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Abstract

The imbalanced distribution of long-tailed data presents a
considerable challenge for deep learning models, as it causes
them to prioritize the accurate classification of head classes
but largely disregard tail classes. The biased decision bound-
ary caused by inadequate semantic information in tail classes
is one of the key factors contributing to their low recog-
nition accuracy. To rectify this issue, we propose to aug-
ment tail classes by grafting the diverse semantic information
from head classes, referred to as head-to-tail fusion (H2T).
We replace a portion of feature maps from tail classes with
those belonging to head classes. These fused features sub-
stantially enhance the diversity of tail classes. Both theoret-
ical analysis and practical experimentation demonstrate that
H2T can contribute to a more optimized solution for the de-
cision boundary. We seamlessly integrate H2T in the classi-
fier adjustment stage, making it a plug-and-play module. Its
simplicity and ease of implementation allow for smooth in-
tegration with existing long-tailed recognition methods, fa-
cilitating a further performance boost. Extensive experiments
on various long-tailed benchmarks demonstrate the effective-
ness of the proposed H2T. The source code is available at
https://github.com/Keke921/H2T.

Introduction
Deep models have shown remarkable capabilities in diverse
visual recognition tasks (Hu et al. 2019; Cheung, Li, and
Zou 2021; Minaee et al. 2022; Lan et al. 2024), yet their
performance heavily relies on data that is evenly distributed
across categories. In contrast, real-world data typically fol-
lows long-tailed distributions (Reed 2001; Liu et al. 2019;
Zhang et al. 2023), which hinders model performance, es-
pecially on minority classes (referred to as tail classes in
long-tailed data). This challenge has become one of the bot-
tlenecks limiting the advancement of deep models. In recent
times, a plethora of methods have emerged to address the
problem of severe class imbalance in long-tailed data from
different aspects, such as class-balancing methods (Chawla
et al. 2002; Huang et al. 2016; Ren et al. 2018; Cui et al.
2019; Lin et al. 2020; Huang et al. 2020; Hong et al. 2021;
Park et al. 2021), re-margining methods (Cao et al. 2019; Li,
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Figure 1: Comparison between decision boundaries pro-
duced by (a) existing methods and (b) proposed H2T.

Cheung, and Lu 2022; Li, Cheung, and Hu 2022), data aug-
mentation (Kim, Jeong, and Shin 2020; Wang et al. 2021a;
Li et al. 2021; Park et al. 2022), and ensembling learn-
ing (Wang et al. 2021b; Li et al. 2022a; Jin et al. 2023).
While these methods demonstrated the capability to yield
robust predictions, they primarily focus on training a new
model to acquire a relatively balanced embedding space
and/or assembling multiple diverse networks. However, they
overlook acquiring a more optimal classifier (determining
the decision boundary), which is crucial for fully releasing
the potential of the acquired backbone.

This paper thereby aims to obtain a more effective classi-
fier with the trained backbone. It is widely recognized that
increasing class margins (Cao et al. 2019; Deng et al. 2019)
and/or tightening the intra-class space (Wang et al. 2018,
2017) for the training set can improve the generalization per-
formance of the model (Liu et al. 2021; Hu et al. 2023).
However, while the clear margin is effective for balanced
data, it may still have a biased decision boundary for long-
tailed data. Take the binary case in the embedding space of
the obtained backbone as an example, the decision bound-
ary is usually the midline connecting the two class centroids.
The head class has sufficiently sampled and its embedding
space is fully occupied (Xiao et al. 2021). On the opposite,
the tail class suffers from a scarcity of samples, leading to
sparsely distributed semantic regions. The bias in the tail
centroid persists due to head squeeze even if the existence
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of a clear margin. As a result, during the inference stage, a
considerable number of samples that differ from the train-
ing set emerge, causing the erosion of well-defined margins.
Consequently, numerous tail class samples are misclassified
as head classes, as illustrated in Figure 1(a).

