.79 28.65±1.28 28.19±0.97
BernNet 72.97±1.71 52.43±9.46 11.89±1.32 36.31±0.39 28.19±1.10 20.66±3.10

Ours(GCN) 82.16±1.48 82.70±1.48 82.62±1.21 38.16±0.15 38.42±0.23 38.49±0.34
Ours(GAT) 81.62±2.26 77.84±2.26 81.62±1.21 35.04±0.42 34.97±0.34 35.54±0.61
Ours(GIN) 80.00±1.48 81.08±1.91 81.08±1.91 34.46±0.51 34.51±0.27 34.50±0.61

Table 11: Node classification accuracy comparison on heterophilous graphs: Cornell and Actor

Method Cora Citeseer Pubmed

#Layers 32 64 32 64 32 64

w.o. SG 83.30±0.12 84.60±0.29 72.98±0.50 72.62±0.98 80.26±0.98 80.30±0.23
w.o. RC 82.88±0.79 82.40±0.33 72.82±1.01 71.04±0.55 78.84±0.59 78.60±0.27

w.o. R-SG 40.22±5.71 36.74±4.36 29.32±3.47 27.70±2.94 46.28±4.91 28.61±3.64
w.o. LS 83.96±0.65 84.00±0.22 73.64±0.68 74.34±0.79 81.04±0.21 80.86±0.79
w.o. CL 82.40±0.65 82.58±0.87 73.20±0.77 72.54±0.42 79.34±0.39 79.00±0.54

Ours(GCN) 85.12±0.15 84.87±0.26 74.42±0.26 74.50±0.23 81.28±0.18 81.58±0.66

Table 12: Ablation Studies on Cora, Citeseer, and Pubmed



Method CoauthorCS CoauthorPhysics

#Layers 32 64 32 64

w.o. SG 91.79±0.07 91.70±0.07 94.23±0.25 94.25±0.13
w.o. RC 91.40±0.26 89.03±0.62 92.99±0.19 92.59±0.63

w.o. R-SG 51.61±18.23 28.51±4.70 77.20±11.95 60.94±8.23
w.o. LS 92.02±0.05 91.95±0.08 94.10±0.11 94.06±0.08
w.o. CL 89.60±0.20 89.23±0.12 92.46±0.61 92.22±0.56

Ours(GCN) 92.50±0.09 92.41±0.07 94.45±0.06 94.52±0.04

Table 13: Ablation Studies on CS aand Physics

Method AmazonComputers AmazonPhoto

#Layers 32 64 32 64

w.o. SG 82.34±0.67 84.50±0.28 90.26±1.57 91.69±0.37
w.o. RC 83.78±0.52 84.25±0.37 91.42±0.32 91.14±0.48

w.o. R-SG 61.52±8.27 49.94±9.69 83.77±9.52 70.09±12.39
w.o. LS 84.52±0.93 84.91±0.16 91.50±0.30 91.64±0.40
w.o. CL 84.00±0.97 84.44±0.56 90.58±0.94 90.41±1.07

Ours(GCN) 85.21±0.11 85.13±0.08 92.06±0.19 92.03±0.12

Table 14: Ablation Studies on Computers and Photo

Method OGBN-ArXiv

#Layers 32 64

GCN 46.38±3.87 42.95±3.93
SGC 34.22±0.04 23.14±7.85

ChebNet 41.00±1.59 35.16±2.23
GAT 59.78±0.25 36.63±1.71
GIN 65.17±0.31 60.56±0.57

PairNorm 63.32±0.97 43.57±1.24
GCNII 72.60±0.25 70.07±0.14
JKNet 66.31±0.63 65.80±0.27

GPRGNN 70.18±0.16 69.98±0.15
DAGNN 71.46±0.27 70.58±0.12
APPNP 66.94±0.26 66.90±0.15
BernNet 45.16±0.33 37.18±2.52

Ours(GCN) 74.07±0.08 73.95±0.06
Ours(GAT) 74.37±0.07 74.41±0.05
Ours(GIN) 75.02±0.12 74.85±0.09

Table 15: Node classification accuracy comparison on the large-scale graph: OGBN-ArXiv