To enrich the sparse tail class semantics and calibrate the
bias in tail classes, we propose a direct and effective solu-
tion, named head-to-tail fusion (H2T), which grafts partial
semantics from the head class on the tail class. In particular,
the fusion operation in H2T involves the direct replacement
of certain features of tail samples with those of head sam-
ples. This is based on the assumption that predictions on tail
classes that have rare instances are easily affected by head
classes that appear frequently. Transferring the head seman-
tics can effectively fill the tail semantic area and the cate-
gory overlap, which compels the decision boundary to shift
closer to a more optimal one, as shown in Figure 1(b). Ulti-
mately, the generalization performance of the tail classes can
be improved. To streamline the fusion operation, we design
an easy-to-implement strategy that takes full use of the ob-
tained features without retraining the backbone. Specifically,
we randomly substitute several channels in the feature maps
of the class-balanced data with those of the head-biased data.
This makes the feature maps of tail classes with a high prob-
ability of being fused with head classes. We apply H2T to
the classifier tuning stage, and with just a few lines of code
and a few epochs of training, remarkable performance im-
provements can be achieved. In addition, H2T does not alter
the structure of the backbone or increase the network pa-
rameters. This characteristic makes it highly adaptable and
compatible with various existing techniques, facilitating its
seamless incorporation into diverse existing methods. The
main contributions of this paper are summarized as follows:
• We propose a novel H2T that borrows information from

head classes and applies it to augment tail classes without
additional data or network parameters, which can release
the potential of the well-trained backbone and obtain bet-
ter decision boundaries.

• We devise a simple fusion strategy that partially sub-
stitutes the feature maps of an instance-wise sampling
branch with those of a class-balanced sampling branch.
This approach enables H2T to be implemented with ease
and without requiring any modifications to the original
backbone structure.

• Considerable performance improvement is achieved in
both single and multi-expert models by integrating the
H2T module into the existing structures. Extensive ex-
periments on popular benchmarks validate the efficacy
of the proposed method.

Related Work
This section mainly makes an overview of methods based on
data augmentation which is the most relevant regime.
Classical Augmentation: Classical augmentation methods
including flip, rotate, crop, padding, and color jittering
etc. (Szegedy et al. 2015; He et al. 2016) have been widely
applied in deep models. On long-tailed data, these meth-
ods can improve model robustness and prevent overfitting

to specific input patterns to a certain extent. Recently, Au-
toAugment (Cubuk et al. 2019), Fast AutoAugment (Lim
et al. 2019), Population based augmentation (Ho et al. 2019)
and Randaugment (Cubuk et al. 2020), etc. have been pro-
posed to determine the best data augmentation strategy for a
dataset automatically. These methods have been proven to be
effective in increasing the classification accuracy for DNNs
and also have demonstrated their efficacy on long-tailed data
(Ren et al. 2020; Cui et al. 2021; Li et al. 2022b).
MixUp Based Augmentation: MixUp (Zhang et al. 2018)
is an effective data augmentation method that linearly com-
bines a pair of row images and their labels. This method
adds complexity control to the uncovered space in the data
space through linearly interpolating discrete sample points,
which reduces the model generalization error. Numerous
studies (Zhang et al. 2021; Zhong et al. 2021; Li, Cheung,
and Lu 2022) have experimentally proven that MixUp can
significantly improve long-tailed recognition performance.
CutMix (Yun et al. 2019), a variant of MixUp, augments
data by cutting a patch from one input image and pasting
it into another image within the training set. The ground
truth labels are combined in proportion to the patch areas.
Park et al. (Park et al. 2022) propose mixing the foreground
patches from tail classes with the background images from
head classes via CutMix, enabling the transfer of context-
rich background information from head to tail.
New Images Based Augmentation: In addition to the
aforementioned methods, researchers have proposed alter-
native approaches that generate new informative samples for
tail classes. One such method is M2m (Kim, Jeong, and
Shin 2020), which translates samples from head classes to
tail classes using a pretrained auxiliary classifier. Wang et
al. (2021a) utilize the learned encoded variation informa-
tion from head classes to synthesize images for tail classes.
Zada et al. (2022) directly exploit pure noise images as tail
class samples. Zhang et al. (2021) utilize class activation
maps (CAM) (Zhou et al. 2016) to separate image fore-
ground and background, followed by augmenting the fore-
ground by flipping, rotating, and scaling, etc. The new sam-
ples are then generated by overlaying the augmented fore-
ground on the unchanged background.
Feature Level Augmentation: Data augmentation can also
be performed in feature space. For example, Manifold
MixUp (Verma et al. 2019) conducts the linear interpolation
on the features of input images, which has been shown to
yield better results in long-tail learning (Zhang et al. 2021;
Zhou et al. 2020). Chu et al. (2020) use CAM to decom-
pose features into class-generic and class-specific compo-
nents. Tail classes are then augmented by combining their
class-specific components with the class-generic compo-
nents. Another promising technique is to transfer knowl-
edge from head classes to tail classes. For example, Yin et
al. (2019) and Liu et al. (2020) enrich tail classes with the
intra-class variance of head classes to balance the class dis-
tributions in feature space. Recently, meta-learning-based
augmentation has been leveraged to address class imbalance.
Liu et al. (2022) design a meta-embedding that uses a mem-
ory bank to enrich tail classes. MetaSAug (Li et al. 2021)
learns class-wise covariance matrices by minimizing loss on
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a small balanced validation set and subsequently uses the
learned matrices to semantically augment tail classes.

Methodology
Preliminaries
We formally define the basic notations used in this paper
before going into detail about our proposed method. We
use {x, y} to represent one input image and its correspond-
ing label. The total number of classes is denoted by C,
thus, we have y ∈ {0, 1, · · · , C − 1}. The training set
includes N samples. Suppose that class i has ni training
samples. Then N =

∑
i ni. For simplicity, we suppose

n0 ≥ n1 ≥ · · · ≥ nC−1. Feed x into the backbone, we
can obtain its feature maps before the last pooling layer,
denoted as F = [F0, F1, · · · , Fd−1] ∈ RwF×hF×d, where
wF and hF represent the width and height of the feature
map, respectively. d is the dimension of features in embed-
ding space. The representation after the last pooling layer is
f ∈ Rd. The weight of the linear classifier is represented
as W = [w0, w1, · · · , wC−1] ∈ Rd×C , where wi represents
the classifier weight for class i. We use the subscripts h,m
and t to indicate head, medium and tail classes, respectively.
zi = wT

i f represents the predicted logit of class i, where the
subscript i = y denotes the target logit and i ̸= y denotes
the non-target logit.

Motivation
Head classes are significantly more numerous than tail
classes in long-tailed data, resulting in a biased classifier,
which leads to poor performance on the test set of tail
classes. The straightforward solution involves increasing the
importance or frequencies of tail classes (Cao et al. 2019;
Zhou et al. 2020; Ando and Huang 2017). They can increase
the performance of tail classes, nevertheless, they also en-
tail an elevated risk of overfitting. To adjust the decision
boundary and prevent overfitting, it is crucial to enhance
the diversity of tail class samples (Zhang et al. 2023; Yang
et al. 2022). Unfortunately, directly obtaining more samples
is generally infeasible. We can consider enriching the tail
class by maximizing the utilization of existing features. Typ-
ically, the misclassified samples are unseen instances from
the training set, and these instances tend to be interspersed
in the vicinity of the decision boundary. This pattern pro-
vides us an opportunity to augment the diversity within tail
classes and populate class margins with semantically mean-
ingful samples. This augmentation process contributes to an
optimal decision boundary. To achieve this, we simulate the
potential unseen samples by directly borrowing semantic in-
formation from head classes to augment tail classes. By do-
ing so, the rich semantic information can be transferred from
well-represented head classes to tail classes.

Methodology: Fusing Head Features to Tail
We fuse the features of head classes to the tail to exploit the
abundant closet semantic information. This operation can
enrich the tail classes and expand their embedding space dis-
tribution. The fusion process is formulated as:

F̃ = Mp ⊗Ft +Mp ⊗Fh, (1)

where Mp is the mask stacked with multiple 1 matrices
IM = 1wF×hF and 0 matrices OM = 0wF×hF . The total
number of all the 1 and 0 matrices is d. Mp is the comple-
ment of Mp, that is, the indices of 0 matrices in Mp corre-
spond to the 1 matrix in Mp, and vice versa. The subscript
p of the mask matrices represents the fusion ratio. Specially,
the number of IM and OM is [d × p] and d − [d × p], re-
spectively. [·] means rounding operation. F̃ is then passed
through a pooling layer and classifier to predict the corre-
sponding logits z = [z0, z1, · · · , zC−1]. Different loss func-
tions, such as CE loss, MisLAS (Zhong et al. 2021), or
GCL (Li, Cheung, and Lu 2022), to name a few, can be
adopted. The backbone ϕ can be the single model (He et al.
2016) as well as the multi-expert model (Wang et al. 2021b;
Xiang, Ding, and Han 2020). We exploit the two-stage train-
ing (Kang et al. 2020) and apply H2T in stage II.