Method Cora Citeseer Pubmed

GCN 52.53±8.94 29.98±6.25 48.75±9.33
SGC 76.16±0.27 69.62±0.63 78.09±0.51

PairNorm 80.50±0.19 63.34±5.93 80.55±3.16
GCNII 88.08±0.25 75.47±0.32 89.53±0.16
JKNet 85.05±0.47 74.15±0.70 89.25±0.39

GPRGNN 87.47±0.35 74.29±0.48 90.61±0.12
DAGNN 87.67±0.39 73.82±0.49 87.21±0.13
APPNP 88.28±0.63 75.76±0.51 89.05±0.11

Ours(GCN) 90.16±0.33 77.23±0.35 91.01±0.12

Table 16: Results comparison of node classification tasks in multiple random splits (60%/20%/20%) on three citation graphs



Method Texas Wisconsin Cornell Actor

GAT (Veličković et al. 2018) 61.62 54.71 59.46 28.06
Gemo-GCN (Pei et al. 2019) 67.57 64.12 60.81 31.63

H2GCN (Zhu et al. 2020) 84.86 86.67 82.16 35.86
FAGCN (Bo et al. 2021) 84.32 83.33 81.35 35.74
GCA (Zhu et al. 2021) 59.46 50.78 55.41 29.65

BGRL (Thakoor et al. 2021) 59.19 52.35 57.30 29.86
VGAE (Kipf and Welling 2016) 59.20 56.67 59.19 26.99

FSGNN* (Maurya, Liu, and Murata 2022) 87.30 88.43 88.11 35.75

Ours(GCN) 85.95 84.71 82.70 38.49
Ours(GCN)* 94.74 88.24 91.05 37.73

Table 17: More result comparison on these heterophilous graphs (models with the suffix ∗ are evaluated in multiple random
splits, i.e., 60%/20%/20%)

Method
Cora 2 4 8 12 16 24 32 64 1000 10000

GCN 54.8 66.1 72.2 70.2 65.6 56.6 56.0 31.9 31.9 31.9
SGC 55.0 65.2 72.1 75.1 75.0 77.0 75.6 75.6 16.8 15.7

GCNII 40.7 49.4 60.1 65.8 62.4 62.6 65.9 62.4 65.7 63.4
Pairnorm 56.6 60.6 63.2 67.9 70.5 70.8 61.9 35.5 54.4 31.8

Ours(GCN) 69.9 72.4 74.4 78.3 78.8 78.5 77.8 76.7 76.6 75.0

Table 18: Accuracy of different models with varying layers in node classification tasks with noisy features on Cora

Method
Citeseer 2 4 8 12 16 24 32 64 1000 10000

GCN 36.1 45.4 49.4 48.4 47.6 43.3 43.8 23.3 18.1 18.1
SGC 37.9 44.0 51.1 52.3 54.0 53.0 55.2 56.0 47.0 22.4

GCNII 32.8 33.5 34.7 43.4 45.1 42.8 45.9 46.8 48.5 46.8
Pairnorm 37.5 43.4 48.2 47.7 46.9 44.3 38.9 34.8 34.4 34.4

Ours(GCN) 46.5 49.4 53.1 51.8 54.6 55.1 55.4 55.7 55.0 53.5

Table 19: Accuracy of different models with varying layers in node classification tasks with noisy features on Citeseer

Method
Pubmed 2 4 8 12 16 24 32 64 1000 10000

GCN 40.4 48.0 57.3 61.2 60.4 59.4 57.3 44.8 40.7 OOM
SGC 40.6 47.6 62.3 69.2 71.2 74.6 74.9 78.6 34.1 34.1

GCNII 39.7 41.3 41.2 40.6 40.3 40.0 41.0 39.7 39.3 OOM
Pairnorm 41.3 48.8 61.4 65.7 68.1 67.4 65.3 66.6 65.7 OOM

Ours(GCN) 45.7 52.7 70.1 69.8 73.9 76.2 78.0 78.5 71.0 71.0

Table 20: Accuracy of different models with varying layers in node classification tasks with noisy features on Pubmed
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