The selection of features to be fused poses a tedious task
during training since visual recognition tasks often encom-
pass a vast number of categories, and it cannot be guaran-
teed that each minibatch contains the required categories.
We thereby devise a simple strategy to facilitate an easy-
to-execute fusion process. This strategy involves sampling
two versions of data: 1) class-balanced data T B used to bal-
ance the empirical/structural risk minimization (ERM/SRM)
of each class, which is fed into the fused branch, and 2)
instance-wise data T I has a high probability to obtain head
class samples, which is fed into the fusing branch. The sam-
pling rates pBi and pIi for class i within the sets T B and T I ,
respectively, are calculated by

pBi =
1

C
, pIi =

ni

N
. (2)

Balanced sampling data ensures that each class is sampled
with equal probability 1

C . The fewer the number of samples,
the higher the probability of being resampled multiple times.
The instance-wise sampling branch deals with the original
data distribution, resulting in head-biased data. Therefore,
the head classes have a higher probability of being sampled.
Next, we can use the feature maps FB and FI obtained from
T B and T I to substitute Ft and Fh in Eq. (1). By doing so,
the features of the repeatedly sampled tail classes will be
fused with the head class features with a higher probabil-
ity. In contrast to the common practice of linearly combin-
ing a pair of inputs and their labels for augmentation, we
only use the labels of the fused branch, namely the balance-
sampled data, as the ground truth. Through the adoption of
this method, the semantics of head classes are utilized to en-
rich tail classes. The proposed framework is illustrated in
Figure 2 and Algorithm 1.

Rationale Analysis
Although the proposed H2T appears intuitive and straight-
forward on the surface, it is built on a foundation of ratio-
nale. We explore its theoretical rationality in depth in this
section. For ease of analysis, we assume that the feature
maps to be fused are rearranged in order without loss of gen-
erality. Then, after the pooling layer, the feature can be writ-
ten as fT

i = [ḟT
i , f̈T

i ], where ḟi and f̈i denote the portions
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Figure 2: Framework of head-to-tail fusion (H2T).
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ples. A large number of tail class samples are incorrectly
recognized as head classes.
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Figure 4: Rationale analysis of H2T. Forces 1⃝ and 2⃝ are
generated by Eq. (9) and Eq. (7), respectively. 1⃝> 2⃝ makes
the tail sample to “pull” closer to wt and “push” further away
from wh, leading to the adjustment of decision boundary and
enlargement of the tail class space.

of features that are retained and to be fused, respectively.
wT

i = [ẇT
i , ẅ

T
i ] is the corresponding classifier weights.

On the one hand, we expect zt > zh for tail class, so that

wT
t ft > wT

h ft ⇒
ẇT

t ḟt + ẅT
t f̈t > ẇT

h ḟt + ẅT
h f̈t.

(3)

However, as shown in Figure 3, numerous tail class samples
are incorrectly classified into head classes. Therefore, the
trained model actually predicts zh > zt, namely,

ẇT
t ḟt + ẅT

t f̈t < ẇT
h ḟt + ẅT

h f̈t. (4)

After fusing the head to the tail in stage II, the feature of
tail class is f̃t = [ḟt, f̈h], and the corresponding logit is z̃t.
Our training goal is still to make the target logit larger than

Algorithm 1: H2T
Input: Training set, fusion ration p ;
Output: Trained model;

1 Initialize the model ϕ randomly ;
2 for iter = 1 to E0 do
3 Sampling batches of data (x, y) ∼ T I from the

instance-wise sampling data;
4 Obtain the feature map F = ϕθ(x) ;
5 Calculate logits z = WT f and loss L1(x, y);
6 ϕ = ϕ− α∇ϕL1((x, y);ϕ).
7 end
8 for iter = E0 + 1 to E2 do
9 Sample batches of data (xB , yB) ∼ T B and

(x, y) ∼ T I ;
10 Obtain feature maps FB = ϕθ(x

B) and
FI = ϕθ(x) ;

11 Fuse feature maps by Eq. 1 to obtain F̃ ;
12 Input F̃ to pooling layer to obtain f̃ , then

calculate the logits by z̃ = WT f̃ and the loss by
L2(x

B , yB) ;
13 end
14 Froze the parameters of representation learning ϕr,

and finetune the classifier parameters ϕc:
ϕc = ϕc − α∇ϕcL2((x

B , yB);ϕc).

the non-target class, namely, z̃t > z̃h. Therefore, we have

wT
t f̃t > wT

h f̃t ⇒[
ẇt

ẅt

]T [
ḟt
f̈h

]
>

[
ẇh

ẅh

]T [
ḟt
f̈h

]
⇒

ẇT
t ḟt + ẅT

t f̈h > ẇT
h ḟt + ẅT

h f̈h.

(5)

Adding the last line in Eq. (5) to Eq. (4), we can obtain that

ẅT
h (f̈t − f̈h) > ẅT

t (f̈t − f̈h). (6)

We use θ̈∗ (∗ is h or t) to represent the angle between ẅ∗
and f̈t − f̈h. Eq. (6) is further simplified to

|ẅh| cos θ̈h > |ẅt| cos θ̈t. (7)

On the other hand, similar to Eq. (3), for logits of head
classes, we have

ẇT
h ḟh + ẅT

h f̈h > ẇT
t ḟh + ẅT

t f̈h. (8)
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Add the last line in Eq. (5) to Eq. (8), we obtain that

|ẇt| cos θ̇t > |ẇh| cos θ̇h. (9)

Eq. (7) forces wh to move closer to tail class samples while
pushing wt further away from them, thus increasing the dis-
tribution span of head classes. Conversely, Eq. (9) exerts
an opposite force. Figure 4 geometrically interprets the ra-
tionale of H2T. Notably, when the fusion ratio p is small,
Eq. (9) exerts a greater force, enabling the classifier to be
well-calibrated. As p grows, the item ẅT

t f̈h > ẅT
h f̈h in

Eq. (6) progressively becomes more dominant. Under this
case, even though Eq. (7) encourages wt to move away from
tail class samples, which is larger than the force of Eq. (9),
ẅT

t f̈h > ẅT
h f̈h attracts wt towards head class samples, thus

broadens the distribution span of tail classes. Consequently,
the classifier increases its performance in the tail class, re-
gardless of the value of p.

Experiments
Datasets and Metrics
We evaluate H2T on four widely-used benchmarks:
CIFAR100-LT (Cao et al. 2019), ImageNet-LT, iNaturalist
2018 (Van Horn et al. 2018), and Places-LT. CIFAR100-LT
is a small-scale dataset that is sub-sampled from the bal-
anced version CIFAR100 (Krizhevsky, Hinton et al. 2009).
We used the imbalance ratios (ρ = nmax

nmin
) 200, 100, and

50 (Chu et al. 2020). The original versions of imageNet-
2012 (Russakovsky et al. 2015) and Places 365 (Zhou et al.
2017) are also balanced datasets. We use the same settings
as Liu et al. (Liu et al. 2019) to obtain the long-tailed ver-
sions. iNaturalist is collected from all over the world and is
naturally heavily imbalanced. The 2018 version (Van Horn
et al. 2018) is utilized in our experiment. We also report the
comparison results on CIFAR10-LT (Cao et al. 2019) in the
Appendix (Li et al. 2023b). As for the metrics, besides top-1
classification accuracy, following Liu et al. (Liu et al. 2019),
the accuracy on three partitions: head (ni > 100), medium
(20 < ni ≤ 100) and tail (ni ≤ 20) are also compared.

Basic Settings
SGD with a momentum of 0.9 is adopted for all datasets.
Stage II is trained with 10 epochs. For CIFAR100-LT, we re-
fer to the settings in Cao et al. (Cao et al. 2019) and Zhong et
al. (Zhong et al. 2021). The backbone network is ResNet-
32 (He et al. 2016). Stage I trains for 200 epochs. The ini-
tial learning rate is 0.1 and is decayed at the 160th and
180th epochs by 0.1. The batch size is 128. For imageNet-
LT and iNaturalist 2018, we use the commonly used ResNet-
50. For Places-LT, we utilize the ResNet-152 pre-trained on
imageNet. We reproduce the prior methods that provide the
hyper-parameters for a fair comparison. For those methods
that do not provide hyperparameters or official codes, we di-
rectly report their results presented in the original paper.

Comparisons to Existing Methods
Compared Methods: For single model, we compare the
proposed H2T with the following three kinds of methods:

Imbalance Ratio 200 100 50
Single Model

CE loss 35.99 39.55 45.40
LDAM-DRW (Cao et al. 2019) 38.91 42.04 47.62
DR+MU (Kang et al. 2020) 41.73 45.68 50.86
MisLAS (Zhong et al. 2021) 43.45 46.71 52.31
MBJ⋆ (Liu et al. 2022) - 45.80 52.60
GCL (Li et al. 2022) 44.76 48.61 53.55
CE+CMO⋆ (Park et al. 2022) - 43.90 48.30
BSCE+CMO⋆ (Park et al. 2022) - 46.60 51.40
ABL⋆ (Jin et al. 2023) - 46.80 52.10
DR+H2T 43.95 47.73 52.95
MisLAS+H2T 43.84 47.62 52.73
GCL+H2T 45.24 48.88 53.76

Multi-Expert Model
BBN (Zhou et al. 2020) 37.21 42.56 47.02
RIDE (Wang et al. 2021b) 45.84 50.37 54.99
ACE⋆ (Cai et al. 2021) - 49.40 50.70
RIDE+CMO⋆ (Park et al. 2022) - 50.00 53.00
ResLT (Cui et al. 2023) 44.26 48.73 53.81
RIDE+H2T 46.64 51.38 55.54
ResLT+H2T 46.18 49.60 54.39

Table 1: Comparison results on CIFAR100-LT. The back-
bone is ResNet-32. ⋆ denotes the results quoted from the
corresponding papers. The best and the second-best results
are shown in underline bold and bold, respectively.

two-stage methods, i.e., LDAM-DRW (Cao et al. 2019),
decoupling representation (DR) (Kang et al. 2020), Mis-
LAS (Zhang et al. 2021), and GCL (Li, Cheung, and Lu
2022); decision boundary adjustment method, i.e., Adap-
tive Bias Loss (ABL) (Jin, Lang, and Lei 2023); data aug-
mentation methods, i.e., MBJ (Liu, Li, and Sun 2022),
and CMO (Park et al. 2022). We report the results of CE
loss and balanced softmax cross-entropy loss (BSCE) (Ren
et al. 2020) with CMO (abbreviated as CE+CMO and
BSCE+CMO, respectively). The results of H2T accompa-
nied by DR (CE loss is utilized), MisLAS, and GCL are re-
ported. For multi-expert models, we compare BBN (Zhou
et al. 2020), RIDE (Wang et al. 2021b), ACE (Cai, Wang,
and Hwang 2021), and ResLT (Cui et al. 2023). Both RIDE
and ResLT use 3-expert architectures. For Places-LT, we re-
port the results of RIDE with linear and cosine classifiers.
Comparison Results: The results on CIFAR100-LT are
shown in Table 1. H2T can further improve both single and
multi-expert models. Applying H2T to the vanilla training
of DR with CE loss (DR+H2T) enhances the performance
by a significant margin, surpassing most recent methods.
The biggest improvement exceeds 2%. H2T can also fur-
ther boost the performance of two-stage SOTA methods,
i.e., MisLAS and GCL, albeit with less significant improve-
ments than for DR. H2T also bolsters the efficacy of multi-
expert models. For example, RIDE and ResLT integrating
with H2T outperform the original methods by 1.01% and
0.87% on CIFAR100-LT with ρ = 100.

The results on large-scale datasets are summarized in Ta-
bles 2, 3, and 4. The baseline (CE loss) achieves high ac-
curacy on frequent classes while the performance on rare
classes is unsatisfactory. Comparatively, all methods, except
CMO and multi-expert models, exhibit substantial improve-
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Method Head Med Tail All
Single Model

CE loss 64.91 38.10 11.28 44.51
LDAM-DRW (2019) 58.63 48.95 30.37 49.96
DR (2020) 62.93 49.77 33.26 52.18
MisLAS (2021) 62.53 49.82 34.74 52.29
MBJ⋆ (2022) 61.60 48.40 39.00 52.10
GCL (Li et al. 2022) 62.24 48.62 52.12 54.51
CE+CMO⋆ (2022) 67.00 42.30 20.50 49.10
BSCE+CMO⋆ (2022) 62.00 49.10 36.70 52.30
ABL⋆ (2023) 62.60 50.30 36.90 53.20
DR+H2T 63.26 50.43 34.11 52.74
MisLAS+H2T 62.42 51.07 35.36 52.90
GCL+H2T 62.36 48.75 52.15 54.62

Multi-Expert Model
BBN (2020) - - - 48.30
RIDE (2021b) 69.59 53.06 30.09 55.72
ACE⋆ (2021) - - - 54.70
RIDE+CMO⋆ (2022) 66.40 53.90 35.60 56.20
ResLT (2023) 59.39 50.97 41.29 52.66
RIDE+H2T 67.55 54.95 37.08 56.92
ResLT+H2T 62.29 52.29 35.31 53.39

Table 2: Comparison results on imageNet-LT.

Method Head Med Tail All
Single Model

CE loss 76.10 69.05 62.44 66.86
LDAM-DRW (2019) - - - 68.15
DR (2020) 72.88 71.15 69.24 70.49
MisLAS (2021) 72.52 72.08 70.76 71.54
MBJ⋆ (2022) - - - 70.00
GCL (2022) 66.43 71.66 72.47 71.47
CE+CMO⋆ (2022) 76.90 69.30 66.60 68.90
BSCE+CMO⋆ (2022) 68.80 70.00 72.30 70.90
ABL⋆ (2023) - - - 71.60
DR+H2T 71.73 72.32 71.30 71.81
MisLAS+H2T 69.68 72.49 72.15 72.05
GCL+H2T 67.74 71.92 72.22 71.62

Multi-Expert Model
BBN (2020) - - - 69.70
RIDE (2021b) 76.52 74.23 70.45 72.80
ACE⋆(2021) - - - 72.90
RIDE+ CMO⋆ (2022) 68.70 72.60 73.10 72.80
ResLT⋆ (2023) 64.85 70.64 72.11 70.69
RIDE+H2T 75.69 74.22 71.36 73.11
ResLT with H2T 68.41 72.31 72.09 71.88

Table 3: Comparison results on iNaturalist 2018.

ments in the medium and tail classes but at the expense of
reduced accuracy in head classes. CMO leverages the back-
ground of head classes to augment tail classes without re-
ducing the number of training samples in head classes, thus
enhancing model performance for both head and tail classes.
However, CMO+CE shows less competitive results in im-
proving tail class performance. ABL also adjusts the deci-
sion boundary, but its effectiveness is not as pronounced as
H2T. It is worth noting that all comparison methods necessi-
tate training from scratch. H2T can outperform the compari-
son methods on most datasets by re-fining the classifier with
only basic CE loss and several training epochs. For example,

Method Head Med Tail All
Single Model

CE loss 46.48 25.66 8.09 29.43
DR (2020) 41.66 37.79 32.77 37.40
MisLAS (2021) 41.95 41.88 34.65 40.38
MBJ⋆ (2022) 39.50 38.20 35.50 38.10
GCL (2022) 38.64 42.59 38.44 40.30
ABL⋆ (2023) 41.50 40.80 31.40 39.40
DR+H2T 41.96 42.87 35.33 40.95
MisLAS+H2T 41.40 43.04 35.95 41.03
GCL+H2T 39.34 42.50 39.46 40.73

Multi-Expert Model
LFME⋆ (2020) 39.30 39.60 24.20 36.20
RIDE (2021b) (LC) 44.79 40.69 31.97 40.32
RIDE (2021b) (CC) 44.38 40.59 32.99 40.35
ResLT⋆ (2023) 40.30 44.40 34.70 41.00
RIDE+H2T (LC) 42.99 42.55 36.25 41.38
RIDE+H2T (CC) 42.34 43.21 35.62 41.30

Table 4: Comparison results on Places-LT. CC, cosine clas-
sifier. LC, linear classifier.

on iNaturalist 2018, DR+H2T achieves 71.81%, which is the
highest among all other comparison methods. Furthermore,
H2T can deliver consistent performance improvements for
both single and multi-expert models, particularly for tail and
medium classes. Nevertheless, the accuracy improvements
of cosine classifier (CC) are less pronounced than those of
linear classifier (LC). For example, we can observe that H2T
improves GCL using CC much less than DR and MisLAS
that use LC. One reason is that the soft margin in GCL al-
lowing samples to fall in the margin between classes can al-
leviate the decision boundary bias compared with hard mar-
gins such as LDAM (Li et al. 2023a). This phenomenon also
confirms our motivation. Table 4 further compares the im-
provements of H2T on RIDE with LC (by 1.06%) and CC
(0.95%). The margin on LC is more profound.

Further Analysis
This section visualizes the decision boundary of H2T on
each class and investigates the effects of the sampler for the
fusing branch and the fusion ratio p. All experiments are
performed with DR+H2T.
Visualization of Decision Boundary: Figure 5 shows the
t-SNE visualization of the distribution in embedding space
and the decision boundary, which demonstrates our motiva-
tion (i.e., H2T can enrich tail classes and calibrate the deci-
sion boundary). For a more convenient and clearer presen-
tation, the experiment is conducted on CIFAR10-LT and we
show the most easily misclassified classes shown in Figure 3
(i.e., Class 0 and Class 8). More visualization results for
other classes can be found in the Appendix (Li et al. 2023b).
Features are extracted from class-balanced sampling data.
We can see that the distribution of Class 8 is sparser than
that of Class 0 by DR. H2T enriches the diversity of tail
classes without external information, achieving a more op-
timal decision boundary. It is worth noting that, the signifi-
cance of a clear margin differs between balanced and imbal-
anced datasets. In a balanced dataset, a clear margin is supe-
rior because the classifier is unbiased for each class. How-
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Figure 5: Decision boundary comparison of Class 0 and 8
without H2T v.s. with H2T (namely, DR and DR+H2T).

Figure 6: Change of accuracy on different splits w.r.t. p.

ever, in the case of imbalanced training data, a clear margin
provides the classifier more room to squeeze tail classes so
that correctly classifies head classes. Therefore, we use H2T
to fill the marge with semantic samples, which has multiple
advantages: 1) prevent over-squeezing for tail classes, thus
achieving a more reasonable decision boundary, 2) simulate
potentially unseen samples, thus improving the generaliza-
tion performance of the model on the test set. This is dis-
tinctly different from the perception that clear margins can
improve performance on balanced datasets.
The Influence of Sampler for Fusing Branch: We com-
pare different sampling strategies for the fusing branch,
including class-balanced sampling (CS), reverse sampling
(RS) that is tail-biased, and instance-wise sampling (IS) that
is head-biased. The results are shown in Table 5. DR uses
cRT to fine-tune the classifier with the class-balanced sam-
pling data, which enlarges the medium and tail class expands
by pushing the decision boundary in the direction of com-
pressing head classes. Additionally, DR uses CE loss that
does not consider class margin. These lead to a significant
boost in medium and tail classes while reducing the classi-
fication accuracy on head classes. RS augments classes of
all scales using head class samples with the lowest probabil-
ity. CS makes all classes augmented with other classes in an
equal probability. IS allows more features from the medium

Method Head Med Tail All
CE loss† 67.86 38.51 5.66 39.55
DR w.o. H2T† 63.67 46.63 22.21 45.68
BS+RS 63.56 48.60 24.07 46.87
BS+BS 62.72 49.14 25.93 47.30
BS+IS 62.00 50.17 27.07 47.73

Table 5: Impact of different samplers.

and tail classes to be fused with head features. All sampling
strategies adjust the decision boundaries towards narrowing
the head class distribution. RS has less damage to the per-
formance of head classes while the improvement brought
about by IS to the tail and medium classes is more promi-
nent. As the classifier tuning stage cannot change the em-
bedding distribution, the performance on medium and tail
classes is further improved but with performance degrada-
tion of head classes.
The Impact of Fusion Ratio: Figure 6 shows the change
of accuracy on different splits with respect to p. As p in-
creases, the performance of medium and tail classes im-
proves while that of head classes decreases, which is con-
sistent with the Rationale Analysis section. The class ex-
tension of the medium class and the tail class is expanded
by eroding that of head classes through H2T fusion. Since
ẅT

t f̈h > ẅT
h f̈h plays a disproportionate role, resulting in

excessive head class samples being incorrectly labeled as
medium and tail classes as p increases. If p > 0.3, the accu-
racy on head classes drops dramatically. Even replacing all
feature maps with another class still yields a relatively sat-
isfactory accuracy (43.57%), surpassing CE loss by 4.02%.
p = 0.3 obtains the best overall performance (47.73%) on
CIFAR100-LT. By adjusting p based on specific scenarios,
one can control the accuracy of different classes, which is
particularly useful when additional accuracy requirements
exist for different scale classes. More visualization results
for the fused embeddings and the selection strategy of fused
features can be found in the Appendix (Li et al. 2023b).

Concluding Remarks
This paper has proposed a simple but effective H2T for aug-
menting tail classes by fusing the feature maps of head class
samples to tail. By virtue of this fusion operation, our pro-
posed H2T has two-fold advantages: 1) it produces rela-
tively abundant features to augment tail classes, and 2) gen-
erates two opposing forces that restrain each other, prevent-
ing excessive sacrifices in head class accuracy. We have
further designed a strategy that fuses the features of two
branches with different sampling rates for easy implemen-
tation. Extensive experiments have shown that the proposed
H2T further improves upon SOTA methods.

Despite its effectiveness, H2T has an underlying assump-
tion that representation learning has reached its optimum
on the available data. It only adjusts the decision bound-
ary without altering the feature distribution. Ultimately, im-
provements in the tail classes are always accompanied by
sacrificing the head class performance. Our future work will
focus on obtaining a more reasonable embedding space dis-
tribution to overcome this limitation.
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